
Vol.:(0123456789)

OR Spectrum (2021) 43:809–834
https://doi.org/10.1007/s00291-021-00627-y

1 3

ORIGINAL ARTICLE

Leveraged least trimmed absolute deviations

Nathan Sudermann‑Merx1 · Steffen Rebennack2 

Received: 25 March 2020 / Accepted: 18 March 2021 / Published online: 15 April 2021 
© The Author(s) 2021

Abstract
The design of regression models that are not affected by outliers is an important 
task which has been subject of numerous papers within the statistics community for 
the last decades. Prominent examples of robust regression models are least trimmed 
squares (LTS), where the k largest squared deviations are ignored, and least trimmed 
absolute deviations (LTA) which ignores the k largest absolute deviations. The 
numerical complexity of both models is driven by the number of binary variables 
and by the value k of ignored deviations. We introduce leveraged least trimmed 
absolute deviations (LLTA) which exploits that LTA is already immune against 
y-outliers. Therefore, LLTA has only to be guarded against outlying values in x, so-
called leverage points, which can be computed beforehand, in contrast to y-outliers. 
Thus, while the mixed-integer formulations of LTS and LTA have as many binary 
variables as data points, LLTA only needs one binary variable per leverage point, 
resulting in a significant reduction of binary variables. Based on 11 data sets from 
the literature, we demonstrate that (1) LLTA’s prediction quality improves much 
faster than LTS and as fast as LTA for increasing values of k and (2) that LLTA 
solves the benchmark problems about 80 times faster than LTS and about five times 
faster than LTA, in median.
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1  Introduction

1.1 � Machine learning, regression and optimization

Machine learning is a fast growing field of research that inherits and combines 
methods from statistics, computer science and optimization to tackle a vast vari-
ety of applications like fraud detection, recommender systems, predictive main-
tenance and autonomous driving (Marsland 2015). One subfield of machine 
learning is supervised learning, whose task is to train a function on labeled data. 
This stands in contrast to other applications, like anomaly detection or clustering, 
where no labels are available and which are therefore examples of unsupervised 
learning (Bishop 2006). The most popular examples of supervised learning are 
classification and regression tasks. While classification aims at assigning discrete 
values to data points (e.g., binary values for cancer detection), regression meth-
ods train functions that assign continuous numbers to data points (e.g., predic-
tion of house prices). Commonly used candidate mappings are (piecewise) linear 
functions, splines, tree-based models and neural networks (Clark and Pregibon 
2015; Goldberg et  al. 2021; Krasko and Rebennack 2017; Micula and Micula 
2012; Rebennack and Kallrath 2015; Rebennack and Krasko 2020; Specht 1991).

The training procedure involves the minimization of a so-called loss function 
that measures the distance of the observations to the corresponding predictions. 
Minimizing the loss function results typically in an unconstrained smooth opti-
mization problem that is tackled by variants of the stochastic gradient descent 
method which is a lightweight modification of gradient descent where only 
parts of the gradient are evaluated in each iteration (Schmidt et  al. 2017; Rob-
bins and Monro 1951). Other optimization-related topics within machine learning 
are Bayesian optimization (Snoek et  al. 2012) or the optimization of pretrained 
machine learning models in the feature space (Thebelt et al. 2020b).

Mixed-integer linear optimization (MILO) models involve linear terms in the 
decision variables as well as integrality restrictions (for some) of the decision 
variables (Jünger et al. 2009; Wolsey and Nemhauser 1999). A very rich class of 
optimization problems in practice can be modeled using MILO models. Current 
state-of-the-art solvers for general MILO models use so-called branch-and-cut 
algorithms. The idea of branch-and-cut algorithms is to repeatedly solve linear 
optimization problems (these are easy to solve) which are obtained by relaxing 
the integrality restrictions on the decision variables. The linear optimization prob-
lems are updated by additional restrictions on the relaxed variables in order to cut 
out fractional values. This is called branching. In the worst case, there are expo-
nentially many such branches in the number of integer variables. The branching 
is accompanied by cutting planes whose goal is to cut away fractional solutions 
(without the need to execute the costly branching). Therefore, as a general rule-
of-thumb, fewer integer variables lead to lower computational times (though this 
is not always true). We make use of this observation in this paper.

Dimitris Bertsimas was one of the first researchers to point out that recent 
advances in linear and quadratic mixed-integer optimization have been rarely 
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noticed in the statistics and machine learning communities. This inspired him to 
publish a series of papers under the motto “Machine Learning under a Modern 
Optimization Lens” that are summarized in the eponymous book (Bertsimas and 
Dunn 2019). Bertsimas’ assessment was confirmed by some of the most renowned 
researchers in the statistics and machine learning community, Trevor Hastie and 
Robert Tibshirani, who state (Hastie et al. 2017):

In exciting new work, Bertsimas et  al. (2016) showed that the classical best 
subset selection problem in regression modeling can be formulated as a mixed 
integer optimization (MIO) problem. Using recent advances in MIO algo-
rithms, they demonstrated that best subset selection can now be solved at much 
larger problem sizes that what was thought possible in the statistics commu-
nity.

This paper was heavily inspired by Bertsimas’ observation that mixed-integer opti-
mization is still relatively unknown but can be applied to many optimization prob-
lems in the context of machine learning and statistics. Therefore, we present Lev-
eraged Least Trimmed Absolute Deviations (LLTA), a mixed-integer based robust 
regression model, whose main idea we explain now.

1.2 � Motivation

Let f� ∶ ℝ
n
→ ℝ,

be a linear candidate function whose parameter � ∈ ℝ
n+1 we want to determine opti-

mally with respect to some labeled training data

with xj ∈ ℝ
n for j = 1,… ,N . The most popular idea of obtaining such a function f� 

is referred to as Ordinary Least Squares (OLS) and goes back to Legendre or Gauß 
(Stigler 1981) at the end of the 18th century. Let

be the residual of f� with respect to the jth data point, j = 1,… ,N . Then, OLS com-
putes � by solving the unconstrained convex quadratic optimization problem

OLS is computationally attractive as it possesses a closed-form solution. How-
ever, it is very sensitive with respect to outliers. To soften this sensitivity to 

f�(x) = �0 +

n∑

i=1

�ixi

(x1, y1),… , (xj, yj),… , (xN , yN) ∈ ℝ
n ×ℝ,

rj,� = �0 +

n∑

i=1

�ix
j

i
− yj

(1)min
�

N∑

j=1

r2
j,�
.
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outliers, an alternative approach is to minimize the �1-norm of the residual vector 
r� = (r1,� ,… , rj,� ,… , rN,�) instead of the �2-norm. This results in the Least Absolute 
Deviations (LAD), a problem that was stated in 1757 by Boscovich (Koenker and 
Bassett 1985), even before OLS. LAD results in the unconstrained convex piecewise 
linear optimization problem

In contrast to (1), LAD does not have a closed-form solution but can be reformu-
lated and solved as a linear (continuous) optimization problem (LP) or tackled by a 
subgradient-based method. When only estimating �0 and all �i = 0 , then this leads to 
the so-called location model (Bassett 1991). For this case, an optimal estimator for 
�0 is simply the median of the sorted data points y(j) , j = 1,… ,N.

A crucial property of LAD is its robustness against so-called y-outliers. This is 
a consequence of Theorem 1 which states that LAD is not affected by changes in 
yi for data points that do not lie directly on the regression line as long as the signs 
of the residuals are not reverted.

Theorem 1  (Dodge 1997) Suppose 𝜃⋆ is a minimizer of

Then, 𝜃⋆ is also a minimizer of

provided zj ≥ �0 +
∑n

i=1
�ix

j

i
 whenever yj > 𝜃0 +

∑n

i=1
𝜃ix

j

i
 and zj ≤ �0 +

∑n

i=1
�ix

j

i
 

whenever yj < 𝜃0 +
∑n

i=1
𝜃ix

j

i
.

However, while being robust to y-outliers, LAD is still affected by leverage 
points, i.e., outliers in x. This is illustrated in Fig. 1.

Inspired by this observation, Rousseeuw (1984) proposed the Least Trimmed 
Squares (LTS) in 1984, whose formulation as an optimization problem is given by 
the mixed-integer nonlinear optimization problem (MINLP)

with k ∈ ℕ and n
2
< k < n , where we use “ ⋅ ” whenever multiplying decision var-

iables. By design, (3) minimizes the sum of squares while ignoring the k largest 
squared deviations.

(2)min
�

N∑

j=1

|rj,�|.

F(�) =

N∑

j=1

||||||
yj −

(
�0 +

n∑

i=1

�ix
j

i

)||||||
.

G(�) =

N∑

j=1

||||||
zj −

(
�0 +

n∑

i=1

�ix
j

i

)||||||
,

(3)min
�,b

N∑

j=1

r2
j,�

⋅ bj s.t.

N∑

j=1

bj = N − k, b ∈ {0, 1}N
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Similar to the LTS, in 1999, the least trimmed sum of absolute deviations (LTA) 
is proposed by Hawkins and Olive (1999). LTA can be formulated as the MINLP

To compute the LTA regression, Hawkins and Olive propose an enumeration algo-
rithm over all possible subsets with k elements. This algorithm is of particular 
interest for the location model, as the LTA for a fixed subset is then obtained by 
evaluating the N − k + 1 subsets of ordered data points y(k), y(k+1),… , y(k+h−1) , for all 
k = 1,… ,N − k + 1 (Bassett 1991; Tableman 1994).

Next to an enumeration algorithm, the LTA regression problem is solved by Flo-
res (2011) via a tailored continuous global optimization algorithm for the cases that 
the intercept is zero, i.e., �0 = 0 . First, the MINLP is reformulated as an NLP by 
introducing the nonconvex constraint b2

j
− bj = 0 for continuous variables bj instead 

of the binary restriction on bj . The resulting continuous nonconvex global optimiza-
tion problem is then solved by a tailored global optimization algorithm in the spirit 
of Lasserre (2001).

The book about “open problems in optimization and data analysis” contains a 
chapter which discusses the connection between optimization and statistical robust 
estimators in the context of LTA regression (Pardalos and Migdalas 2018). For the 
location model, Zioutas et al. present a MINLP model of type (4) and a MILP refor-
mulation of the bilinear terms using standard techniques. The LTA for the location 
model is extended to take into account outliers violating the correlational structure 
of the data set via a two-level approach in Chatzinakos et al. (2016).

Nowadays, within the statistics and machine learning communities, the LTS 
and LTA are solved by applying heuristics since both the LTS and the LTA are 
considered to be intractable as being NP-hard (Bernholt 2006). However, dur-
ing the period 1991-2015, due to algorithmic advances, mixed-integer linear opti-
mization problem (MILP) solvers have experienced an average speedup factor of 
780,000, cf. Bertsimas et al. 2016; Bixby 2012 and the references therein. These 

(4)min
�,b

N∑

j=1

|rj,�| ⋅ bj s.t.

N∑

j=1

bj = N − k, b ∈ {0, 1}N .

Fig. 1   Behavior of ordinary least squares (OLS) and least absolute deviations (LAD) in the presence of 
outliers of different types
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machine-independent advances have been accompanied by an impressive pro-
gress in hardware performance. Thus, many real-world applications that could not 
be solved in the 1980s or 1990s are now solvable to global optimality within sec-
onds. Similarly, modern software packages like CPLEX and GUROBI can now 
also solve large-scale nonconvex mixed-integer quadratic optimization problems.

Despite the latest solver developments, LTS and LTA can only be solved for 
medium-sized problem instances. Therefore, we introduce Leveraged Least 
Trimmed Absolute Deviations (LLTA), which is a two-step approach that trains a 
linear function on possibly infiltrated data. The two steps are: 

1.	 Identify all leverage points.
2.	 Minimize the total absolute deviations and ignore the k ∈ ℕ largest deviations to 

data points that are leverage points, for some chosen k with n
2
< k < n.

Consider now Fig. 2. LTS needs 11 binary decision variables and k = 3 to achieve 
a reasonable fit (Fig.  2a). LTA yields the same result with 11 binary decision 
variables and k = 1 (Fig. 2b). However, LLTA produces the same high-quality fit 
for k = 1 using only one binary decision variable (Fig. 2c).

These indicated advantages of LLTA compared to LTS and LTA are further 
examined in Sect. 3 after a formal introduction of LLTA in Sect. 2.

Fig. 2   Behavior of LTS and LLTA in the presence of outliers of different types
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1.3 � Statement of contributions

The unique contributions of this paper are: We 

1.	 introduce Leveraged Least Trimmed Absolute Deviations (LLTA),
2.	 demonstrate that LLTA outperforms LTS with respect to regression-quality and 

computational speed,
3.	 show that the regression-quality of LLTA is comparable to LTA while being much 

faster in terms of run time,
4.	 first benchmark the LTS and LTA with current MIQP solvers (the LTS and LTA 

are only solved by heuristic methods in the literature, ignoring the recent progress 
in MIQP algorithms and software developments).

The remainder of this paper is organized as follows. In Sect.  2, we introduce 
LLTA. We provide the benchmarking of LLTA with LTA and LTS in Sect.  3 
before we conclude with Sect. 4.

2 � Leveraged least trimmed absolute deviations

We start noting that the complexity of LTS and LTA is governed by 

1.	 the number of ignored data points k since there are 
(
N

k

)
 subsets of length k 

among the N data points and 
(
N

k

)
 grows exponentially in k for fixed N and 

k < N∕2,
2.	 and the number of binary variables since the search space also grows exponen-

tially in the number of binary variables.

To mitigate the computational complexity resulting from the second point, we 
introduce Leveraged Least Trimmed Absolute Deviations (LLTA). LLTA is a two-
step procedure. Let D = {1,… ,N} . 

1.	 Compute the index set O ⊊ D of leverage points; see Sect. 2.2 for details.
2.	 Solve the optimization problem 

Since the classical �1-regression LAD is immune to y-outliers, we only protect 
our regression function with respect to leverage points. This is achieved through 
the parameter k allowing the optimal fit to ignore k data points within the index 
set of leverage points O . Note that we utilize here that the set of leverage points 

(5)min
�,b

∑

j∈D⧵O

|rj,�| +
∑

j∈O

|rj,�| ⋅ bj s.t.
∑

j∈O

bj = |O| − k, b ∈ {0, 1}|O|.
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can be computed beforehand, while this is not possible for the y-outliers because 
they are regression-function dependent. Therefore, we obtain 

1.	 a significant reduction of binary decision variables of (5) compared to (3) and 
(4), because LLTA only introduces one binary decision variable for each leverage 
point instead of one binary decision variable for each data point.

2.	 The possibility to choose smaller values of k compared to LTS, since LAD is 
already immune with respect to y-outliers.

Remark 1  As elaborated in Breiman (2001), there are two approaches to statistical 
modeling which are very different: In the Data Modeling Culture, a stochastic data 
model with an underlying distribution is assumed whose distribution is estimated 
from successive draws. Examples for that are given in Liu (1996) and Vanhatalo 
et  al. (2009). In the Algorithmic Modeling Culture, a function y = f (x) is fitted to 
observed data where the data generating process remains a black box with no fur-
ther distributional assumptions. Many successful methods from machine learning 
like deep neural networks or gradient boosted trees are treated in the spirit of the 
latter culture. In this introductory work, we made the conscious decision to perform 
the analysis of LLTA within the framework of Algorithmic Modeling Culture. This 
yields a clear uncluttered overview about the main ideas and may serve as starting 
point for extensions from both cultures. To introduce underlying stochastic assump-
tions and to apply distributional-free sensitivity analysis using methods like boot-
strapping are then possible extensions, cf. Sect. 2.5.

Remark 2  We assume that the number of infiltrated data points, i.e., the number of 
possible outliers, is strictly smaller than N/2. This is a standard assumption that is 
also posed in LTS and LTA. Therefore, also k must not exceed N/2 and we focus on 
the better half of the residuals as elaborated in Sect. 2.4.

2.1 � Epigraph reformulation

In order to implement LTS, LTA and LLTA in a modern mixed-integer optimiza-
tion solver, we first have to apply some reformulations. An LTS model is trained by 
solving the mixed-integer quadratically-constraint quadratic optimization problem 
(MIQCQP)

min
�,b,r

1

N2

N∑

j∈D

r
sqr

j,�
⋅ bj s.t. r

sqr

j,�
≥

(
yj −

(
�0 +

n∑

i=1

�ix
j

i

))2

, ∀j ∈ D

∑

j∈D

bj = N − k

� ∈ ℝ
n+1, r

sqr

�
∈ ℝ

N
≥0
, b ∈ {0, 1}N ,



817

1 3

Leveraged least trimmed absolute deviations﻿	

where we have avoided the trilinear terms r2
j,�

⋅ bj in the objective function by using 
only bilinear and quadratic expressions in the objective functions and constraints, 
respectively. Specifically, in an optimal solution,

An LTA-estimate is computed as an optimal solution of the mixed-integer quadratic 
optimization problem (MIQP)

The absolute value term |rj,�| in the objective function is modeled through two lin-
ear constraints, for every j ∈ D . This is possible because LTS is a minimization 
problem.

Finally, we compute a linear regression function for LLTA by minimizing the 
MIQP

where we rewrite the absolute value terms like in the MIQP for the LTA above.
The prefactors 1

N2
 and 1

N
 in the three formulations above do not affect the opti-

mal solutions, but are added to enhance numerical stability. Because GUROBI 
version 9.0 is capable of dealing with MIQCQPs and MIQPs, there is no need 
to reformulate the optimization problems as MILPs. In this way, we avoid the 
introduction of Big-M constraints which are known to yield notoriously weak 
relaxations.

r
sqr

j,�
=

(
yj −

(
�0 +

n∑

i=1

�ix
j

i

))2

= r2
j,�
.

min
�,b,r

1

N

N∑

j∈D

rabs
j,�

⋅ bj s.t. rabs
j,�

≥ yj −

(
�0 +

n∑

i=1

�ix
j

i

)
, ∀j ∈ D

rabs
j,�

≥ −yj + �0 +

n∑

i=1

�ix
j

i
, ∀j ∈ D

∑

j∈D

bj = N − k

� ∈ ℝ
n+1, rabs

�
∈ ℝ

N
≥0
, b ∈ {0, 1}N .

min
�,b,r

1

N

(
N∑

j∈D⧵O

rabs
j,�

+

N∑

j∈O

rabs
j,�

⋅ bj

)
s.t. rabs

j,�
≥ yj −

(
�0 +

n∑

i=1

�ix
j

i

)
, ∀j ∈ D

rabs
j,�

≥ −yj + �0 +

n∑

i=1

�ix
j

i
, ∀j ∈ D

∑

j∈O

bj = |O| − k

� ∈ ℝ
n+1, rabs

�
∈ ℝ

N
≥0
, b ∈ {0, 1}|O|,
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2.2 � Computation of leverage points

Let x1,… , xj,… , xN ∈ ℝ
n be the data points and q0.25

i
 the lower quartile of their ith 

component. Further, let q0.75
i

 be the upper quartile and

the interquartile range of component i ∈ {1,… , n} . Then, we introduce the follow-
ing definition of a leverage point.

Definition 1  A data point x ∈ ℝ
n is called leverage point, if for at least one 

i ∈ {1,… , n} , xi < q0.25
i

− 1.5 ⋅ iqri or xi > q0.75
i

+ 1.5 ⋅ iqri.

This leads us to the definition of the index set of all leverage points

The definition of a leverage point given in this paper is more specific than com-
monly defined in existing literature where a leverage point is usually described as 
“data point that has an extreme value for one of the explanatory variables” (Dodge 
1997).

Remark 3  The outlier tolerance 1.5 might be treated as an hyper parameter t of 
LLTA which influences the number of binary variables as well as the prediction 
quality. However, for the remainder of this work, we set t = 1.5 , which coincides 
with the definition of an outlier for boxplots (Tukey 1977).

Remark 4  Note that based on this definition of leverage points, there might be a ten-
dency to identify more leverage points for high-dimensional data sets since the prob-
ability mass within a multidimensional probability distribution tends “to move away 
from its center” (van Handel 2014). The combination of domain knowledge and the 
selection of a tailored problem-specific outlier detection method (Hodge and Austin 
2004) probably yields the best definition of leverage points for the problem at hand.

2.3 � Choosing the number of outliers k

The choice of k may have a significant influence on the computed regression func-
tions for LTS, LTA as well as LLTA. Quite generally, methods developed for LTS 
and LTA to choose k can also be applied toward LLTA.

By inspecting the optimization models (3), (4) and (5), we observe that their 
objective functions are monotone decreasing in the number k, i.e., allowing more 
outliers leads to a better fitting regression function. At the same time, increasing 
the number of outliers beyond the actual number of outliers in the data set implies 
loss of information. Consequently, k should not be chosen “too large.” For practical 
problems, one would compute regression functions for different numbers of k and 
choose the k heuristically which seems to yield a good compromise between outlier 

iqri ∶= q0.75
i

− q0.25
i

O ∶=
{
j ∈ D | ∃i ∈ {1,… , n} ∶ x

j

i
< q0.25

i
− 1.5 ⋅ iqri or x

j

i
> q0.75

i
+ 1.5 ⋅ iqri

}
.
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detection and regression quality—one might choose k such that there is a significant 
improvement in the fit compared to k − 1 and where k + 1 yields only some minor 
improvement.

To choose k optimally, one would need an (objective) function quantifying both 
the regression fit and the “loss” from excluding potentially useful data.

2.4 � Performance evaluation

Classical performance measures, like the root-mean-square error (RMSE) or mean-
absolute error (MAE), are not suitable to measure the quality of statistical models 
in the presence of outliers because they evaluate the residuals for all data points. In 
contrast, a good robust model ignores some data points for being outliers. We evalu-
ate the performance of the models by sorting the absolute residuals in ascending 
order, i.e.,

and computing the trimmed MAE on the better half of all residuals

where ⌊N∕2⌋ denotes the floor function of N/2.
To motivate tMAE as performance metric, consider the following synthetic exam-

ple where we have 30 “good” data points, ten “x-outliers,” i.e., leverage points and 
ten “y-outliers.” The scatter plot and regression lines for LLTA and LTS with k = 10 
are depicted in Fig. 3.

It is not surprising to see that LTS is affected by the outliers, while LLTA yields a 
very good approximation of the “good” data points. However, how can we measure 

|r(1),�| ≤ ⋯ ≤ |r(j),�| ≤ |r(j+1),�| ≤ ⋯ ≤ |r(N),�|

tMAE ∶=
1

⌊N∕2⌋

⌊N∕2⌋�

j=1

�r(j),��

Fig. 3   Synthetic example with 50 data points, 20 of which are outliers, and regression lines computed by 
LLTA and LTS
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that in a multidimensional setting where visual inspections are not that easy to per-
form? We notice first that the classical performance measures RMSE and MAE are 
not suited since LTS outperforms LLTA in both, RMSE (3258 vs. 3660) and MAE 
(1471 vs. 1560), despite the fact that LTS’ fit is obviously worse for this illustrative 
and synthetic example with 20 outliers. If we knew which of the data points are 
the “good” ones, we could just evaluate RMSE and MAE on these points. Unfortu-
nately, we do not know that in real-world applications; otherwise, we would not have 
to immunize the regression function against outliers. Even worse, up to half of the 
data could be infiltrated and, in fact, we have an outlier rate of 40% in this example.

Let us take a look at the empirical distribution of the residuals of both methods 
which are illustrated in Fig. 4.

We recognize that the distributions are right-skewed—while the majority of all 
residuals are rather small, there exist some outliers, i.e., some data points show large 
residuals. This is not a problem per se since our goal is to design robust methods 
that ignore outliers on purpose. However, we should then also ignore these residuals 
when calculating our performance metric. Since this might affect up to 50% of our 
residuals, we decided to use trimmed MAE as performance metric for LLTA. If an 
upper bound b on the relative share of outliers is available, an obvious adjustment of 
tMAE would be to evaluate the residuals not only on the better half of the residuals 
but on (1 − b) ⋅ 100 % of the data.

2.5 � Uncertainty measurement

The quantification of prediction uncertainty is important as it tries to determine the 
trustworthiness of a particular prediction or even of the statistical model in general. 
In particular, if decision making is based on good predictions, an uncertainty meas-
ure for the prediction is crucial.

A prominent example for model predictions, embedded in a “predict-tell” cycle, 
is Bayesian optimization. In Bayesian optimization, in each iteration an acquisi-
tion function is optimized, taking into account the prediction of a surrogate model 

s d

Fig. 4   Empirical distribution of residuals for LLTA and LTS
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as well as the model uncertainty (Pelikan et al. 1999). The predominant surrogate 
models are Gaussian Processes which rely on a normal distribution assumption also 
yielding an uncertainty estimate.

However, more recent distributional-free approaches to Bayesian optimization 
also work with gradient tree ensemble methods as surrogate models and distance-
based uncertainty measures (Thebelt et  al. 2020a). A distance-based uncertainty 
measure does not assume any probability distribution in the data and is therefore 
also applicable to LLTA. The main idea is to measure the distance of an x-value, 
whose y-value is to be predicted, to the set of existing training data since the sta-
tistical model might have bad extrapolation properties. Distance-based uncertainty 
measures have a nice intuitive interpretation, but might provide misleading informa-
tion for large datasets where especially the �2-norm shows counterintuitive behavior 
(Aggarwal et al. 2001). Distance-based uncertainty measures that use the �1-norm 
might be a useful uncertainty measure for LLTA.

Next to distance-based uncertainty measures, the second (by far more popular) 
approach to uncertainty estimation without distributional assumptions is bootstrap-
ping (Diaconis and Efron 1983). Koenker and Hallock use bootstrapping in their 
famous work (Koenker and Hallock 2001) to quantify uncertainty in quantile regres-
sion which is a very popular approach to robust regression. The main idea of boot-
strapping is to train statistical models on random samples of the training data and to 
compare its statistical properties. If models trained on different samples tend to vary 
much, then this might be an indication of a high model uncertainty. Therefore, using 
bootstrapping, or one of its many variants, is recommended as uncertainty measure 
for LLTA.

3 � Computational results

We perform computational tests, comparing the two approaches LTS and LTA from 
the literature to the new model LLTA. All models are implemented in GUROBI 9.0 
via its Python-API, and they are solved on a standard desktop computer possessing 
four cores each with 2.71 GHz and 16 GB RAM.

We start with an example on the body–brain data set in Sect. 3.1 with the goal to 
illustrate the usage of LLTA and to give an indication regarding the strengths and 
weaknesses of the examined models. We then use 11 instances from the literature in 
Sect. 3.2 to demonstrate the computational differences of the models resulting from 
LTS, LTA and LLTA.

3.1 � Comparison with LTS and LTA on the body–brain data set

To illustrate the new model LLTA, we compare it to LTS and LTA based on the 
“Brain and Body Weights” dataset (Rousseeuw and Leroy 1987; Weisberg 1985). 
This dataset contains the following average body and brain weights in kg in the for-
mat (body, brain) for 65 animals
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(1.35, 8.1), (465, 423), (36.33, 119.5), (27.66, 115), (1.04, 5.5), (11700, 50), 
(2547, 4603), (187.1, 419), (521, 655), (10, 115), (3.3, 25.6), (529, 680), (207, 
406), (62, 1320), (6654, 5712), (9400, 70), (6.8, 179), (35, 56), (0.12, 1), (0.023, 
0.4), (2.5, 12.1), (55.5, 175), (100, 157), (52.16, 440), (0.28, 1.9), (87000, 154.5), 
(0.122, 3), (192, 180), (3.385, 44.5), (0.48, 15.5), (14.83, 98.2), (4.19, 58), (0.425, 
6.4), (0.101, 4), (0.92, 5.7), (1, 6.6), (0.005, 0.14), (0.06, 1), (3.5, 10.8), (2, 12.3), 
(1.7, 6.3), (0.023, 0.3), (0.785, 3.5), (0.2, 5), (1.41, 17.5), (85, 325), (0.75, 12.3), 
(3.5, 3.9), (4.05, 17), (0.01, 0.25), (1.4, 12.5), (250, 490), (10.55, 179.5), (0.55, 
2.4), (60, 81), (3.6, 21), (4.288, 39.2), (0.075, 1.2), (0.048, 0.33), (3, 25), (160, 
169), (0.9, 2.6), (1.62, 11.4), (0.104, 2.5), (4.235, 50.4)

which are depicted in Fig. 5a, b using logarithmic scales.
For the body–brain data set, we have n = 1 . Its quartiles are given by q0.25 = 0.75 

and q0.75 = 60 which results in an interquartile range of iqr = 59.25 . We compute

i.e., we have 13 leverage points with the x-values 465, 11700, 2547, 187.1, 521, 529, 
207, 6654, 9400, 87000, 192, 250, 160.

Due to the presence of these leverage points, OLS and LAD are heavily affected 
such that there is need for a robust statistical model. Therefore, we train LTS, LTA 
and LLTA on the data set for different values of k. In Fig. 6, we observe that the 
asymptotic trimmed mean absolute errors tMAE of the residuals of the three models 
is comparable, whereas LTA and LLTA obtain a better score for k < 25.

In addition to the good statistical performance of LLTA, we observe in Fig. 7 
that LLTA outperforms LTS and LTA with respect to the number of visited nodes 
in the branch-and-bound tree and with respect to the run time (at a time limit of 
600 s). LLTA visits at most 151 nodes and solves most optimization problems 
within the root node. In contrast, LTS and LTA visit up to 155,572 and 1,071,225 
nodes, respectively. Regarding the run time, LLTA needs at most 0.04 s to solve 

O = {j ∈ D| x1
j
< 0.75 − 1.5 ⋅ 59.25 or x1

j
> 60 + 1.5 ⋅ 59.25}

= {j ∈ D| x1
j
> 148.875}

= {2, 6, 7, 8, 9, 12, 13, 15, 16, 26, 28, 52, 61},

(a) Unscaled (b) Log-scaled

Fig. 5   Pairs of body–brain weights for 65 species
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any of the instances in contrast to LTA whose run time increases up to 17 sec-
onds. In turn, LTA is much better than LTS, where an optimality certificate can-
not be computed within the time limit. As such, we obtain a maximum speedup 
of 425 (or 99.8%) of LLTA compared to LTA and of 15,000 (or 99.99%) of LLTA 
to LTS.

Fig. 6   Trimmed mean absolute errors and model instances of LLTA, LTA and LTS for different values of 
k on log-scaled axes

Fig. 7   Number of visited branch-and-bound nodes and run times for LLTA, LTS and LTA with a time 
limit of 120 s for different values of k 



824	 N. Sudermann‑Merx, S. Rebennack 

1 3

For some values k ≥ 16 , LTS does not manage to close the optimality gap within 
the time limit, as depicted in Fig. 8.

3.2 � Datasets from the literature

We extracted 11 datasets from the existing literature on robust regression. Table 1 
summarizes some relevant information about the datasets we use for benchmarking.

We run LTS, LTA and LLTA for all data sets at a time limit of 600 seconds for all 
k ∈ {0,… , ⌊N∕2 − 1⌋} for LTS and LTA as well as k ∈ {0,… , |O|} for LLTA. The 
results are depicted in Figs. 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 and 19, where we 
see the trimmed MAE, the number of visited branch-and-bound nodes and the run 
time for each method. Among the 11 datasets, we compare 118 different regression 
functions.1

Fig. 8   Remaining optimality 
gap with time limit of 600 s

Table 1   Some information on the datasets where rows refer to the number of observations and columns 
are the number of features

# Title Rows Columns Source

1 Coleman data set 20 6 Rousseeuw and Leroy (1987)
2 Delivery time data 25 3 Montgomery and Peck (1982)
3 Hawkins, Bradu, Kass’s Artificial Data 75 4 Hawkins et al. (1984)
4 Heart catherization data 12 3 Rousseeuw and Leroy (1987), 

Weisberg (1985)
5 Waterflow measurements of Kootenay 13 2 Ezekiel and Fox (1959)
6 Pension funds data 18 2 Rousseeuw and Leroy (1987)
7 Phosphorus content data 18 3 Rousseeuw and Leroy (1987)
8 Salinity data 28 4 Ruppert and Carroll (1980)
9 Siegel’s exact fit example data 9 2 Rousseeuw and Leroy (1987)
10 Steam usage data (excerpt) 25 9 Norman and Draper (1981)
11 Modified data on wood specific gravity 20 6 Rousseeuw and Leroy (1987)

1  There are nine regression functions for data set # 1, 11 (# 2), 36 (# 3), 5 (# 4), 5 (# 5), 8 (# 6), 8 (# 7), 
13 (# 8), 3 (# 9), 11 (# 10), 9 (# 11)
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Consider now Figs. 9a, 10a, 11a, 12a, 13a, 14a, 15a, 16a, 17a, 18a and 19a, where 
the tMAE is shown for different values of k. Among the 118 regression functions, 
the performance of LTS is never better than the one of LTA. This is because LTS is 
not immune against y-outliers and, thus, requires larger values of k to achieve a simi-
lar performance than LTA. For 68 instances, LLTA performs better than LTS and for 
k < 4 , LLTA is always better. Note that these results are heavily affected by dataset 
# 3 (Fig. 11a). LLTA performs comparable to LTA in most datasets. Exceptions are 
datasets # 2 (Fig. 10a), # 7 (Fig. 15a) and # 10 (Fig. 18a), where LTA is consist-
ently better than LLTA and dataset # 9 (Fig. 17a), where LLTA outperforms LTA. 
It is remarkable that both LTA and LLTA have a quite similar performance, given 
that LTA has more degrees of freedom (because it can choose the leverage points 
among all data points compared to LLTA which is restricted to the index set of lev-
erage points O ). Even more surprising is that LLTA shows a (strictly) better tMAE 
compared to LTA for 122 regression functions! Note that the computed regression 
functions are evaluated with respect to the tMAE (measuring the better half of the 

Fig. 9   Coleman data set

2  # 1 (Fig.  9a) K = 2,3,5; # 3 (Fig.  11a) K = 6,12; # 4 (Fig.  12a) K = 2 ; #8 (Fig.  16a) K = 2,3; # 9 
(Fig. 17a) K = 1,2; #11 K = 3,4
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residuals) and not with respect to the objective function (measuring all residuals 
except the k outliers). The difference in evaluation metrics and objective function 
also explains why the tMAE curves are not monotone decreasing in k (while we still 
observe a decreasing trend with an increase in k). This nonmonotone behavior can 
be seen, for example, in dataset # 1 (Fig. 9a).

Figures 9b, 10b, 11b, 12b, 13b, 14b, 15b, 16b, 17b, 18b and 19b show the number 
of visited branch-and-bound nodes, necessary to solve the corresponding instances. 
The trend here is clear: While LLTA shows a linear growth in k, both LTA and LTS 
follow an exponential curve. This behavior is by design, as the primary motivation 
to introduce LLTA is the significant reduction of the computational burden. In many 
instances, the LLTA can be solved in the root node.

The computational time is highly related to the number of visited branch-and-
bound nodes. Therefore, Figs. 9c, 10c, 11c, 12c, 13c, 14c, 15c, 16c, 17c, 18c and 
19c show a similar trend than the number of visited branch-and-bound nodes. In 
addition, we observe that the computational efforts to solve LTS are significantly 
greater than solving LTA. A similar percentage increase in runtime is observable 
for LTA compared to LLTA. Note that LLTA can solve any instance in at most 0.66 
s, except the one instance for dataset #10 and k = 0 (Fig. 18c). In average, LLTA is 
699.58 faster compared to LTA and 797.08 faster compared to LTS. However, the 
average speedup is mainly driven by dataset #3 where LLTA is 7543 faster than LTA 

Fig. 10   Delivery time data
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and 7436 faster than LTS. Then, median speedup values are 5.33 compared to LTA 
and 80.23 compared to LTS.

Instance # 3 (Fig. 11a) is of particular interest due to its size. With 75 rows, this 
dataset contains about three times more rows than any other dataset (cf. Table 1). 
When inspecting Fig. 11b, c, we see that for k ≥ 11 , none of the instances for LTA 
and LTS can be solved to optimality within the time limit. This explains why we do 
not observe an exponential grows in the number of visited branch-and-bound nodes 
for large k for this dataset.

4 � Summary and outlook

We introduce the Leveraged Least Trimmed Absolute Deviations (LLTA) which 
is based on the Least Trimmed Absolute Deviations (LTA). We make use of two 
observations. First, LTA is by design immune against y-outliers. Second, the lev-
erage points can be computed beforehand in contrast to the y-outliers, because the 
y-outliers depend on the constructed regression function. As such, LLTA combines 
the advantages of LTA while considering only leverage points as potential x-outli-
ers. This has the consequence that the proposed regression model LLTA is immune 
against both leverage points and y-outliers. At the same time, the computational bur-
den is much lower compared to LTA.

Fig. 11   Hawkins, Bradu, Kass’s artificial data
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Fig. 12   Heart catherization data

Fig. 13   Waterflow measurements of Kootenay River in Libby and Newgate
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Fig. 14   Pension funds data

Fig. 15   Phosphorus content data
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Fig. 16   Salinity data

Fig. 17   Siegel’s exact fit example data



831

1 3

Leveraged least trimmed absolute deviations﻿	

Fig. 18   Steam usage data (excerpt)

Fig. 19   Modified data on wood specific gravity
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Our computational results on known benchmark instances show that LLTA has a 
comparable performance of the computed regression models compared to LTA. At 
the same time, LLTA can be solved much faster compared to LTA. The computed 
regression models by LLTA tend to outperform the ones computed by the well-
known least trimmed squares (LTS). For small k, this effect is drastic. In addition, 
LLTA can be solved several orders of magnitude faster than LTS.
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