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Abstract

We consider a charged Langmuir monolayer problem where electrostatic interaction forces

undulations in molecular concentration of the monolayer. Using the Γ-convergence theory in

singular perturbative variational calculus, we prove the existence of soliton-stripe lamellar pat-

terns as one-dimensional local minimizers of the free energy, which are characterized by sharp

domain walls delineating fully segregated dense liquid and dilute gas regions of the monolayer.
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1 Introduction

Amphiphile molecules (surfactants, fatty acids, or lipids) often form insoluble monolayers at the
water/air interface. At very low surface pressure such a Langmuir monolayer has small molecular
concentration and is in a gaseous phase. An increase in the surface pressure, in some cases, induces
an increase of the concentration and consequently a gas to liquid transition. This paper, however,
is concerned with an intermediate phase, where the molecular concentration is inhomogeneous with
periodic oscillations. In micro-domains where the concentration is small the monolayer is in the
gas state, and in micro-domains where the concentration is large the monolayer is in the liquid
state. Andelman, Broçhard and Joanny [1] proposed a model for Langmuir monolayers of charged
molecules, where the existence of this phase is explained in part by electrostatic interaction.

Let φ(r) be the relative concentration of the molecules. To eliminate the boundary effect we
assume that r ∈ Ω := (0, L) × (0, L) with the boundaries properly identified so that Ω becomes
topologically a torus. The free energy of the system is

∫

Ω

(W (φ) +
b

2
|∇φ|2) dr +

∑

q 6=(0,0)

L2e2|φ̂(q)|2

2(ε
√

κ2 + q2 + ε0|q|)
. (1.1)
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The first part of (1.1)
∫

Ω

(W (φ) +
b

2
|∇φ|2) dr (1.2)

is the standard Ginzburg-Landau free energy. We may take W (φ) = (1/4)((φ − 1/2)2 − 1/4))2,
whose global minimum value 0 is achieved at φ = 0 and φ = 1, for simplicity. Then φ(r) ≈ 0 means
that the monolayer at r is in the gas state and φ(r) ≈ 1 the liquid state. This part of the free energy
favors segregation of φ into a large gas region and a large liquid region.

However this phase separation tendency is opposed by the second part of (1.1)

∑

q 6=(0,0)

L2e2|φ̂(q)|2

2(ε
√

κ2 + q2 + ε0|q|)
. (1.3)

Recall that the layer separates the air and the solution. The charged molecules give an charge
distribution eφ on the monolayer and generate an electric field in the nearby air and the solution.
(1.3) is its energy. φ̂(q) is the Fourier series of φ, i.e.

φ̂(q) =
1

L2

∫

Ω

φ(r)e−iq·r dr, φ(r) =
∑

q

φ̂(q)eiq·r. (1.4)

The wave vector q takes discrete values: q = 2πn
L , n ∈ Z2. e is the electron charge, ε0 the dielectric

constant of the air, ε the dielectric constant of the solution, and κ−1 the Debye-Hückel screening
length. ε0 is smaller than ε. The derivation of this term is found in [1]. It is nonlocal in nature, and
its effect is to create undulations in φ.

One important property of the series (1.3) is the 1/|q| decay rate of the coefficients of |φ̂(q)|2.
Extensions to more general coefficients may be easily made as long as this decay rate is not exceeded.
We choose to work with this particular series for its physical significance.

The soliton-stripe pattern is a particular periodic lamellar pattern of coexisting liquid and gas
micro-domains. It is characterized by sharp domain walls (solitons) delineating fully segregated
dense liquid and dilute gas regions (stripes), Figure 1 (1). It occurs only at low temperature.
The similar phenomenon happens in many other systems including diblock copolymers (Ohta and
Kawasaki [17]), Seul-Andelman membranes [30], and smectic films (Selinger et al [29]). In the diblock
copolymer theory this pattern is called the strongly segregated lamellar pattern, and in [29] it is
called the soliton-stripe pattern. Here we follow the terminology of [29]. We will prove that when
(1.2) and (1.3) are properly balanced, i.e. when the parameters in (1.1) are properly chosen, a phase
of coexisting liquid and gas micro-domains will appear. The size L of the sample will be determined
mathematically. The consequence is that L is several times greater than but still comparable to the
size of one micro-domain.

We will show the existence of this pattern using the Γ-limit theory of De Giorgi [6], which is a
rigorous singular perturbation theory in variational calculus. More specifically we will prove that
the free energy of the system in one-dimension has local minimizers that have soliton-stripe shape.
In the process we will identify the range (see (2.8)) for the parameters b, e, ε0, ε, and κ in (1.1),
where the pattern appears. This argument was first used by the authors to study strongly segregated
lamellar patterns in di- and tri-block copolymers [19, 20, 24]. We will also determine the optimal
thickness of a liquid, or gas, micro-domain.

Compared to the nonlocal interaction term in the diblock copolymer problem, the electrostatic
interaction term in (1.1) is more complex. The complexity may be attributed to the slower decay
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Figure 1: (1). A soliton-stripe pattern for φ where sharp domain walls separate liquid and gas
micro-domains. (2). A sinusoidal pattern which has no sharp domain walls. Gas and liquid are
more mixed in (2) than in (1).

rate of the coefficients in (1.3) than that of the diblock copolymer problem, which is 1/|q|2 (more
on this in Section 5). Our existence result is conditional. For any positive even number K whether
there is a locally free energy minimizing, soliton-stripe pattern of K domain walls depends on the
positivity of (K/2) − 1 numbers: E(α), defined in Theorem 2.1. Only when these numbers are all
positive, we have a K wall pattern. However these E(α)’s may be easily numerically calculated,
so we are able to give a definitive answer each time the parameters are given. Unlike the diblock
copolymer problem, there are cases when some of the E(α)’s are negative and the Γ-convergence
theory does not yield a K wall pattern.

In [1] the electrostatic interaction (1.3) is approximated by a simpler quantity, which they call
the dipole-dipole interaction (see (5.9) in Section 5). Our analysis shows that this simplification
is unnecessary at least when soliton-stripe patterns are sought. The Γ-convergence theory can be
applied to the original (1.1).

There is another lamellar pattern, in a different parameter range, which has no sharp domain
walls. φ forms a partially segregated, sine-like function in space, Figure 1 (2). This type is termed the
weakly segregated lamellar pattern in the diblock copolymer theory, Leibler [12], and the sinusoidal
pattern in [29]. It can be treated by the standard bifurcation theory. We sketch this procedure in
the last section.

The paper is organized as follows. Section 2 formulates the problem and states the main result,
Theorem 2.1. Section 3 explains the Γ-convergence technique in the construction of local minimizers.
The proof of Theorem 2.1 is completed in Section 4. Section 5 includes some remarks.

Mathematical studies on periodic patterns with sharp domain walls started rather recently. Many
works have been done to the block copolymer problem. The literature there includes Nishiura and
Ohnishi [15], Ohnishi et al [16], Ren and Wei [19, 21, 20, 23, 24, 22, 27], Choksi [3], Fife and Hilhorst
[8], Henry [9], and Choksi and Ren [4]. In Ren and Truskinovsky [18] competing oscillation inducing
and suppressing interactions are studied in an elastic bar problem. If the nonlocal interaction there
is expressed in the Fourier space like here, than the decay rate of coefficients is again of 1/|q|2
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order as in the block copolymer problem. It turns out that the last two problems have much more
simpler and explicit nonlocal interactions, so their reduced Γ-limits are completely solved. The
charged monolayer problem studied here has a more implicit nonlocal interaction which is given
in the Fourier space. The reduced Γ-limit is only partially solved. More recently Ren and Wei
[25] analyzed the Seul-Andelman membrane problem, where a nonlocal interaction is caused by the
bending of the membrane. Finally in [26] a liquid crystal with chirality is investigated. There the
nonlocal interaction comes from the director field of the liquid crystal, and because of the unit length
constraint on the director field, the nonlocal interaction takes a far more complex, non-quadratic
form. Also see Chmaj and Ren [2] where a fully nonlocal model is proposed.

2 Soliton-stripe pattern

We scale Ω to D = (0, 1) × (0, 1) to separate the size effect of the sample from its shape effect.
Namely we let (x1, x2) = (r1/L, r2/L) ∈ D for r = (r1, r2) ∈ Ω. In the Fourier space we introduce
n = ( L

2π )q. Then (1.1) divided by L2 becomes

∫

D

(W (φ) +
ǫ2

2
|∇φ|2) dx +

ǫ

2

∑

n6=(0,0)

h(n)|φ̂(n)|2. (2.1)

We have regarded φ as a function of the new variable x, and φ̂ as a function of n. With the new x
and n

φ̂(n) =

∫

D

φ(x)e−2πin·x dx, φ(x) =
∑

n

φ̂(n)e2πin·x. (2.2)

We have introduced a positive parameter ǫ, and defined a function h. They are related to the original
(1.1) through

ǫ =
b1/2

L
, h(n) =

L2e2

2πb1/2(ε
√

(κL
2π )2 + n2 + ε0|n|)

. (2.3)

Since lamellar patterns vary in one direction we assume that φ depends on x1 only, which we
denote throughout the rest of the paper by x. Also n now becomes an integer. So (2.1) becomes
an integral over [0, 1] with the periodic boundary condition, not to be confused with the periodic
soliton-stripe pattern to be constructed for φ. This means that the points 0 and 1 are identified and
we denote this domain by R/Z. R/Z is topologically a circle. On R/Z there is the action by the
translation group,

φ(·) → φ(· − y), ∀y ∈ R/Z,

so we will use phrases like ‘modulo translation’ and ‘up to translation’. The function W may be
generalized from the exact formula mentioned after (1.1). We assume that W is smooth, it has
a global minimum value 0 achieved at exactly two points: 0 and 1, and it grows to ∞ at least
quadratically fast as its argument approaches ±∞. We rewrite (2.1) as

Iǫ(φ) =

∫ 1

0

(W (φ) +
ǫ2

2
φ2

x) dx + ǫ
∑

n∈N

h(n)|φ̂(n)|2, (2.4)

where
φ ∈ W 1,2(R/Z), φ = m. (2.5)
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We have denoted φ :=
∫ 1

0
φ(x) dx. The constant m is in (0, 1). Recall that 0 and 1 are the minima

numbers of W . The constraint φ = m reflects the fact that the total number of the molecules in the
layer is fixed. For technical reasons Iǫ is trivially extended to Xm:

Xm = {φ ∈ L2(R/Z) : φ = m} (2.6)

by taking Iǫ(φ) = ∞, for φ ∈ Xm\W 1,2(R/Z).
We will show mathematically that soliton-stripe patterns exist in the parameter range

ǫ → 0, and h remains fixed. (2.7)

In terms of the original parameters, (2.7) means

b1/2κ → 0,
e2

κ2b1/2ε
∼ 1,

ε

ε0
∼ 1. (2.8)

This parameter range is discovered by the upcoming mathematical argument. The accuracy of the
model (1.1) may be tested by comparing (2.8) with that of a real sample with a soliton-stripe pattern.
Once (2.8) is satisfied, we take

L ∼ κ−1. (2.9)

This L will turn out to be of the same order as the size of a microdomain. Any other order will make
the sample either too small or too large, and make mathematical analysis far more complicated. We
refer the reader to Müller [14] and [21] where a larger order of L in the diblock copolymer problem
is considered, resulting in microdomains having smaller order of size compared to L.

The main result of this paper is the following theorem.

Theorem 2.1 Let h be fixed and K a positive even integer. If the following (K/2) − 1 numbers
E(α), α = 1, 2, ...(K/2) − 1,

E(α) =
K

4

∞
∑

p=1

[h(
pK

2
− (

K

2
− α)) + h(

pK

2
− α) − 2h(

pK

2
)] +

K

2

∞
∑

p=1

h(
pK

2
) cos(2πpm)

−K

4
|

∞
∑

p=0

h(
pK

2
+ α)e2πipm +

∞
∑

p=1

h(
pK

2
− α)e−2πipm|,

are all positive, then Iǫ has a local minimizer φǫ of K domain walls when ǫ is sufficiently small. It
has the properties limǫ→0 ‖φǫ − φ0‖2 = 0 modulo translation and limǫ→0 ǫ−1Iǫ(φǫ) = J(φ0).

‖ · ‖2 denotes the L2-norm. J is defined in (3.4). That φǫ develops a Soliton-Stripe pattern of
K domain walls as ǫ → 0 lies in the fact that the limiting profile φ0 of φǫ is a step function with K
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regularly distributed jump points:

φ0(x) =















































































































0 on (0,
1 − m

K
),

1 on (
1 − m

K
,
1 + m

K
),

0 on (
1 + m

K
,
3 − m

K
),

1 on (
3 − m

K
,
3 + m

K
),

...

1 on (
K − 1 − m

K
,
K − 1 + m

K
),

0 on (
K − 1 + m

K
, 1).

(2.10)

This theorem reduces the existence of a soliton-stripe pattern of K domain walls to the positivity
of (K/2)− 1 numbers: E(α). Since these numbers may be accurately calculated numerically, we are
able to determine the existence of a soliton-stripe pattern for any given m, h, and K. Note that
when K is 2, there is no E(α), and the conclusion of the theorem holds true. An interesting case is
when h is convex on [1,∞) and m = 1/2.

Corollary 2.2 If h is convex on [1,∞) and m = 1/2, then all the E(α)’s are positive and the
conclusion of Theorem 2.1 holds.

By (2.3) we see that h is convex on [1,∞) if κL is small. However we usually want to take the
size of the sample L to be sufficiently large, while still in the range (2.9). So for general h, m and
K, some E(α) may be negative. If this happens, Theorem 2.1 does not yield a soliton-stripe pattern
of K domain walls.

Here we run some numerical calculations of E(α). Table 1 shows the smallest E(α), in the
second column, for various K when m = 1/2 and h = 1√

102+n2+0.1|n| is non-convex. As indicated

in column 3, there is always a soliton-stripe pattern when K = 2. But when K is 4, 6, or 8, the
Γ-convergence method employed in this paper does not yield soliton-stripe patterns. The soliton-
stripe patterns appear when K ≥ 10. The fourth column and Kopt are explained later. Table 2
shows the calculations for m = 1/3. Again the patterns exist if K is sufficiently large.

Next we address the issue of optimal spacing. We compare the free energy of all the φǫ’s, whenever
they exist, shown in Theorem 2.1, of various numbers of domain walls. The optimal spacing will be
detemined by the number of the domain walls of the particular φǫ that has the least energy. We
conjecture that this local minimizer φǫ is actually the global minimizer of Iǫ. For each φǫ of K
domain walls, we set

η(K) := lim
ǫ→0

ǫ−1Iǫ(φǫ). (2.11)

The optimal spacing is defined to be L
Kopt

where Kopt is the optimal number of domain walls in the

sample that minimizes η in positive, even numbers. η(K) is given in the next corollary.
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K Smallest E(α) Existence η(K)

2 N/A Yes 1.5796e-02
4 -3.8851e-04 No 1.5115e-02
6 -3.4231e-04 No 1.4536e-02
8 -2.0017e-04 No 1.4039e-02
10 9.1695e-05 Yes 1.3615e-02
12 5.0530e-04 Yes 1.3259e-02
14 9.6576e-04 Yes 1.2965e-02
16 1.4018e-03 Yes 1.2729e-02
18 1.7678e-03 Yes 1.2549e-02
20 2.0440e-03 Yes 1.2419e-02
22 2.2293e-03 Yes 1.2335e-02
24 2.3333e-03 Yes 1.2294e-02
26 = Kopt 2.3697e-03 Yes 1.2291e-02
28 2.3534e-03 Yes 1.2323e-02
30 2.2975e-03 Yes 1.2387e-02

Table 1: The existence of soliton-stripe pattern based on our method in the case m = 1
2 , h(n) =

1√
102+n2+0.1|n| , and τ = 0.0002.

K Smallest E(α) Existence η(K)

2 N/A Yes 1.1947e-02
4 -2.8284e-04 No 1.1536e-02
6 -2.2176e-04 No 1.1202e-02
8 -1.5870e-04 No 1.0929e-02
10 -5.3216e-05 No 1.0711e-02
12 1.1528e-04 Yes 1.0544e-02
14 3.4041e-04 Yes 1.0423e-02
16 5.9239e-04 Yes 1.0347e-02
18 = Kopt 8.3757e-04 Yes 1.0311e-02
20 1.0510e-03 Yes 1.0314e-02
22 1.2196e-03 Yes 1.0351e-02
24 1.3400e-03 Yes 1.0420e-02
26 1.4151e-03 Yes 1.0518e-02
28 1.4509e-03 Yes 1.0642e-02
30 1.4548e-03 Yes 1.0790e-02

Table 2: The existence of soliton-stripe pattern based on our method in the case m = 1/3, h(n) =
1√

102+n2+0.1|n| , and τ = 0.0002.
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Corollary 2.3

η(K) = τK +

∞
∑

p=1

h(pK
2 )(1 − cos(2πpm))

2π2p2
.

In the corollary τ is a positive constant defined by

τ =

∫ 1

0

√

2W (u) du. (2.12)

It is called the interfacical tension. In the fourth columns of Tables 1 and 2 the values of η(K) are
calculated. They are minimized at Kopt indicated in the first columns.

For large K we can expand h(pK/2) and obtain that

η(K) ≈ τK +
1

K
(

L2e2

2πb1/2(ε + ε0)
)

∞
∑

p=1

1 − cos(2πpm)

π2p3
:= τK +

CL2

K
, (2.13)

where C is a positive constant dependent of b, e, ε, ε0, κ, but independent of L. We then find

Kopt ≈ (
C

τ
)1/2L. (2.14)

The optimal spacing in the original Ω is then

2L

Kopt
≈ 2(

τ

C
)1/2 (2.15)

which is the optimal thickness of a cycle of a liquid region plus a gas region. As it should be, (2.15)
is independent of L.

Even though the right side of (2.15) is an approximate formula in this context, it is indeed a
physically accurate description of optimal spacing, simply because it becomes better approximation
as L increases in the range (2.9). It is actually the optimal spacing in the thermodynamic limit.

The next two sections are devoted to the proof of Theorem 2.1 and its corollaries.

3 Γ-limit

The Γ-limit theory is a singular perturbation theory in the calculus of variations. An introduction
to the theory may be found in Dal Maso [5]. In this theory there is a perturbed variational problem,
which is often a standard one with a small parameter, say ǫ. The Euler-Lagrange equation of
this problem is often a differential equation, although not the case in this paper (5.3). The limiting
problem, as ǫ → 0, is usually a geometric problem, whose Euler-Lagrange equation is a free boundary
problem. Certain properties of the limiting problem are carried over to the perturbed problem
(Corollary 3.2). In this sense the perturbed problem is reduced to the limiting problem.

The singular limit (the Γ-limit) of ǫ−1Iǫ, denoted by J in this paper, is a variational problem
initially defined in

A = {φ ∈ BV (R/Z, {0, 1}) : φ = m}. (3.1)

8



Here BV (R/Z) is the class of periodic functions of bounded variation with values in {0, 1}. Each
function in A has a finite number of jumps between 0 and 1. A more formal description of these
functions may be found in Evans and Gariepy [7, chapter 5]. Naturally for each positive, even integer
K we set

AK = {φ ∈ A : φ has K jumps}. (3.2)

Then we have a decomposition

A =

∞
⋃

K=2,even

AK . (3.3)

For each φ in A we define

J(φ) = τK +
1

2

∑

n6=(0,0)

h(n)|φ̂(n)|2, if φ ∈ AK . (3.4)

Here the positive constant τ is defined in (2.12). Again we extend J trivially to Xm by taking
J(φ) = ∞ if φ ∈ Xm\A.

Proposition 3.1 Let Xm be equipped with the L2 metric.

1. As ǫ → 0, ǫ−1Iǫ Γ-converges to J in the following sense.

(a) For every family φǫ ⊂ Xm with lim
e→0

φǫ = φ, lim inf
ǫ→0

ǫ−1Iǫ(φǫ) ≥ J(φ);

(b) For every φ ∈ Xm, there is {φǫ} ⊂ Xm such that lim
ǫ→0

φǫ = φ and lim sup
ǫ→0

ǫ−1Iǫ(φǫ) ≤ J(φ).

2. Let ǫj be a sequence of positive numbers converging to 0, and {φj} a sequence in Xm. If
ǫ−1
j Iǫj

(φj) is bounded above in j, then {φj} is relatively compact in Xm and its cluster points
belong to A.

Proof. We view ǫ−1Iǫ as a sum of a local part

Kǫ(φ) :=

∫ 1

0

[
1

ǫ
W (φ) +

ǫ

2
φ2

x] dx, (3.5)

and an ǫ-independent, perturbative, nonlocal part

L(φ) :=
1

2

∑

n6=0

h(n)|φ̂(n)|2. (3.6)

Regarding L, we note that φ → L(φ) is continuous from L2(R/Z) to R by the decay rate of h.
After making some minor modifications (change L1 to L2) in the proof of Propositions 1 and 2

of Modica [13], we find that Kǫ Γ-converges to K0. Here

K0(φ) := τK, if φ ∈ AK . (3.7)

Because L : Xm → R is a continuous functional, by the definition of Γ-convergence ǫ−1Iǫ = Kǫ + L
Γ-converges to J = K0 + L.
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Part 2 of the proposition is a kind of uniform coercivity property. The proof is the same as that
of [19, Proposition 2.2].

The next result proved by Kohn and Sternberg [10] asserts that as a corollary of Proposition
3.1 near every isolated local minimizer of J there exists a local minimizer of Iǫ. The original result
in [10] deals with a domain with a boundary. Here on R/Z we must take care of the translation
invariance of Iǫ and state the result a little differently. Define a manifold of translates of φ0

M(φ0) := {φ ∈ Xm : φ(·) = φ0(· − y), y ∈ R/Z}

and a tube like neighborhood of M(φ0)

Nδ(φ0) := {φ ∈ Xm : ‖φ(·) − φ0(· − y)‖ < δ, for some y in R/Z}.

Corollary 3.2 Let δ > 0 and φ0 ∈ Xm be such that J(φ0) < J(φ) for all φ ∈ Nδ(φ0)\M(φ0). Then
there exist ǫ0 > 0 and φǫ ∈ Nδ/2(φ0) for all ǫ < ǫ0 such that Iǫ(φǫ) ≤ Iǫ(φ) for all φ ∈ Nδ/2(φ0). In
addition φǫ → φ0 up to translation.

Proposition 3.3 If (x1, x2, ..., xK) strictly minimizes J in AK locally, up to translation, then the
corresponding φ is a strict local minimizer of J in Xm, modulo translation.

Proof. Suppose that the conclusion is false. There would be a sequence of φj such that φj 6= φ
modulo translation, φj → φ and J(φj) ≤ J(φ). The L2-continuity of L implies limj→∞ L(φj) =
L(φ). Therefore

lim sup
j→∞

K0(φj) ≤ K0(φ).

On the other hand the lower semicontinuity theorem of BV functions ([7], Theorem 1, p. 172)
states

lim inf
j→∞

K0(φj) ≥ K0(φ).

We deduce that
lim

j→∞
K0(φj) = K0(φ). (3.8)

Hence for large j, φj has exactly K jumps and is in AK . But this is inconsistent with φj → φ,
J(φj) ≤ J(φ), and the assumption of the proposition.

Now the study of J in Xm is reduced to the study in AK . View the jumps of φ: x1, x2, ..., xK

as K points on (0, 1), with 0 < x1 < x2 < ... < xK ≤ 1, so that

φ(x) =































0 on (0, x1),
1 on (x1, x2),
0 on (x2, x3),
...
1 on (xK−1, xK),
0 on (xK , 1).

(3.9)

The constraint φ = m becomes

x2 − x1 + x4 − x3 + ... + xK − xK−1 = m. (3.10)
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The Fourier series of φ is

φ̂(n) =

∫ 1

0

e−2πinxφ(x) dx =
1

2πn

K
∑

j=1

(−1)je2πinxj , (3.11)

and hence

|φ̂(n)|2 =
1

4π2n2
(

K
∑

j=1

(−1)je2πinxj )(

K
∑

k=1

(−1)ke2πinxk)

=
1

4π2n2
(K +

∑

j,k;j 6=k

(−1)j+k cos(2πn(xj − xk))). (3.12)

L is now viewed as a function of xj , and

L(x1, x2, ..., xK) =
∑

n∈N

h(n)

4π2n2
(K +

∑

j,k;j 6=k

(−1)j+k cos(2πn(xj − xk))). (3.13)

Proposition 3.4 φ0 defined in (2.10) or any of its translates is a critical point of L in AK .

Proof. The first derivatives of L are

∂L

∂xj
= −2

∑

l 6=j

(−1)j+l
∑

n∈N

h(n)

2πn
sin(2πn(xj − xl)). (3.14)

We evaluate (3.14) at (2.10). Note that there
∑

l 6=j

sin(2πn(xj − xl))

= ... + sin(2πn
4

K
) + sin(2πn

2

K
) + sin(2πn

−2

K
) + sin(2πn

−4

K
) + ...

... − sin(2πn(xj − xj−1)) − sin(2πn(xj − xj+1)) − ...

= ... − sin(2πn(xj − xj−1)) − sin(2πn(xj − xj+1)) −

=

{

... − sin(2πn 2+2m
K ) − sin(2πn 2m

K ) − sin(2πn−2+2m
K ) − ... if j is even

... − sin(2πn 2−2m
K ) − sin(2πn−2m

K ) − sin(2πn−2−2m
K ) − ... if j is odd

. (3.15)

Therefore at (2.10)
∂L

∂x1
= − ∂L

∂x2
=

∂L

∂x3
= ... =

∂L

∂xK−1
= − ∂L

∂xK
. (3.16)

Hence (2.10) is a critical point of L under the constraint (3.10).

4 Proof of Theorem 2.1

Because of Corollary 3.2 and Propositions 3.3, we find the spectrum of L′′ at (2.10). The second
derivatives of L are

∂2L

∂xj∂xk
= 2(−1)j+k

∑

n∈N

h(n) cos(2πn(xj − xk)) if j 6= k,

11



∂2L

∂x2
j

= −2
∑

l 6=j

(−1)j+l
∑

n∈N

h(n) cos(2πn(xj − xl)) if j = k. (4.1)

In this section we translate (2.10) to

y0 = 0, y1 =
1 − m

ν
, y2 =

1

ν
, y3 =

2 − m

ν
, y4 =

2

ν
, ..., y2ν−1 =

ν − m

ν
, (4.2)

where ν = K/2. For (4.2)

φ0(y) =























0 if y ∈ (y0, y1)
1 if y ∈ (y1, y2)
0 if y ∈ (y2, y3)

...
1 if y ∈ (y2ν−1, 1)

.

It is more convenient to study the spectrum of L′′ in the complex space CK . We would like to
write

∂2L

∂x2
j

= 2(−1)j+j
∑

n∈N

h(n) cos(2πn(yj − yj)) − 2

K−1
∑

l=0

(−1)j+l
∑

n∈N

h(n) cos(2πn(yj − yl)).

But the two series on the right side are divergent. We have to work with truncated series instead.
Denote

ρN (z) =
N

∑

n=1

h(n) cos(2πnz). (4.3)

Then decompose
1

2
L′′ = lim

N→∞
(EN + FN ) (4.4)

at (4.2). The (j, k) entry of EN is (−1)j+kρN (yj − yk). The matrix FN is a scalar multiple of the
identity matrix, i.e.

FN = (−
K−1
∑

l=0

(−1)j+lρN (yj − yl))IK . (4.5)

IK is the K by K identity matrix. The sum in (4.5) is independent of j. To see this we note that
for each n,

K−1
∑

l=0

(−1)j+l cos(2πn(yj − yl)) =
ν−1
∑

σ=0

cos(2πn
σ

ν
) −

ν−1
∑

σ=0

cos(2πn
σ + 1 − m

ν
).

Let us divide EN into 2 by 2 blocks:

EN =









eN,00 eN,01 ... eN,0(ν−1)

eN,10 eN,11 ... eN,1(ν−1)

...
eN,(ν−1)0 eN,(ν−1)1 ... eN,(ν−1)(ν−1)









. (4.6)
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These blocks are labeled by indices β, ξ ∈ {0, 1, ..., ν − 1}. A typical eN,βξ is

eN,βξ :=

[

ρN (y2β − y2ξ) −ρN (y2β − y1+2ξ)
−ρN (y1+2β − y2ξ) ρN (y1+2β − y1+2ξ)

]

. (4.7)

The spectral analysis is done in two steps. First we perform a “coarse” discrete Fourier transform,
not to be confused with the Fourier transform in (2.4), to convert EN +FN to a matrix with vanishing
off-diagonal 2 by 2 blocks. In the second step we study the spectra of the diagonal blocks.

The coarse discrete Fourier transform, used in [24] for triblock copolymers, treats a cycle of two
micro-domains as a single unit. It is given by the matrix P whose (α, β) block is

1√
ν

exp(−2πi
αβ

ν
)I2, α, β ∈ {0, 1, ..., ν − 1}, (4.8)

where I2 is the 2 by 2 identity matrix. P is unitary so its inverse P−1 is its adjoint, i.e. (4.8) with
the −2πi’s replaced by 2πi’s in the exponents. This transform P is independent of the truncation
size N . Clearly PFNP−1 = FN . The calculation of PENP−1 is a bit more involved. The (α, η)
block of this product is

∑

β,ξ

1

ν
exp(−2πi

αβ

ν
+ 2πi

ξη

ν
)eN,βξ. (4.9)

The computation of (4.9) is done on the entries of eN,βξ individually, so for any s, t ∈ {0, 1} the
(s, t) entry of (4.9) is

(−1)s+t

ν

∑

β,ξ

exp(−2πi
αβ

ν
+ 2πi

ξη

ν
)ρN (ys+2β − yt+2ξ). (4.10)

We define

QN (α, s, t) =















































∑

σ

exp(−2πi
ασ

ν
)ρN (

σ

ν
) if s = t

∑

σ

exp(−2πi
ασ

ν
)ρN (

σ

ν
− 1 − m

ν
) if s = 0, t = 1

∑

σ

exp(−2πi
ασ

ν
)ρN (

σ

ν
+

1 − m

ν
) if s = 1, t = 0

. (4.11)

Then we obtain that

(−1)s+t

√
ν

∑

β

exp(−2πi
αβ

ν
)ρN (ys+2β − yt+2ξ) =

(−1)s+t

√
ν

exp(−2πi
αξ

ν
)QN (α, s, t) (4.12)

is the (s, t) entry of the (α, ξ) block of PEN . From (4.9) we conclude that the (α, η) block of
PENP−1 vanishes if α 6= η and the (α, α) block is

[

QN (α, 0, 0) −QN (α, 0, 1)
−QN (α, 1, 0) QN (α, 1, 1)

]

.
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This way P diagonalizes EN + FN to 2 by 2 blocks for all N , where the α’th diagonal block is

mN,α =

[

QN (α, 0, 0) −QN (α, 0, 1)
−QN (α, 1, 0) QN (α, 1, 1)

]

− (QN (0, 0, 0) − QN (0, 0, 1))I2. (4.13)

Here we have used the fact that

∑

k

(−1)j+kρN (yj − yk) = QN (0, 0, 0) − QN (0, 0, 1). (4.14)

Now we find more explicit expressions for QN (α, s, t). To find QN (α, 0, 0) we note

∑

σ

exp(−2πi
ασ

ν
) cos(2π

nσ

ν
)

=
1

2

∑

σ

exp(−2πi
ασ

ν
)(exp(2πi

nσ

ν
) + exp(−2πi

nσ

ν
))

=
1

2

∑

σ

exp(2πi
(−α + n)σ

ν
) +

1

2

∑

σ

exp(2πi
(−α − n)σ

ν
)

=

{

0 if − α + n 6≡ 0 mod ν
ν/2 if − α + n ≡ 0 mod ν

+

{

0 if − α − n 6≡ 0 mod ν
ν/2 if − α − n ≡ 0 mod ν

. (4.15)

Multiplying (4.15) by h(n) and summing over n we deduce

QN (α, 0, 0) = QN (α, 1, 1) =
ν

2
(

(N−α)/ν
∑

p=0

h(pν + α) +

(N+α)/ν
∑

p=1

h(pν − α)). (4.16)

Next we compute QN (α, 0, 1). Similar to (4.15) we have

∑

σ

exp(−2πi
ασ

ν
) cos(2π

nσ − n(1 − m)

ν
)

=

{

0 if − α + n 6≡ 0 mod ν
ν
2 e−2πi

n(1−m)
ν if − α + n ≡ 0 mod ν

+

{

0 if − α − n 6≡ 0 mod ν
ν
2 e2πi

n(1−m)
ν if − α − n ≡ 0 mod ν

.

Multiplying the last line by h(n) and summing over n we deduce

QN (α, 0, 1) =
ν

2
(

(N−α)/ν
∑

p=0

h(pν + α)e−2πi
(pν+α)(1−m)

ν +

(N+α)/ν
∑

p=1

h(pν − α)e2πi
(pν−α)(1−m)

ν ). (4.17)

The calculations of QN (α, 1, 0) are similar. We find

QN (α, 1, 0) =
ν

2
(

(N−α)/ν
∑

p=0

h(pν + α)e2πi
(pν+α)(1−m)

ν +

(N+α)/ν
∑

p=1

h(pν − α)e−2πi
(pν−α)(1−m)

ν ). (4.18)
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Note that

QN (0, 0, 0) = QN (0, 1, 1) = ν

N/ν
∑

p=1

h(pν),

QN (0, 0, 1) = QN (0, 1, 0) = ν

N/ν
∑

p=1

h(pν) cos(2πp(1 − m)), (4.19)

and Q(α, 0, 1) is conjugate to Q(α, 1, 0). As N → ∞, QN (α, 0, 1) and QN (α, 1, 0) are convergent
but QN (α, 0, 0) = QN (α, 1, 1) is divergent.

In the second step of our spectral analysis we study mN,α. Note that

mN,0 =

[

QN (0, 0, 1) −QN (0, 0, 1)
−QN (0, 1, 0) QN (0, 1, 0)

]

. (4.20)

One of the eigenvalues of m0 is 0 and the second is 2QN (0, 0, 1). After sending N → ∞, we have
two eigenvalues of L′′:

0 and lim
N→∞

2QN (0, 0, 1) = 2ν

∞
∑

p=1

h(pν) cos(2πp(1 − m)).

The first eigenvalue comes from the translation invariance of the problem. The second eigenvalue
is irrelevant here. Note that an eigenvector of the eigenvalue 0 is (1, 1, ..., 1, 1), in the coordinates
before the Fourier transform. The invariant subspace corresponding to mN,0 is the linear span of
the first two columns of P in (4.8), i.e.

c1(1, 0, 1, 0, ..., 1, 0)T + c2(0, 1, 0, 1, ..., 0, 1)T .

In this two-dimensional subspace (1,−1, 1,−1, ..., 1,−1) is an eigenvector corresponding to the second
eigenvalue of L′′. However condition (3.10) requires that any eigenvector (z1, z2, ..., zK) must satisfy

z2 − z1 + z4 − z3 + ... + zK − zK−1 = 0. (4.21)

The eigenvector (1,−1, 1,−1, ..., 1,−1) does not satisfy (4.21). It is actually perpendicular to the
plane (4.21). Thus the second eigenvalue is excluded.

When α > 0, the two eigenvalues of mN,α are QN (α, 0, 0)+|QN (α, 0, 1)|−QN (0, 0, 0)+QN (0, 0, 1)
and QN (α, 0, 0)−|QN (α, 0, 1)|−QN (0, 0, 0)+QN (0, 0, 1). From (4.16, 4.17, 4.18, 4.19) we find them
to be

ν

2
(

(N−α)/ν
∑

p=0

h(pν + α) +

(N+α)/ν
∑

p=1

h(pν − α)) − ν

N/ν
∑

p=1

h(pν) + ν

N/ν
∑

p=1

h(pν) cos(2πpm)

±ν

2
|
(N−α)/ν

∑

p=0

h(pν + α)e−2πipm +

(N+α)/ν
∑

p=1

h(pν − α)e2πipm|. (4.22)

The smaller one in (4.22) takes − in ±, which, after N is sent to ∞, yields E(α) in Theorem 2.1.
Note that the first three series must be combined into one before N is sent to ∞ for the sake of
convergence. This completes the proof of the theorem.
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Proof of Corollary 2.2. When m = 1/2, the E(α)’s are simplified to

ν

2

∞
∑

p=1

[h(pν − (ν − α)) + h(pν − α) − 2h(pν)] + ν

∞
∑

p=1

h(pν)(−1)p

−ν

2
| −

∞
∑

p=1

h(pν − (ν − α))(−1)p +

∞
∑

p=1

h(pν − α)(−1)p|. (4.23)

When the quantity in |...| is non-negative, (4.23) is

=
ν

2

∞
∑

p=1

[h(pν − (ν − α)) + h(pν − α) − 2h(pν) + 2(−1)ph(pν)

+(−1)ph(pν − (ν − α)) − (−1)ph(pν − α)]

=
ν

2

∞
∑

p=1

{

2h(pν − α) − 4h(pν) if p is odd
2h(pν − (ν − α)) if p is even

= ν

∞
∑

p=1,odd

[h(pν − α) + h(pν − (ν − α)) − 2h(pν)] > 0, (4.24)

where the last inequality follows from the convexity of h. When the quantity in |...| is negative,
(4.23) is

=
ν

2

∞
∑

p=1

[h(pν − (ν − α)) + h(pν − α) − 2h(pν) + 2(−1)ph(pν)

−(−1)ph(pν − (ν − α)) + (−1)ph(pν − α)]

=
ν

2

∞
∑

p=1

{

2h(pν − (ν − α)) − 4h(pν) if p is odd
2h(pν − α) if p is even

= ν

∞
∑

p=1,odd

[h(pν + ν − α) + h(pν − (ν − α)) − 2h(pν)] > 0, (4.25)

where the last inequality again follows from the convexity of h.

Proof of Corollary 2.3. We find J at every (2.10):

η(K) = lim
ǫ→0

ǫ−1Iǫ(φǫ) = J(φ0)

= τK +
∑

n∈N

Kh(n)

4π2n2

K
∑

j=1

(−1)j+k cos(2πn(xj − xk))

= τK +
∑

n∈N

Kh(n)

4π2n2
(

ν−1
∑

σ=0

(cos(2π
nσ

ν
) − cos(2π(

nσ + n(1 − m)

ν
)))

= τK +

∞
∑

p=1

h(pK
2 )(1 − cos(2πp(1 − m)))

2π2p2
. (4.26)
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Figure 2: Let h(n) = 1√
1+n2+0.5|n| . (1). G on [0, 1]. (2). G on [0.5, 1.5].

5 Remarks

Theorem 2.1 shows the existence of soliton-stripe patterns as local minimizers of Iǫ. Many questions
remain here and the overall structure of Iǫ is still obscure. Regarding the reduced problem J we
have only showed in Proposition 3.4 that the cyclic φ0’s are critical points. Here cyclic refers to the
fact that the jump points are regularly distributed (2.10). But it is not clear whether J has other
non-cyclic critical points. Without knowing all the critical points of J we are unable to identify the
global minimizers of J and Iǫ, although we suspect that the global minimizer of J is the φ0 with
the optimal spacing.

Although there exist cyclic φ0’s that are critical points but not local minimizers of J , it is not
clear to us whether they correspond to soliton-stripe patterns as unstable critical points of Iǫ. This
is because that the Γ-convergence theory only reduces the existence of local minimizers, not unstable
critical points, of Iǫ to those of J .

It is natural, as done by the authors in the diblock copolymer problem [22], to contemplate the
two-dimensional stability of the one-dimensional local minimizers viewed in two-dimensions. We sus-
pect, based on our experience in [22], that not all the one-dimensional local minimizers constructed
in Theorem 2.1 are stable in two-dimensions. The one with K = 2 and some other ones with smaller
K values may be unstable. There is also the possibility, as in the diblock copolymer problem [27],
that there could be stable lamellar patterns with wriggled domain walls in two-dimensions.

The free energy (2.4) may also be written as

Iǫ(φ) =

∫ 1

0

(W (φ) +
ǫ2

2
φ2

x) dx +
ǫ

2

∫ 1

0

∫ 1

0

G(x − y)φ(x)φ(y) dxdy, (5.1)

where
G(z) =

∑

n6=0

h(n)e2πinz. (5.2)

A numerically calculated G is shown in Figure 2. The local minimizers of Iǫ constructed in Theorem
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Figure 3: Gd(z) = 10( z2

2 − z
2 + 1

12 ) of the diblock copolymer problem. (1). Gd on [0, 1]. (2). Gd on
[0.5, 1.5].

2.1 satisfy the Euler-Lagrange equation

W ′(φ) − ǫ2φxx + ǫG[φ] = Const. (5.3)

of (5.1). We have introduced the integral operator

G[φ](x) =

∫ 1

0

G(x − y)φ(y) dy. (5.4)

The Const. on the right side of (5.3) is a Lagrange multiplier coming from the constraint φ = m.
Integrating (5.3), we find this Const. = W ′(φ).

The diblock copolymer problem formulated on R/Z has a similar expression of free energy. The
difference is in the function G. In the diblock copolymer problem, one uses

Gd(z) = γ(
z2

2
− z

2
+

1

12
), z ∈ [0, 1], and periodically extended to R (5.5)

in place of G in (5.1), Figure 3. γ in Gd is a positive constant. This explicitly given Gd, without γ,

is the Green function of the operator − d2

dx2 . In the Fourier space corresponding to h is

hd(n) =
γ

4π2n2
. (5.6)

Note that Gd in the diblock copolymer problem is bounded but G in the charged Langmuir monolayer
problem has singularity at Z.

There are subtle consequences following the difference. Firstly in the diblock copolymer problem
for each even K there is always a K domain wall soliton-stripe pattern as a one-dimensional local
minimizer. The pattern comes from (2.10), which is the only critical point of the corresponding L.
This fact is established for the diblock copolymer problem under the natural boundary condition in
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[19]. The same fact holds under the periodic boundary condition after we make some small changes
in [19]. In the charged Langmuir monolayer problem the existence of a K wall soliton-stripe pattern
as a local minimizer is conditioned on the positivity of the E(α)’s, Theorem 2.1.

Secondly following (5.5) or (5.6) one finds different optimal spacing. The dependence of the
reduced free energy there on K takes the form

ηd(K) = τK +
CL3

K2
(5.7)

for some positive constant C independent of L. It leads to

Kopt ≈ (
2C

τ
)1/3L. (5.8)

Note the difference of the exponent 1/3 in (5.8) and the exponent 1/2 in (2.14). Formulae (5.7)
and (5.8) also appear in the Seul-Andelman membrane problem [25], and the chiral liquid crystal
problem [26]. On the other hand (2.14) is found in the domain structures of ferromagnets, Landau,
Lifshitz and Pitaevskii [11], and superconductors in the intermediate state, Tinkham [31].

Andelman et al [1] also considered neutral Langmuir monolayers. They postulated a free energy
∫

Ω

(W (φ) +
b

2
|∇φ|2) dr +

∑

q 6=(0,0)

−L2µ2ε0|q||φ̂(q)|2
2ε(ε + ε0)

. (5.9)

This expression may also be formally regarded as an approximation of (1.1) when |q| is small.
However if the soliton-stripe pattern is sought, (5.9) can not be handled the way we did (1.1),
because the last term of (5.9) is divergent when φ is a step function. In [1] a cutoff was introduced
to deal with the divergence. Without this modification it is doubtful that (5.9) admits soliton-stripe
patterns.

The sinusoidal lamellar pattern, Figure 1 (2), mentioned in the introduction is of very different
nature. It bifurcates out of the constant solution m of (5.3). To see this we note that the eigenvalue
problem of (5.3) at φ is

W ′′(φ)ψ − W ′′(φ)ψ − ǫ2ψxx + ǫG[ψ] = λψ. (5.10)

Equation (5.3) is satisfied by φ = m. At this m, we have, in (5.10),

ψ = cos(2nπx), or ψ = sin(2nπx), n = 1, 2, 3, ... (5.11)

and the corresponding
λ = W ′′(m) + 4ǫ2n2π2 + ǫh(n), n = 1, 2, 3, ... (5.12)

Depending on ǫ, h, and m the principal eigenvalue (i.e. the smallest λ) may be positive, negative,
or zero. This allows one to use the bifurcation theory to find solutions bifurcating out of m. The
phenomenon occurs in a parameter range different from (2.8). Such solutions differ from m by
a function proportional to (5.11), to the first order approximation. We then obtain a sinusoidal
lamellar pattern. Whether these solutions are stable, an important issue in the physical model, may
also be determined by examining the shape of the bifurcation diagram. This construction is rather
standard, so we omit the detail. One difficulty here is the multiplicity of the eigenvalues (5.12) due
to the translation group action on R/Z. Hence a group invaraiant version of the bifurcation theory
is needed. The reader may find all the necessary tools in Sattinger [28].
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