
ar
X

iv
:2

00
5.

05
84

7v
2

 [
cs

.L
G

]
 8

 S
ep

 2
02

0

Generalization of Machine Learning for Problem Reduction: A Case Study on

Travelling Salesman Problems

Yuan Suna, Andreas Ernstb, Xiaodong Lia, Jake Weinera

aSchool of Science, RMIT University, Melbourne, 3001, Victoria, Australia
bSchool of Mathematical Sciences, Monash University, Clayton, 3800, Victoria, Australia

Abstract

Combinatorial optimization plays an important role in real-world problem solving. In the big data era,

the dimensionality of a combinatorial optimization problem is usually very large, which poses a significant

challenge to existing solution methods. In this paper, we examine the generalization capability of a machine

learning model for problem reduction on the classic travelling salesman problems (TSP). We demonstrate

that our method can greedily remove decision variables from an optimization problem that are predicted not

to be part of an optimal solution. More specifically, we investigate our model’s capability to generalize on

test instances that have not been seen during the training phase. We consider three scenarios where training

and test instances are different in terms of: 1) problem characteristics; 2) problem sizes; and 3) problem

types. Our experiments show that this machine learning based technique can generalize reasonably well over

a wide range of TSP test instances with different characteristics or sizes. While the accuracy of predicting

unused variables naturally deteriorates as a test instance is further away from the training set, we observe

that even when tested on a different TSP problem variant, the machine learning model still makes useful

predictions about which variables can be eliminated without significantly impacting solution quality.

Keywords: Combinatorial optimization, machine learning, generalization error, problem reduction,

travelling salesman problem.

1. Introduction

In the big data era, we are often confronted with optimization problems with thousands or even mil-

lions of decision variables, e.g., social network analysis (Balasundaram et al., 2011; Gao et al., 2018). The

large problem size poses significant challenges to existing solution algorithms, especially to generic Mixed

Integer Programming (MIP) solvers such as CPLEX, which typically has difficulty in optimally solving or

even finding good solutions for such large-scale optimization problems in a reasonable computational time.

Moreover in many practical applications, e.g., trip planning (Friggstad et al., 2018), we need to provide a

high-quality solution to users within a few seconds. This is hard to achieve especially when the problem size

is very large, which necessitates the use of an effective problem reduction technique that can significantly

prune the search space but still capture an optimal (or near-optimal) solution in the reduced space.

Recently, there has been a growing trend of applying machine learning for problem reduction (Li et al.,

2018; Lauri & Dutta, 2019; Grassia et al., 2019; Ding et al., 2019; Sun et al., 2019). These machine learn-

ing models are typically trained on easy problem instances for which the optimal solution is known, and

Email addresses: yuan.sun@rmit.edu.au (Yuan Sun), andreas.ernst@monash.edu (Andreas Ernst),

xiaodong.li@rmit.edu.au (Xiaodong Li), jake.weiner@rmit.edu.au (Jake Weiner)

http://arxiv.org/abs/2005.05847v2

predict for a given hard unsolved problem instance a subset of decision variables that most likely belong

to an optimal solution. By greedily removing decision variables that are not expected to be part of an opti-

mal solution, the original large search space can be significantly reduced to a size that is manageable by an

existing solution algorithm. In our recent work (Sun et al., 2019), we have developed such a Machine Learn-

ing model for Problem Reduction (MLPR), which builds on statistical measures computed from stochastic

sampling of feasible solutions. We have empirically shown that as a prepossessing technique, our MLPR

method can significantly improve the performance of existing solution algorithms when used to solve large

maximum weight clique problems.

Although the idea of problem reduction using machine learning is generic, it is still unclear whether our

MLPR method is also effective on combinatorial problems other than maximum weight clique problems.

In this paper, we examine the effectiveness of our MLPR method on the classic traveling salesman problem

(TSP). We consider TSPs on a complete graph where the objective is to search for a shortest route that visits

each vertex and returns to the original vertex in the graph. We adapt our MLPR model to predict for each

edge whether it belongs to a shortest route, and remove from the complete graph those who do not. The aim

is to find a sparse subgraph that still contains a (near) optimal tour. This adaptation is nontrivial, because

problem-specific features and sampling methods have to be designed for TSPs. Furthermore we parallelize

our MLPR model in this paper, so that the computational time of our MLPR model can be significantly

reduced by using multiple cores.

Since the TSP has been extensively studied and many effective solution algorithms have been developed

for solving TSPs (Applegate et al., 2006a,b; Lin & Kernighan, 1973; Helsgaun, 2000), our primal goal here

is not to further push the limit of problem solving. Instead, we focus on exploring the generalization

capability (more specifically generalization error) of our MLPR model when training and test instances are

different. Generalization error is very relevant to real-world problem solving, because in practice the test

instances on which a trained model is applied are potentially quite different from the training instances. For

example, the routing problem that a navigation company solves on a regular basis might drift over time.

A significant contribution of this paper is to provide a systematic analysis on the robustness of our

MLPR model when such nontrivial changes happen in test instances. We empirically show that our MLPR

model generalizes reasonably well to a wide range of test TSP instances with different characteristics or

sizes. We also identify where our MLPR model may not perform well, i.e., on the test instances that are

deliberately made to be very different from the training instances in terms of problem characteristics. This

provides guidance on how to construct a good training set and when to update the training set in practical

contexts.

Taking a step further, we investigate whether the knowledge learned from one variant of TSP instances

can be transferred to solving other TSP variants. Our experimental results show that the MLPR model

trained on symmetric TSP instances performs fairly well on some of the test instances from other TSP

variants, although we do observe a performance degradation when the test TSP variants are gradually moved

away from the training TSPs. This indicates it is possible to develop a more generic MLPR model that does

not require re-training when applied to different problems (or at least a class of problems).

The remainder of this paper is organized as follows. In Section 2, we briefly describe the background

and methods related to problem reduction. In Section 3, we adapt our MLPR model to reduce problem

size for TSP. Section 4 presents the experimental results. The last section concludes the paper and suggests

potential research directions for future work.

2

2. Background and Related Work

We briefly describe TSP in Section 2.1, and review the problem reduction techniques based on machine

learning in Section 2.2. Because our MLPR model uses support vector machine (SVM) as the classification

algorithm, we will briefly describe SVM in Section 2.3.

2.1. Travelling Salesman Problem

Given n cities {v1,v2, · · · ,vn} and pairwise distance between cities {ci, j | i, j = 1, · · · ,n, i 6= j}, the ob-

jective of the TSP problem is to find the shortest route that visits each city and returns to the original city.

We use ui to denote the visiting order of city i, and use a binary variable xi, j to denote whether city j

is visited directly after city i. Without loss of generality, we set u1 = 1 (route starts from city 1). The

Miller-Tucker-Zemlin formulation of TSP can be written as

min
xxx

n

∑
i=1

n

∑
j=1

ci, jxi, j, (1)

s.t.
n

∑
i=1

xi, j = 1, j = 1,2, · · · ,n; (2)

n

∑
j=1

xi, j = 1, i = 1,2, · · · ,n; (3)

ui−u j +nxi, j ≤ n−1, 2≤ i, j ≤ n; (4)

ui ≥ 0, i = 2, · · · ,n; (5)

xi, j ∈ {0,1}, 1≤ i, j ≤ n. (6)

The first two constraints, (2) and (3), ensure that each city is arrived at and departed from exactly once;

and the constraint (4) eliminates subtours. More computationally efficient formulations exist, but this is

sufficient for logical correctness. Note that of the n2 xi j variables, exactly n(n− 1) must be zero in any

feasible solution. Removing such variables that are not part of any optimal solution would give a smaller

problem with the same optimum.

The TSP has been intensively studied and many solution algorithms have been developed to solve this

problem, e.g., the Concorde exact solver (Applegate et al., 2006a,b), the Lin-Kernighan heuristic method

(Lin & Kernighan, 1973; Helsgaun, 2000) and the “backbone” based heuristics (Dong et al., 2009; Jäger et al.,

2014). Recently, there has been a growing interest in using machine learning to automatically learn a so-

lution algorithm to solve combinatorial optimization problems (Bengio et al., 2018). The learning-based

methods for solving TSP include: Vinyals et al. (2015); Bello et al. (2016); Khalil et al. (2017); Deudon et al.

(2018); Kool et al. (2019); Wu et al. (2019); Chen & Tian (2019), to name a few.

2.2. Problem Reduction Based on Machine Learning

Many combinatorial optimization problems contain a large number of decision variables, most of which

are “irrelevant” to the optimal solution. For example, in a symmetric TSP with n cities, the total number

of binary variables is n(n−1)/2, while a shortest route only uses n binary variables (for those the value is

1). The goal of problem reduction is to identify some of these irrelevant variables and remove them from

the original problem, in the hope that the reduced problem can be solved more easily. However, identifying

these irrelevant variables is a nontrivial task itself.

Most of the existing problem reduction methods in mathematical programming are exact approaches,

which only remove decision variables that cannot be part of an optimal solution, based on mathematical

3

reasoning and/or computation of an objective bound (Jonker & Volgenant, 1984; Hougardy & Schroeder,

2014). An exact approach guarantees that the reduced problem always contains an original optimal solution,

but in many cases it is computationally expensive and/or is not equipped with means to significantly reduce

the problem size.

Fortunately, many combinatorial optimization problems have a “backbone” structure; that is the optimal

solution of a problem is likely to share some components with high-quality solutions (Kilby et al., 2005;

Wu & Hao, 2015). This makes it possible to statistically quantify which decision variables or solution

components are more likely to be part of an optimal solution from sample solutions. This heuristic approach,

although it does not have an optimality guarantee, can usually remove a large number of irrelevant decision

variables from a given problem instance (Fischer & Merz, 2007; Sun et al., 2019).

Our MLPR method originally proposed in (Sun et al., 2019) belongs to the class of heuristic reduction

approaches. We use optimally-solved problem instances as training set, and apply machine learning to

automatically learn a rule to separate the decision variables that belong to an optimal solution from those

who do not (irrelevant variables). We extract computationally-cheap problem features as well as statistical

measures computed from random samples of feasible solutions to characterize each decision variable. Based

on these features, we predict for each decision variable a likelihood of whether it belongs to an optimal

solution. Our MLPR method can be used as a preprocessing technique to remove decision variables that are

not expected to be part of an optimal solution from an unseen test problem instance. We will describe our

MLPR model in more detail in Section 3.

Closely related to our MLPR method, Lauri & Dutta (2019) also developed a machine learning model

for problem reduction to list all maximum cliques in a graph. They only use features directly computed

from graph data to characterize a vertex, and remove vertices that are predicted not to be part of a maximum

clique. Building on this work, Grassia et al. (2019) developed a multi-stage pruning technique that can

further reduce problem sizes for sparse graphs. They also investigated the effects of removing edges instead

of vertices from a graph. The main difference between these methods and ours is that these methods do

not use statistical features computed from stochastic samples of feasible solutions. It is worth pointing out

that these statistical features are of vital importance to our MLPR model, which helps our model generalize

well to test problem instances that are not seen during training. We will describe these statistical features in

Section 3.1.2.

Apart from using problem reduction as a preprocessing step (i.e., removing irrelevant decision variables

from a given problem instance a priori), there exist other smart uses of problem reduction techniques.

He et al. (2014) learned a node pruning policy for branch-and-bound algorithms to heuristically cut off

branches that are unlikely to generate a better primal solution. Li et al. (2018) estimated a likelihood for

each decision variable of whether it belongs to an optimal solution, and used the estimated probabilities to

guide a tree search algorithm. Ding et al. (2019) trained a graph convolutional network to predict solution

values for binary variables, and used the predicted values to generate a global inequality constraint to prune

the search space. These methods are typically designed for a particular type of solution algorithms. In

contrast, our MLPR method is more generally applicable and can be used as a preprocessing technique for

any existing solution algorithm.

2.3. Support Vector Machine

Consider a binary classification task with m training instances S = {(fff i, li) | i = 1, · · · ,m}, where fff i is

the feature vector and li ∈ {−1,1} is the class label of the ith training instance. A classification algorithm

aims to find a decision boundary to separate the positive (label 1) and negative (label −1) training instances

as well as possible.

4

We first assume the positive and negative training instances can be separated by a linear classifier (h),

parameterized by (www, b):

hwww,b(fff) = sgn(wwwT fff +b), (7)

where sgn(wwwT fff +b) is the sign of value wwwT fff +b. The geometric margin of (www,b) with respect to a training

instance (fff i, li) is defined as the distance from fff i to the decision boundary (wwwT fff + b = 0) in the feature

space:

γ i = li
(wwwT

||www|| fff
i +

b

||www||
)

. (8)

The geometric margin of (www,b) with respect to a training set S is the smallest geometric margin to the

individual training instances:

γ = min
i=1,··· ,m

γ i. (9)

The aim of SVM (Boser et al., 1992; Cortes & Vapnik, 1995) is to find a decision boundary, determined

by (www,b), that maximizes the geometric margin γ :

max
γ ,www,b

γ , (10)

s.t. li
(wwwT

||www|| fff
i +

b

||www||
)

≥ γ , i = 1, · · ·m. (11)

SVM is also known as an optimal margin classifier. Scaling www and b by any positive number does not

change the decision boundary: www fff +b = 0. Thus we can restrict the norm of www to be any positive number

without changing the optimal decision boundary. In order to efficiently solve the optimization problem, the

norm of www is usually set to 1/γ , i.e., ||www|| = 1/γ . Thus maximizing γ is equivalent to maximizing 1/||www||,
which is also equivalent to minimizing 1

2
wwwT www. The optimization problem is then transferred to a quadratic

programming with linear constraints, which can be solved efficiently:

min
www,b

1

2
wwwT www, (12)

s.t. li
(

wwwT fff i +b
)

≥ 1, i = 1, · · ·m. (13)

Let (www∗,b∗) determine the optimal decision boundary. The feature vector fff i is called a support vector

if li
(

www∗T fff i + b∗
)

= 1. The support vectors are the training instances with the smallest geometric margin

(those closest to the optimal decision boundary). Thus only support vectors can influence the optimal

decision boundary. Adding or deleting a training instance which is not a support vector does not change the

optimal decision boundary.

When the training set S cannot be well separated by a linear classifier, we can map the feature vector fff

to a higher-dimensional space using a non-linear function φ(·), in the hope that the training instances can be

separated more easily in the higher-dimensional space. We can also use regularization, that allows a smaller

geometric margin at a cost of increasing the objective value. Importantly this also caters for the case where

the given set of non-linear functions is unable to provide a correct classification for all training instances.

The primal optimization problem becomes

min
www,b,ξξξ

1

2
wwwT www+ r+ ∑

li=1

g(ξ i)+ r− ∑
li=−1

g(ξ i), (14)

s.t. li
(

wwwT φ(fff i)+b
)

≥ 1−ξ i, i = 1, · · ·m, (15)

ξ i ≥ 0, i = 1, · · ·m, (16)

5

where φ(fff i) maps the feature vector fff i into a higher-dimensional space; r+ > 0 and r− > 0 are the regular-

ization parameters for positive and negative training instances; ξ i, i = 1, · · · ,m are slack variables and g(·)
is a loss function. We will denote SVM with first order loss function g(ξ i) := ξ i as L1-SVM, and SVM

with second order loss function g(ξ i) := (ξ i)2 as L2-SVM.

If the function φ(fff i) maps the feature vector fff i to a very high dimensional space, solving the primal

optimization problem is computationally slow. In this case, the dual problem may be easier to solve. Con-

sidering L1-SVM, the dual optimization problem is

min
ααα

1

2
αααT Qααα− eeeT ααα, (17)

s.t. lllT ααα = 0, (18)

0≤ αi ≤ r+, ∀ i ∈ {1, · · · ,m} and li = 1, (19)

0≤ αi ≤ r−, ∀ i ∈ {1, · · · ,m} and li =−1, (20)

where {α1, · · · ,αm} are dual variables of constraints (15), eee = [1, · · · ,1]T is the vector of all ones, Q is

an m×m positive semidefinite matrix, and Qi, j = lil jK(fff i, fff j), and K(fff i, fff j) = φ(fff i)φ(fff j) is the kernel

function. The kernel function avoids the need to explicitly compute φ(·), thus is computationally efficient.

For example the radial basis function (RBF), defined as Krb f (fff i, fff j) = exp(−γk|| fff i− fff j||2), where γk is

a kernel parameter, implicitly maps the feature space to an infinity dimensional space. But computing

the RBF kernel only costs O(m). Let α∗i , i = 1, · · · ,m denote the optimal dual values. Due to the KKT

dual complementarity condition, if α∗i > 0 the corresponding training instance fff i is a support vector. As

www∗ = ∑m
i=1 α∗i li fff i, the optimal decision boundary and thus the prediction for a given new instance are only

determined by the support vectors (those with α∗i > 0). It is noteworthy that the number of support vectors

is usually much smaller than the number of training instances in the training set.

3. Problem Reduction for Travelling Salesman Problem Using Machine Learning

In this section, we adapt our MLPR method originally proposed in (Sun et al., 2019) to prune the search

space for TSP. We model TSP as a complete graph G(V,E,C), where V denotes a set of cities, E denotes

edges between cities, and C denotes edge costs (e.g., distance between cities). The objective of TSP is to

search for a route with minimum edge costs that visits each vertex and return to the original vertex. Our

MLPR method uses machine learning to predict for each edge whether it belongs to an optimal route, and

removes from the complete graph the edges that are not expected to be part of an optimal route.

We use optimally-solved TSP instances as our training set, and treat each edge in a solved graph as a

training instance. We assign a class label 1 to the edges that belong to the optimal route and−1 to those who

do not. We will extract two statistical measures and four graph features to characterize each edge in Section

3.1. After constructing a training set, our goal is then to learn a decision boundary in the feature space to

differentiate between positive (with class label 1) and negative (with class label −1) training instances. This

becomes a typical binary classification problem and any classification algorithm can be used for this task.

We will use SVM to learn a decision boundary for this task in Section 3.2. For a given large TSP instance

where we do not know the optimal route, the trained model can then be used to predict a class label for

each edge in the graph. By removing the edges that are predicted to be−1, we have a reduced sparse graph,

which is hopefully much easier for an existing solution algorithm to solve. The main steps of our MLPR

method for TSP are summarized in Algorithm 1.

6

Algorithm 1 MLPR FOR TSP

1: Solve selected easy TSP instances to optimality;

2: Assign a class label 1 to the edges in the optimal route and −1 to others;

3: Extract features to characterize each edge (training instance);

4: Train a machine learning model to separate positive and negative edges;

5: Predict a class label for each edge on an unseen test graph (where its optimal solution is unknown)

using the trained model, and remove negative edges.

3.1. Extracting Features to Characterize Each Edge

We extract four features directly computed from graph data and two statistical measures computed from

stochastic samples of feasible solutions to characterize each edge (training instance).

3.1.1. Graph Features

As the objective of TSP is to search for a route with minimum costs, the edge cost is an important

feature related to the objective value. Considering a TSP instance G(V,E,C) with n cities, we design four

graph features to describe each edge ei, j , i, j = 1, · · · ,n, based on the edge costs C:

f1(ei, j) =

ci, j− min
k=1,··· ,n

ci,k

max
k=1,··· ,n

ci,k− min
k=1,··· ,n

ci,k
, (21)

f2(ei, j) =

ci, j− min
k=1,··· ,n

ck, j

max
k=1,··· ,n

ck, j− min
k=1,··· ,n

ck, j
, (22)

f3(ei, j) =
ci, j−∑n

k=1 ci,k/n

max
k=1,··· ,n

ci,k− min
k=1,··· ,n

ci,k
, (23)

f4(ei, j) =
ci, j−∑n

k=1 ck, j/n

max
k=1,··· ,n

ck, j− min
k=1,··· ,n

ck, j
. (24)

The first feature computes the difference between the edge cost of ei, j (ci, j) and the minimum edge cost that

originates from vertex i, while the second feature computes the difference between ci, j and the minimum

edge cost that ends in vertex j. The third and fourth features are computed based on the mean edge costs

connected to vertex i or j. We normalize the four features by the difference between the maximum and

minimum edge costs that connect to vertex i or j. These graph features only capture local characteristics of

an edge. In the next subsection, we will describe two statistical measures to capture certain global features

for each edge.

3.1.2. Statistical Measures

The statistical measures aim to quantify the likelihood of each edge belonging to an optimal route based

on randomly generated samples of feasible routes. As TSP has the backbone structure (Kilby et al., 2005),

it is possible to identify the edges shared between an optimal route and high-quality routes.

Randomly generating a feasible route for TSP is very simple. Supposing the vertices (cities) are labelled

from 1 to n, any random permutation (P) of integers from 1 to n is a feasible route for visiting each city.

We generate m random feasible routes {P1,P2, · · · ,Pm}, and compute the corresponding objective values

7

{y1,y2, · · · ,ym}. The time complexity of sampling is Θ(mn), simply because a random permutation of n

elements costs Θ(n).
To define our statistical measures, we introduce a binary string xxxk to represent the kth sample route Pk,

where xk
i, j = 1 means the edge ei, j is in the kth sample; otherwise it is not. The first statistical measure is

computed from the ranking of sample routes. We sort the sample routes based on their objective values in

ascending order, and use rk to denote the ranking of the kth sample. The ranking-based measure for edge

ei, j is defined as

fr(ei, j) =
m

∑
k=1

xk
i, j

rk
, (25)

where i, j = 1, · · · ,n. The edges that frequently appear in high-quality sample routes have a large ranking-

based score, and are more likely to be part of an optimal route. We then normalize each ranking-based score

by dividing the maximum ranking-based score in a graph

f5(ei, j) =
fr(ei, j)

max
p,q=1,··· ,n

fr(ep,q)
. (26)

This normalization avoids a large-valued feature dominating a classification task.

The second statistical measure we have developed is a correlation-based measure, that computes the

Pearson correlation coefficient between each variable xi, j and objective values across the sample routes:

fc(ei, j) =
∑m

k=1(x
k
i, j− x̄i, j)(y

k− ȳ)
√

∑m
k=1(x

k
i, j− x̄i, j)2

√

∑m
k=1(y

k− ȳ)2
, (27)

where x̄i, j = ∑m
k=1 xk

i, j/m, and ȳ = ∑m
k=1 yk/m. As TSP is a minimization problem, edges that are highly

negatively correlated with the objective values are likely to be in an optimal route. Similarly, we normalize

the correlation-based score by the minimum correlation value in a graph:

f6(ei, j) =
fc(ei, j)

min
p,q=1,··· ,n

fc(ep,q)
. (28)

Directly computing these two statistical measures from the binary string representation x costs Θ(mn2)
in both time and space complexity. In (Sun et al., 2019), we have introduced an efficient method based on

set representation, i.e., permutation P here. Because xk
i, j are binary variables, we can simplify the calculation

of Pearson correlation coefficient using the following two equalities:

m

∑
k=1

(xk
i, j− x̄i, j)

2 = x̄i, j(1− x̄i, j)m, (29)

m

∑
k=1

(xk
i, j− x̄i, j)(y

k− ȳ) = (1− x̄i, j)s
1
i, j− x̄i, js

0
i, j, (30)

where

s1
i, j = ∑

1≤k≤m

xk
i, j=1

(yk− ȳ); and s0
i, j = ∑

1≤k≤m

xk
i, j=0

(yk− ȳ). (31)

8

Algorithm 2 STATISTICAL MEASURES(P, Y , m, n)

1: Sort the samples in P based on objective value Y ; use rk to denote the ranking of kth sample Pk;

2: Compute mean objective value: ȳ← ∑m
k=1 yk/m;

3: Compute objective difference: yd ← ∑m
k=1(y

k− ȳ);
4: Compute objective variance: σy← ∑m

k=1(y
k− ȳ)2;

5: Initialize fr, x̄i, j and s1
i, j to 0, for each ei, j ∈ E;

6: for k from 1 to m do

7: for idx from 1 to n do

8: if idx < n then

9: i← Pk[idx], j← Pk[idx+1];
10: else

11: i← Pk[idx], j← Pk[1];

12: fr(ei, j)← fr(ei, j)+1/rk;

13: x̄i, j ← x̄i, j +1/m;

14: s1
i, j ← s1

i, j +(yk− ȳ);

15: for i from 1 to n do

16: for j from 1 to n and j 6= i do

17: σci, j ← (1− x̄i, j)s
1
i, j− x̄i, j(yd− s1

i, j);
18: σxi, j ← x̄i, j(1− x̄i, j)m;

19: fc(ei, j)← σci, j/
√

σxi, j σy;

20: return fr and fc.

The proof of these two equalities can be found in (Sun et al., 2019). Having this simplification, we can

compute the two statistical measures in Θ(mn+ n2) for both time and space complexity using Algorithm

2. The main idea is to iterate through the edges in each sample route P to accumulate our ranking-based

measure fr(ei, j), x̄i, j and s1
i, j, i.e., line 6 to 14 in Algorithm 2. Our correlation-based measure fc(ei, j) can

then be easily computed based on x̄i, j and s1
i, j .

In practice, the sample size m should be larger than n; otherwise there will be some edges that are

never sampled. Considering a symmetric TSP instance with n cities, the number of edges in the undirected

complete graph is n(n− 1)/2. The total number of edges in m sample routes is mn. Thus each edge is

expected to be sampled 2m/(n−1) times. In our experiments, we set m = 100n.

It is noteworthy that the two statistical measures described here can be directly used as a problem

reduction technique, e.g., we can remove the edges that are positively correlated with objective values from

a graph. However, as we have shown in (Sun et al., 2019), the machine learning approach which takes these

two statistical measures as features outperforms a single statistical measure for problem reduction. Thus we

will simply use both statistical measures as inputs to our machine learning model in this paper.

3.2. Support Vector Machine Classification

In our training set, the number of positive training instances is much smaller than that of negative

instances. Considering a symmetric TSP instance with n cities, the number of edges in an optimal route

is n, and the total number of edges is n(n− 1)/2. Thus the ratio between positive and negative edges is

2 : (n− 3). The standard SVM formulation tends to classify negative training instances better than the

positive instances, because there are more negative training instances. However, misclassifying a positive

instance is much more harmful than misclassifying a negative instance. If a positive instance is misclassified,

9

the reduced optimization problem no longer captures the original optimal solution. On the other hand,

misclassifying a negative instance only results in a slight increase of the reduced problem size. In this

sense, we will use the cost-sensitive SVM (see Section 2.3) and penalize misclassifying positive instances

more by using a larger regularization parameter r+ in Eq. (14), in contrast to that of negative instances r−.

In our experiments, we will set r− = 1 and r+ = εmn−1/n1, where n−1 and n1 are the number of negative

and positive instances in our training set, and εm controls the penalty for misclassifying positive instances.

The term n−1/n1 balances the number of positive and negative instances in our training set.

We will consider two types of SVM in our experiments, linear SVM (solving primal optimization prob-

lem) and non-linear SVM with the RBF kernel (solving dual optimization problem); see Section 2.3 for

more details. The classification accuracy of kernel SVM is usually higher than that of linear SVM. We

will use the SMO-type (Sequential Minimal Optimization) decomposition method (Fan et al., 2005) imple-

mented in the LIBSVM library (Chang & Lin, 2011) to solve the dual optimization problem of L1-SVM.

However when the number of training instances is too large (e.g, millions of instances), solving the dual

problem is computationally very slow. In this case, we will solve the primal optimization problem of linear

L2-SVM using the trust region Newton method (Lin et al., 2008) implemented in the LIBLINEAR library

(Fan et al., 2008).

4. Experiments

In this section, we use simulation experiments to investigate the robustness of our MLPR model. We

will consider three scenarios where training and test instances are different, and explore the corresponding

generalization errors. Specifically in Section 4.1, we train our MLPR model using one category of TSP

instances and test it on another with different problem characteristics. In Section 4.2, we train MLPR

using small randomly generated TSP instances, and test it on larger randomly generated TSP instances. In

Section 4.3, we train our MLPR model on symmetric TSP instances, and test it on three TSP variants. In

Section 4.4, we investigate whether our MLPR method can be used as a preprocessing technique to boost

the performance of a generic solver – CPLEX. In the last subsection, we compare our MLPR method against

other generic problem reduction methods. Our source codes are implemented in C++, and compiled with

GCC/7.3.0-2.30. All our experiments are conducted on a high performance computing server with Intel(R)

Xeon(R) Gold 6154 CPUs @ 3.00 GHz and 21 GB RAM.1

4.1. Varying Problem Characteristics

4.1.1. Setting

We use the TSP instances from the MATILDA library as our dataset2. This library contains 7 cat-

egories, each with 190 symmetric TSP instances. The instances in each category are evolved by a ge-

netic algorithm to have certain problem characteristics, such that they are hard (or easy) for a particu-

lar heuristic to solve (Smith-Miles & van Hemert, 2011). They have considered two heuristic methods

– Chained Lin-Kernighan (CLK) (Applegate et al., 2003) and Lin-Kernighan with Cluster Compensation

(LKCC) (Johnson & McGeoch, 1997), resulting in 7 categories of instances: CLKeasy (I1), CLKhard

(I2), easyCLK-hardLKCC (I3), hardCLK-easyLKCC (I4), LKCCeasy (I5), LKCChard (I6) and ran-

dom (I7).

1Our C++ source codes are publicly available online at https://github.com/yuansuny/tsp .
2https://matilda.unimelb.edu.au/matilda/

10

https://github.com/yuansuny/tsp

Because the dimensionality of these instances is small (i.e., 100), we can quickly solve these instances

to optimality using the Concorde solver (Applegate et al., 2006a). This enables us to systematically evalu-

ate the generalization capability of our MLPR model to instances in different categories. We train a MLPR

model using the first 50 instances in one category, and test the trained model on the remaining unseen 140

instances in that category as well as the instances from other 6 categories. For each test instance, we apply

the trained model to reduce the problem size (i.e., pruning some edges in the complete graph), and solve the

reduced problem to optimality using Concorde.3 We compute an optimality gap by comparing the optimal

solutions generated in the reduced and original problems. As our MLPR model uses statistical features

computed from random samples, the reduced problem generated for a test instance might be slightly differ-

ent if we use a different random seed. Therefore, we repeat the random sampling and problem reduction

process 25 times to alleviate randomness.

As the size of each training set is not too large, we use L1-SVM with RBF kernel to train our MLPR

model. The computational time required for training one model is less than 30 minutes, and the predicting

time for one test instance is around 5 seconds. The kernel parameter γk is set to the default value used in

the LIBSVM library: γk = 1/n f , where n f is the number of features. We have tested multiple values for

the penalty parameter εm in (Sun et al., 2019), and found that εm = 10 works reasonably well across a wide

range of problem instances. Thus we simply set εm = 10 in this subsection.

4.1.2. Results

The average optimality gap generated by our MLPR model and remaining problem size after reduction

are presented in Tables 1 and 2, respectively. These two tables should be read in conjunction as, in an

ideal world, we would want to see both small reduced problems and small optimality gaps. What the

results show in practice is that, unsurprisingly, the MLPR models that retain a larger fraction of the original

problem also tend to produce smaller gaps. Hence, the best optimality gaps in Table 1 do not simply occur

on the diagonal as one might first expect. As a compromise between these two aims of minimising gaps

and size, we observe that using randomly generated TSP instances (I7) as a training set, our MLPR model

performs reasonably well across all 7 categories of TSP instances. The MLPR-I7 model prunes about 85%

of edges, and overall achieves 0.44% optimality gap. Further, the TSP instances that are hard for CLK or

LKCC to solve (e.g., I2 and I6) are also hard for our MLPR model. The optimality gaps generated by our

MLPR models for hard TSP instances are larger than those for easy TSP instances. Third, MLPR trained

on easy TSP instances (e.g., MLPR-I1 or MLPR-I5) prunes too many edges for hard instances (e.g., I2

or I6), resulting in a large optimality gap. On the other hand, MLPR trained on hard TSP instances prunes

too few edges for the easy instances tested, resulting in larger problem sizes still remaining. For example,

both MLPR-I2 and MLPR-I3 achieve 0 optimality gap for easy instances in I1, but MLPR-I2 prunes

8.5% few edges than MLPR-I3. Lastly, we observe that when training and test instances are from the same

category, the generated optimality gap is less than 0.2%, and the amount of pruned edges is reasonable – in

fact the results are always non-dominated in the Pareto sense, with all other models producing worse gaps

or larger remaining problems.

We use the tool from the MATILDA library to visualize the performance of our MLPR models. Here

each TSP instance (instead of an edge) is mapped to a point in a 6-dimensional feature space. The feature

values are taken from the MATILDA library and are normalized to the range of 0 to 1. We then apply

principal component analysis to reduce the 6-dimensional feature space to 2-dimensional by selecting the

first two principal components (Z1 and Z2). The distribution of the TSP instances in the 2-dimensional

3We do not remove the edges that appear in the best sample solution to guarantee that the reduced problem space contains at

least one feasible solution.

11

Table 1: The average optimality gap (%) generated by our MLPR model when trained on one category of TSP instances and tested

on another. The 7 categories of instances are labelled as I1, · · · ,I7. The MLPR model trained on category I j is denoted as

MLPR-I j. The best optimality gap generated for each test category is in bold.

Models I1 I2 I3 I4 I5 I6 I7

MLPR-I1 0.11 11.19 4.43 5.57 0.90 6.95 4.06

MLPR-I2 0.00 0.11 0.03 0.00 0.00 0.40 0.00

MLPR-I3 0.00 2.44 0.18 0.25 0.00 1.18 0.09

MLPR-I4 0.00 1.94 0.18 0.14 0.02 1.04 0.07

MLPR-I5 0.04 8.38 1.83 2.60 0.17 3.87 1.41

MLPR-I6 0.00 0.12 0.00 0.00 0.00 0.18 0.00

MLPR-I7 0.00 1.75 0.19 0.10 0.00 1.01 0.05

Table 2: The percentage of remaining problem size with respect to its original problem size (%) when training our MLPR model

on one category of TSP instances and testing it on another. The 7 categories of instances are labelled as I1, · · · ,I7. The MLPR

model trained on category I j is denoted as MLPR-I j.

Models I1 I2 I3 I4 I5 I6 I7

MLPR-I1 8.30 9.15 8.66 8.57 8.14 9.33 8.33

MLPR-I2 22.24 21.49 23.67 21.67 21.80 23.35 22.20

MLPR-I3 13.79 13.22 14.22 13.47 13.42 14.56 13.66

MLPR-I4 14.47 14.12 15.70 14.07 14.05 16.00 14.46

MLPR-I5 9.68 10.10 9.97 9.76 9.44 10.61 9.63

MLPR-I6 23.50 21.76 23.36 23.11 23.23 22.80 23.00

MLPR-I7 14.94 14.35 15.71 14.53 14.56 15.99 14.82

space, spanned by Z1 and Z2, is shown in Figure 1a. For better visualization, we only plot the last 50 TSP

instances from each category, and the instances from different categories are in different colors. We can see

that instances from different categories are well separated in the feature space. Note that we only visualize

five categories of TSP instances, because the feature data for the other two categories is not available in

MATILDA.

We also plot the optimality gap (%) generated by our MLPR models for these instances when trained

on one category of instances at a time in Figure 1b-1f. The optimality gap is indicated by the color of the

dots (blue is small and red is large). We can observe that the MLPR model trained on easy TSP instances

(MLPR-I1 or MLPR-I5) does not perform well on hard instances (I2 or I6). There appears to be a

strong correlation between the size of the gap and the distance from the training data for these instances.

The MLPR model trained on hard instances is able to generate a small optimality gap for any instance

considered, though this comes at a price of an increased problem size after the reduction.

Finally, we note that although our MLPR method is able to aggressively reduce the problem size of a

TSP instance, it does not speed up the specialized Concorde solver as a preprocessing technique to solve the

problem. This is because the Concorde solver does not make use of the sparsity of a graph when solving a

reduced problem instance, as it transfers a sparse graph to a complete graph by assigning an arbitrary large

weight to the edges that do not exist. Here, we further investigate whether our MLPR method can be used

as a preprocessing technique to speed up a generic solver CPLEX. To do so, we select six easy problem

instances from the TSP library (Reinelt, 1991), whose dimension varies between sizes of 40 and 60. We

12

0 0.5 1

0

0.5

Z1

Z
2

I1 I5 I2 I6 I7

(a) Instance Distribution

0 0.5 1

0

0.5

Z1

Z
2

0 10 20 30

(b) MLPR-I1

0 0.5 1

0

0.5

Z1

Z
2

0 10 20 30

(c) MLPR-I5

0 0.5 1

0

0.5

Z1

Z
2

0 10 20 30

(d) MLPR-I7

0 0.5 1

0

0.5

Z1

Z
2

0 10 20 30

(e) MLPR-I2

0 0.5 1

0

0.5

Z1

Z
2

0 10 20 30

(f) MLPR-I6

Figure 1: The footprint of our MLPR models when tested on different categories of TSP instances. Each dot represents a TSP

instance in the 2-dimensional feature space (Z1 and Z2). In figure (a), dot color represents the category where instance is from;

while in figure (b) to (f), dot color represents the optimality gap (%) generated by our MLPR models for the corresponding instance.

Table 3: The ratio between the time taken by CPLEX to solve the original and reduced problem instances. This measures how

significantly our MLPR-I6 method speeds up CPLEX as a preprocessing technique.

Dataset Att48 Berlin52 Eil51 Gr48 Hk48 Swiss42

Speed-up 1.93 3.92 1.96 2.74 1.78 3.01

apply the MLPR-I6 model to prune edges for each test instance, and use CPLEX to optimally solve the

original and reduced instances with default parameter settings. The ratio between the time taken to solve the

original and reduced TSP instances is shown in Table 3. We can observe that by using our MLPR method

as a preprocessing technique, CPLEX achieves 2.68 times of speed-up when solving the 6 test instances on

average. Furthermore, the optimal solutions generated from the original and reduced TSP instances are the

same, meaning our MLPR method is very accurate at pruning irrelevant edges (i.e., those do not belong to

an optimal solution).

4.2. Varying Problem Size

4.2.1. Setting

In this subsection, we explore the generalization error of our MLPR model in terms of problem size.

We train our MLPR model using 190 randomly generated TSP instances (I7) from the MATILDA library

13

200 500 800 1,100 1,400 1,700 2,000
0

5

10

15

p̄
(%

)

Figure 2: The percentage of remaining problem size after reduction when training our MLPR model on small TSP instances and

testing it on larger instances. The horizontal axis represents the number of cities in test TSP instances.

with dimension 100, and test it on larger randomly generated TSP instances. Each TSP instance in I7 of

MATILDA is created by randomly generating 100 pairs of integer coordinates between 0 and 400. We use

the same method to create test instances with different number of cities, i.e., 200, 500, 800, 1100, 1400,

1700, and 2000. This results in 7 categories, each with 190 randomly generated TSP instances. Because

each edge (instead of a complete graph) is a training instance, our training set size is close to 1 million.

Thus we use a linear SVM with εm = 10 to train our MLPR model, by solving the primal problem to gain

computational efficiency. We apply the trained model to reduce the problem size for each test TSP instance,

and solve the reduced problem as well as the original problem to optimality using Concorde.

4.2.2. Results

Surprisingly, the optimality gap generated by our MLPR model for each test category is always zero.

As the dimension of the test TSP instances increases, our MLPR model tends to prune slightly more edges,

as shown in Figure 2. This suggests that our MLPR model trained on small randomly generated TSP

instances generalize well to larger randomly generated TSP instances. Note that the large instances tested

here are of similar problem characteristics with the small instances used in training, as they are generated

in a similar way. This indicates our MLPR method is likely to work well on practical applications where

similar problem instances need to be solved regularly. However, when tested on a problem instance that is

different from the training instances, our MLPR method may not capture the original optimal solution in

the reduced problem space, due to its heuristic nature.

4.3. Varying Problem Types

4.3.1. Setting

In this subsection, we train our MLPR model on the symmetric TSP and test it on other TSP variants. We

take the first 50 LKCC-hard instances (I6) from MATILDA as our training set, because overall it generates

the smallest optimality gap for symmetric TSP instances with different problem characteristics according to

Table 1. We train our MLPR model using SVM with an RBF kernel and test two penalty parameter values

εm = 10 and εm = 100. We gradually differentiate the test instances away from the training instances, by

using 1) symmetric TSP, 2) asymmetric TSP, and 3) sequential ordering problem (SOP) instances in testing.

The asymmetric TSP is a TSP variant that allows the distance matrix to be asymmetric; and SOP is a

variant that further considers precedence constraints in the order of visiting cities. These test instances are

14

all from the TSP library (Reinelt, 1991). For symmetric TSP, we use 19 instances for which the number

of cities is in between 100 and 200. For asymmetric TSP and SOP, we use the easy instances that can be

solved to optimality by CPLEX with 8 CPUs in 1000 seconds. We use the trained MLPR model to reduce

problem size for each test instance, and solve the original and reduced problems to optimality by exact

solvers (Concorde for symmetric TSP, and CPLEX for asymmetric TSP and SOP instances). The MIP

formulation used for asymmetric TSP is the Miller-Tucker-Zemlin formulation presented in Section 2.1,

and the one for SOP is an adaption of the Miller-Tucker-Zemlin formulation with precedence constraints

(Sherali & Driscoll, 2002). The random sampling method used for SOP is presented in Appendix A. As

before, the random sampling and problem reduction process is repeated 25 times to allow for randomness.

4.3.2. Results

The optimality gap generated by our MLPR model and remaining problem size after reduction for each

test instance are presented in Figure 3, and the average statistics across each problem type are presented

in Figure 4. These results show that the MLPR model trained on symmetric TSP instances makes useful

predictions about which variables can be eliminated without significantly impacting solution quality when

testing on instances from asymmetric TSP and SOP. We also observe that as we gradually move the test

instances away from the training instances, our MLPR model becomes less accurate, resulting in a larger

optimality gap. On the other hand, it also becomes less confident at pruning edges, resulting in a larger

remaining problem size. When we use a larger penalty εm = 100, our MLPR model prunes less edges so

the optimality gap generated is smaller.

When the training and test instances are both symmetric TSP’s, our MLPR model performs well; it

prunes on average 75.89% of edges but still captures a near-optimal solution in the reduced problem, which

is within 0.56% from the optimal solution.

When training on symmetric TSP and testing on asymmetric TSP instances, the optimality gaps gener-

ated by our MLPR model (with εm = 100) are all less than 1%, except for two instances rbg403 and rbg443.

We then use two closely-related asymmetric TSP instances rbg323 and rbg358 as training set, and inves-

tigate whether the performance of our MLPR model can be improved for rbg403 and rbg443. The results

show that by using asymmetric TSP as training instances, the optimality gap generated by our MLPR model

(with εm = 10) for rbg403 and rbg443 can be significantly reduced from 10.39% to 1.2% and from 11.91 %

to 1.25% respectively.

When training on symmetric TSP and testing on SOP instances, our MLPR model does not perform

very well on some instances e.g., ESC12, br17.10 and rbg109a. However we show that by using the other 6

SOP instances as training set, the optimality gaps generated by our MLPR model (with εm = 10) for ESC12,

br17.10 and rbg109a can be significantly reduced to 0.65%, 0.00% and 0.23% respectively.

4.4. Boosting the Performance of CPLEX

4.4.1. Setting

In this subsection, we investigate whether our MLPR model can be used as a preprocessing technique

to boost the performance of a generic solver – CPLEX. Because the symmetric TSP can be efficiently

solved by a specialized solver – Concorde, and an asymmetric TSP can be easily converted to a symmetric

TSP (Jonker & Volgenant, 1983), we mainly focus on solving SOPs here.

We take the 9 easy SOP instances used in Section 4.3 as our training set, and train a machine learning

model using SVM with RBF kernel (εm = 10), which takes a few minutes. We then apply the trained model

to reduce problem size for hard SOP instances from the TSP library. We select 24 hard SOP instances for

testing, which have not been proved to optimality according to the bounds published in the TSP library.

The reduction time for the largest test instance (with 378 cities) is around 25 seconds. We use CPLEX

15

1 5 10 15 19

0

20

40

60

80

100

g
ap

(%
)

SOP

ATSP

TSP

1 5 10 15 19
0

20

40

60

80

100

p̄
(%

)

SOP

ATSP

TSP

εm = 10

1 5 10 15 19

0

20

40

60

80

100

g
ap

(%
)

SOP

ATSP

TSP

1 5 10 15 19
0

20

40

60

80

100

p̄
(%

)

SOP

ATSP

TSP

εm = 100

Figure 3: The optimality gap generated and percentage of remaining problem size after reduction (p̄) when training our MLPR

model with two values of εm on symmetric TSP instances and testing it on symmetric TSP, asymmetric TSP and SOP instances.

The horizontal axis represents the index of test problem instances. We sort the test instances according to the optimality gap (or p̄)

in ascending order for better visualisation.

with 8 CPUs to solve the reduced problem, compared to directly solving the original problem. The cutoff

time is set to 1000 seconds for both, and the reduction time used by our MLPR model is counted as part

of the cutoff time. Note that we also parallelize the process of generating random samples and computing

statistical features for our MLPR model. The MIP emphasis parameter is set to “HIDDENFEAS” and MIP

search method is set to “TRADITIONAL” for CPLEX, with an emphasis on searching for high-quality

feasible solutions. The experiments are again repeated 25 times with different random seeds. We report

the successful rate of finding any feasible solution for the 25 independent runs and compute an average

optimality gap only for the successful runs.

4.4.2. Results

The optimization results of CPLEX and CPLEX-MLPR when used to solve the SOP instances are

presented in Table 4. We observe that by using our MLPR method as a preprocessing technique, CPLEX

can generally find a comparable or better solution within the cutoff time, especially for hard instances. For

13 out of 24 instances, CPLEX fails to find a feasible solution in any of the 25 runs, i.e., the successful rate

is 0. In contrast, CPLEX-MLPR can always find a feasible solution. This is partially because we feed the

best feasible solution from sampling to CPLEX as a warm start.

It is important to note that when using our MLPR method as a preprocessing technique, the generic

solver CPLEX can find a better primal solution that improves the best objective value published in the TSP

16

εm = 10 εm = 100

0.58 0.40

1.64
1.20

11.44

3.05

TSP ATSP SOP

average optimiality gap in percentage

εm = 10 εm = 100

24.11

37.42

25.67

40.41

34.50

45.96

average percentage of remaining problem size

Figure 4: The average optimality gap generated by our MLPR model and the average percentage of remaining problem size after

reduction when training our MLPR model on symmetric TSP instances and testing it on symmetric TSP, asymmetric TSP and SOP

instances.

library for 4 instances (highlighted in bold in Table 4). The best objective values found by CPLEX-MLPR

for some instances are much larger than the lower bounds published in the TSP library, resulting in a large

optimality gap (gapb and gapm). However, this is mainly due to the weak MIP model we used to formulate

SOP, which can be inferred from the fact that the lower bounds produced by CPLEX-MLPR are usually

much smaller than the lower bounds published in the TSP library. Thus CPLEX-MLPR can potentially find

a better primal solution if using a stronger MIP formulation or simply given more computational time. As

our main goal is not to come up with the best CPLEX model for solving SOP, a further investigation along

this line is beyond the scope of this paper.

4.5. Comparing to Other Generic Problem Reduction Methods

4.5.1. Setting

In this subsection, we compare our MLPR method against a single correlation-based measure (CBM)

described in Section 3.1.2, as well as a generic problem reduction method: Construct, Merge, Solve & Adapt

(CMSA) (Blum et al., 2016). For CBM, we remove edges that are positively correlated with the objective

values from a graph. The CMSA method removes edges that do not appear in the sample solutions generated

by a probabilistic model, which selects a candidate edge ei, j with probability proportional to 1/(1+ ci, j)
when constructing a sampling solution. Hence, edges with a small cost are more likely to be selected in

sampling. Note that the CMSA method usually involves multiple iterations. Here, as we are interested in a

preprocessing technique, we only compare our MLPR method with the first iteration of CMSA. The sample

size for CMSA is set to n. We apply our MLPR-I6 model (trained on LKCC-hard instances), CBM, and

CMSA to reduce the problem size for each of the 6 TSP instances used in Table 3, and use CPLEX to solve

the original and reduced problem instances to optimality.

4.5.2. Results

The plot of remaining problem size after reduction versus the optimality gap generated by each method

is shown in Fig. 5. Our MLPR method outperforms both the CBM and CMSA methods on the 6 instances

tested, in the sense that it removes 70%-80% of edges and consistently achieves 0% optimality gap. The

17

Table 4: The optimization results (in percentage) of CPLEX and CPLEX-MLPR when used to solve the hard SOP instances

within the cutoff time 1000 seconds. The columns gapb and gapm compute the best and average optimality gaps of the feasible

solutions found by CPLEX or CPLEX-MLPR comparing to the lower bounds published in the TSP library; while gaps computes

an optimality gap based on the lower bounds generated by CPLEX-MLPR; r is the successful rate of finding a feasible solution;

p̄ is the percentage of remaining problem size after reduction. The last column presents the optimality gap published in the TSP

library. We highlight the 4 instances for which the best optimality gap generated by CPLEX-MLPR is better than the gap given in

the TSP library.

Dataset
CPLEX CPLEX-MLPR (εm = 10) TSPLIB

gapb gapm r gapb gapm gaps p̄ gap

ft53.1 1.25 3.52 100 1.25 3.88 9.91 77.75 1.25

ft53.2 8.52 17.21 68.00 6.08 13.18 26.83 76.77 9.24

ft70.2 36.91 36.91 4.00 34.48 38.42 8.90 60.39 31.50

p43.2 1.12 11.68 36.00 1.24 1.62 1532.40 79.51 0.55

p43.3 1.78 64.38 12.00 1.83 40.16 2929.60 79.36 1.11

p43.4 19.31 19.38 84.00 19.31 19.69 189.35 79.70 19.25

rbg150a 0.11 0.18 92.00 0.11 0.85 2.46 36.94 0.11

ry48p.1 3.84 5.82 100 3.84 6.14 11.51 55.48 3.84

ry48p.2 8.71 11.15 100 8.03 11.51 19.33 53.84 7.36

ry48p.3 13.31 27.55 12.00 12.68 21.34 45.42 47.28 9.57

ry48p.4 5.92 6.93 24.00 6.52 10.56 69.29 43.61 4.94

ft53.3 – – 0.00 13.62 23.24 60.75 68.90 15.43

ft70.3 – – 0.00 8.48 15.10 18.53 57.99 2.98

ft70.4 – – 0.00 4.83 6.98 21.03 56.39 2.47

kro124p.1 – – 0.00 5.78 18.74 23.73 44.10 6.53

kro124p.2 – – 0.00 21.72 43.93 51.70 44.34 8.16

kro124p.3 – – 0.00 75.39 140.99 167.87 42.31 24.19

kro124p.4 – – 0.00 43.40 56.23 130.46 38.69 17.34

prob.100 – – 0.00 219.82 617.78 649.68 48.00 35.25

rbg253a – – 0.00 1.91 3.80 6.31 34.31 2.02

rbg323a – – 0.00 5.39 9.98 11.47 33.24 0.67

rbg341a – – 0.00 31.07 44.18 60.24 34.97 2.12

rbg358a – – 0.00 52.18 70.17 87.45 34.77 3.22

rbg378a – – 0.00 70.66 90.92 124.25 33.18 2.61

CBM and CMSA methods work well in terms of optimality gap (always less than 0.5%), however, they

prune much fewer edges from an instance compared to our MLPR method. Although it is possible to make

these two methods more aggressive in pruning edges via parameter tuning (e.g., using a smaller sample

size for CMSA), this will further degrade the solution quality generated in the reduced problem instance,

resulting in a larger optimality gap.

5. Conclusion

In this research, we have applied machine learning techniques to reduce problem size for combina-

torial optimization, which can be used as an effective preprocessing step to improve the performance of

existing solution algorithms. We have adapted the machine learning model that we originally developed in

18

20 30 40 50 60 70 80

0

0.1

0.2

0.3

0.4

0.5

average percentage of remaining problem size p̄ (%)

av
er

ag
e

o
p
ti

m
ia

li
ty

g
ap

in
p
er

ce
n
ta

g
e

(%
)

MLPR

CBM

CMSA

Figure 5: The remaining problem size versus the optimality gap generated by each problem reduction method, MLPR, CBM, and

CMSA on the 6 TSP instances tested.

(Sun et al., 2019) to prune the search space for the travelling salesman problem (TSP). We empirically in-

vestigated the generalization error of our machine learning model when training and test (unseen) instances

have different instance characteristics, sizes or are from different TSP variants. Our experimental results

showed that our model generalized reasonably well to a wide range of instances with different characteris-

tics or sizes. In general, when training and test instances are from the same TSP variant, the generalization

error of our model is small; and this generalization error naturally increases when testing our model on TSP

variants that become increasingly dissimilar to the training instances. Solving a completely different prob-

lem variant than in the training set is a fairly extreme case of mismatch between training and application

of the model. Hence this shows that our approach is likely to be quite robust to the more typical changes

seen in practice when applying a model to, e.g., a business application where the problem characteristics

slowly drift over time. In future, we plan to develop a more generic model that does not require re-training

when applied to solve a class of problems. Another possible direction for future work would be to apply

our problem reduction method to real-world problems where a fast computation of a high-quality solution

is desired, such as trip planning.

Acknowledgement

This work was supported by an ARC Discovery Grant (DP180101170) from Australian Research Coun-

cil.

Appendix A: Random Sampling Method for Sequential Ordering Problem

The main steps of our random sampling method to generate one feasible route for SOP can be summa-

rized as follows:

1. Initialize a route starting from city 1;

19

Algorithm 3 RANDOM SAMPLING METHOD (V , C, S , m)

Require: vertex set V ; edge cost set C; precedence constraint set S ; number of samples to generate m.

1: Initialize array A[i]← 0, i = 1,2, · · · |V |; ⊲ count number of precedences before visiting city i.

2: Initialize linked lists L[i]← /0, i = 1,2, · · · |V |; ⊲ denote the cities that should be visited after city i.

3: for k from 1 to |S | do

4: (i, j)← S[k];
5: Add j to linked list L[i];
6: A[j]← A[j]+1;

7: for k from 1 to m do ⊲ generate m random sample routes.

8: Copy the array A to array Ac: Ac← A;

9: Set the initial candidate vertex set Vc to city 1: Vc← 1; ⊲ assume routes start from city 1.

10: for j from 1 to |V | do

11: Randomly select a vertex v from Vc;

12: Add v to the kth sample route Pk: Pk[j]← v; ⊲ Pk denotes the kth sample route.

13: Delete v from Vc; ⊲ swap v with the last element in V ′c and delete it to gain efficiency.

14: for v′ in the linked list L[v] do

15: Ac[v
′]← Ac[v

′]−1;

16: if Ac[v
′] == 0 then

17: Add v′ to Vc;

18: return {P1,P2, · · · ,Pm}.

2. Compute a set of candidate cities Vc that do not have any precedence after removing the cities that

have already been visited;

3. Randomly select a city from the candidates Vc to visit;

4. Repeat Step 2 and 3 until all cities have been visited.

To avoid redundant computation, we first iterate through the set of precedence constraints S to count the

number of cities that should be visited before visiting city i (i = 1, · · · ,n) and store this in array A. We also

store the individual cities that should be visited after city i (i = 1, · · · ,n) in a linked list L (line 3 to 6 in

Algorithm 3). Having A and L, we can efficiently update the set of candidate cities Vc that can be visited

in the next step after removing the cities already visited (line 14 to 17 in Algorithm 3). The idea is that

after removing city v in the current step, we iterate through the linked list L[v] and for every v′ in L[v], we

decrement A[v′] by 1. If A[v′] is equal to 0, then city v′ can be visited in the next step since it does not have

any precedence apart from the cities already visited. By doing this, we can generate one sample route in

O
(

|S |
)

time. Thus the total time complexity of generating m samples is O
(

m|S |
)

.

Reference

References

Applegate, D., Bixby, R., Chvatal, V., & Cook, W. (2006a). Concorde TSP solver. URL:

http://www.math.uwaterloo.ca/tsp/concorde/ .

Applegate, D., Cook, W., & Rohe, A. (2003). Chained lin-kernighan for large traveling salesman problems. INFORMS Journal on

Computing, 15, 82–92.

Applegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W. J. (2006b). The traveling salesman problem: a computational study.

Princeton university press.

20

http://www.math.uwaterloo.ca/tsp/concorde/

Balasundaram, B., Butenko, S., & Hicks, I. V. (2011). Clique relaxations in social network analysis: The maximum k-plex problem.

Operations Research, 59, 133–142.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., & Bengio, S. (2016). Neural combinatorial optimization with reinforcement learning.

arXiv preprint arXiv:1611.09940, .

Bengio, Y., Lodi, A., & Prouvost, A. (2018). Machine learning for combinatorial optimization: a methodological tour d’horizon.

arXiv preprint arXiv:1811.06128, .

Blum, C., Pinacho, P., López-Ibáñez, M., & Lozano, J. A. (2016). Construct, merge, solve & adapt a new general algorithm for

combinatorial optimization. Computers & Operations Research, 68, 75–88.

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the Fifth

Annual Workshop on Computational Learning Theory (pp. 144–152). ACM.

Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and

Technology, 2, 27:1–27:27.

Chen, X., & Tian, Y. (2019). Learning to perform local rewriting for combinatorial optimization. In Advances in Neural Information

Processing Systems (pp. 6278–6289).

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.

Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., & Rousseau, L.-M. (2018). Learning heuristics for the TSP by policy

gradient. In International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations

Research (pp. 170–181). Springer.

Ding, J.-Y., Zhang, C., Shen, L., Li, S., Wang, B., Xu, Y., & Song, L. (2019). Accelerating primal solution findings for mixed

integer programs based on solution prediction. arXiv preprint arXiv:1906.09575, .

Dong, C., Jäger, G., Richter, D., & Molitor, P. (2009). Effective tour searching for tsp by contraction of pseudo backbone edges.

In International Conference on Algorithmic Applications in Management (pp. 175–187). Springer.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Lin, C.-J. (2008). LIBLINEAR: A library for large linear classification.

Journal of machine learning research, 9, 1871–1874.

Fan, R.-E., Chen, P.-H., & Lin, C.-J. (2005). Working set selection using second order information for training support vector

machines. Journal of Machine Learning Research, 6, 1889–1918.

Fischer, T., & Merz, P. (2007). Reducing the size of traveling salesman problem instances by fixing edges. In European Conference

on Evolutionary Computation in Combinatorial Optimization (pp. 72–83). Springer.

Friggstad, Z., Gollapudi, S., Kollias, K., Sarlos, T., Swamy, C., & Tomkins, A. (2018). Orienteering algorithms for generating

travel itineraries. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (pp. 180–188).

ACM.

Gao, J., Chen, J., Yin, M., Chen, R., & Wang, Y. (2018). An exact algorithm for maximum k-plexes in massive graphs. In IJCAI

(pp. 1449–1455).

Grassia, M., Lauri, J., Dutta, S., & Ajwani, D. (2019). Learning multi-stage sparsification for maximum clique enumeration. arXiv

preprint arXiv:1910.00517, .

He, H., Daume III, H., & Eisner, J. M. (2014). Learning to search in branch and bound algorithms. In Advances in neural

information processing systems (pp. 3293–3301).

Helsgaun, K. (2000). An effective implementation of the lin–kernighan traveling salesman heuristic. European Journal of Opera-

tional Research, 126, 106–130.

Hougardy, S., & Schroeder, R. T. (2014). Edge elimination in tsp instances. In International Workshop on Graph-Theoretic

Concepts in Computer Science (pp. 275–286). Springer.

Jäger, G., Dong, C., Goldengorin, B., Molitor, P., & Richter, D. (2014). A backbone based TSP heuristic for large instances.

Journal of Heuristics, 20, 107–124.

Johnson, D. S., & McGeoch, L. A. (1997). The traveling salesman problem: A case study in local optimization. Local Search in

Combinatorial Optimization, 1, 215–310.

Jonker, R., & Volgenant, T. (1983). Transforming asymmetric into symmetric traveling salesman problems. Operations Research

Letters, 2, 161 – 163. doi:https://doi.org/10.1016/0167-6377(83)90048-2 .

Jonker, R., & Volgenant, T. (1984). Nonoptimal edges for the symmetric traveling salesman problem. Operations Research, 32,

837–846.

Khalil, E., Dai, H., Zhang, Y., Dilkina, B., & Song, L. (2017). Learning combinatorial optimization algorithms over graphs. In

Advances in Neural Information Processing Systems (pp. 6348–6358).

Kilby, P., Slaney, J., Walsh, T. et al. (2005). The backbone of the travelling salesperson. In IJCAI (pp. 175–180).

Kool, W., van Hoof, H., & Welling, M. (2019). Attention, learn to solve routing problems! In International Conference on

Learning Representations. URL: https://openreview.net/forum?id=ByxBFsRqYm .

Lauri, J., & Dutta, S. (2019). Fine-grained search space classification for hard enumeration variants of subset problems. In

Proceedings of The Thirty-Third AAAI Conference on Artificial Intelligence (pp. 2314–2321). AAAI.

21

http://dx.doi.org/https://doi.org/10.1016/0167-6377(83)90048-2
https://openreview.net/forum?id=ByxBFsRqYm

Li, Z., Chen, Q., & Koltun, V. (2018). Combinatorial optimization with graph convolutional networks and guided tree search. In

Advances in Neural Information Processing Systems (pp. 539–548).

Lin, C.-J., Weng, R. C., & Keerthi, S. S. (2008). Trust region newton method for logistic regression. Journal of Machine Learning

Research, 9, 627–650.

Lin, S., & Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-salesman problem. Operations Research,

21, 498–516.

Reinelt, G. (1991). Tspliba traveling salesman problem library. ORSA Journal on Computing, 3, 376–384.

Sherali, H. D., & Driscoll, P. J. (2002). On tightening the relaxations of miller-tucker-zemlin formulations for asymmetric traveling

salesman problems. Operations Research, 50, 656–669.

Smith-Miles, K., & van Hemert, J. (2011). Discovering the suitability of optimisation algorithms by learning from evolved in-

stances. Annals of Mathematics and Artificial Intelligence, 61, 87–104.

Sun, Y., Li, X., & Ernst, A. (2019). Using statistical measures and machine learning for graph reduction to solve maximum weight

clique problems. IEEE Transactions on Pattern Analysis and Machine Intelligence, .

Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer networks. In Advances in Neural Information Processing Systems (pp.

2692–2700).

Wu, Q., & Hao, J.-K. (2015). A review on algorithms for maximum clique problems. European Journal of Operational Research,

242, 693–709.

Wu, Y., Song, W., Cao, Z., Zhang, J., & Lim, A. (2019). Learning improvement heuristics for solving the travelling salesman

problem. arXiv preprint arXiv:1912.05784, .

22

	1 Introduction
	2 Background and Related Work
	2.1 Travelling Salesman Problem
	2.2 Problem Reduction Based on Machine Learning
	2.3 Support Vector Machine

	3 Problem Reduction for Travelling Salesman Problem Using Machine Learning
	3.1 Extracting Features to Characterize Each Edge
	3.1.1 Graph Features
	3.1.2 Statistical Measures

	3.2 Support Vector Machine Classification

	4 Experiments
	4.1 Varying Problem Characteristics
	4.1.1 Setting
	4.1.2 Results

	4.2 Varying Problem Size
	4.2.1 Setting
	4.2.2 Results

	4.3 Varying Problem Types
	4.3.1 Setting
	4.3.2 Results

	4.4 Boosting the Performance of CPLEX
	4.4.1 Setting
	4.4.2 Results

	4.5 Comparing to Other Generic Problem Reduction Methods
	4.5.1 Setting
	4.5.2 Results

	5 Conclusion

