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SHARP ESTIMATES FOR THE NUMBER OF DEGREES OF

FREEDOM FOR THE DAMPED-DRIVEN 2D NAVIER–STOKES

EQUATIONS

Alexei A. Ilyin1 and Edriss S. Titi2

Abstract. We derive upper bounds for the number of asymptotic degrees (determining modes and
nodes) of freedom for the two-dimensional Navier–Stokes system and Navier-Stokes system with damp-
ing. In the first case we obtain the previously known estimates in an explicit form, which are larger than
the fractal dimension of the global attractor. However, for the Navier–Stokes system with damping our
estimates for the number of the determining modes and nodes are comparable to the sharp estimates for
the fractal dimension of the global attractor. Our investigation of the damped-driven 2D Navier–Stokes
system is inspired by the Stommel–Charney barotropic model of ocean circulation where the damping
represents the Rayleigh friction. We remark that our results equally apply to the Stommel–Charney
model.
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1. Introduction

In this paper we derive estimates for the number of determining modes, nodes and other
determining projections for the two-dimensional Navier–Stokes system (2.1) and for the
two-dimensional damped-driven Navier–Stokes system (3.1). The latter system is inspired
by the viscous Stommel–Charney barotropic ocean circulation model [4],[33],[35]:

∂tu+
2∑

i=1

ui∂iu+ kl × u = −µu+ ν∆ u−∇ p+ f,

div u = 0,

(1.1)

where the damping µu represents the so-called Rayleigh friction term in the ocean circula-
tion model. In recent years there has been some analytical study of the Stommel–Charney
model from the dynamical systems point of view (see, for instance, [3], [5], [18], [19], [22],
[26], [34], [39]). For the sake of clarity in our mathematical presentation and in order to
make a straight forward comparison to the physical literature about the 2D turbulence
we focus here on the Navier–Stokes system (2.1) and the damped-driven Navier–Stokes
system (3.1). It worth stressing, however, that our results concerning the system (3.1),
especially about determining modes, equally applies to the barotropic model (1.1), which
we report in a forthcoming paper.

Our paper is organized as follows. In section 2 we obtain previously known estimates
reported in [8], [9] and [28] for the number of determining modes, nodes and other de-
termining projections for the two-dimensional space-periodic Navier–Stokes system which
are linear with respect to the Grashof number. We use, however, the scalar vorticity for-
mulation, which makes it possible to give all the estimates and constants in an explicit
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2 A.A. ILYIN AND E.S. TITI

form. Furthermore, the dependence on the aspect ratio of the periodic domain is explic-
itly singled out. For the Dirichlet boundary conditions we obtain an explicit estimate for
the number of determining modes which is quadratic with respect to the Grashof number
(see, for example, [20], [29]). It is worth mentioning that these best known estimates for
the number of explicit determining modes and nodes of the 2D Navier–Stokes equations
without damping are still much larger than the dimension of the global attractor.

In section 3 we consider the Navier-Stokes system with damping, subject to periodic
boundary conditions and the stress-free boundary conditions, and obtain estimates for
the number of the determining modes and nodes that are of the same order as of the
sharp estimates for the fractal dimension of the global attractor [26]. These remarkable
estimates are extensive, that is, depend linearly on the area of the spatial domain, which
is consistent with the physical intuition. We remark, again, that such an observation is
not known to exist in the case of the 2D Navier–Stokes equations without damping.

Finally, in the Appendix in section 4 we prove some auxiliary inequalities, namely, we
derive sharp constant in the Agmon inequality on the two-dimensional torus and prove a
variant of the embedding theorem reported in [28].

Since we are interested in obtaining explicit bounds about the constants involved in
our asymptotic estimates for the numbers of degrees of freedom, we focus in this paper
on the notions of determining modes and nodes. However, it is worth stressing that our
asymptotic estimates, in terms of the physical parameters, are valid for other determining
functionals and projections, as it has been demonstrated in [8], [9], (see also [7]), with
constants that may vary depending on the underlying chosen determining functionals.

2. Determining modes and nodes for two-dimensional Navier–Stokes

equations

Dirichlet boundary conditions. We consider in this section the two-dimensional Navier–
Stokes system

∂tu+

2∑

i=1

ui∂iu = ν∆ u−∇ p+ f,

div u = 0, u(0) = u0,

(2.1)

where u is the velocity vector field satisfying Dirichlet boundary conditions u|∂Ω = 0, p is
the pressure, and ν > 0 is the kinematic viscosity. The right-hand side f = f(x, t) is given
and the domain Ω is an arbitrary open connected set in R

2 with finite measure |Ω| <∞.
We use the standard notation and facts from the theory of Navier–Stokes equations

(see, for instance, [10], [30], [37], [38]) and denote by P the Helmholtz–Leray orthogonal
projection in L2(Ω)

2 onto the Hilbert space H which is the closure in L2(Ω)
2 of the set of

smooth solenoidal vector functions with compact supports in Ω. Applying P to the first
equation in (2.1), we obtain

∂tu+B(u, u) + νAu = f, u(0) = u0, (2.2)

where A = −P∆ is the Stokes operator, B(u, v) = P
(∑2

i=1 u
i∂iv

)
is the nonlinear term,

and f = Pf ∈ H .
Next, we denote by {λj}∞j=1, 0 < λ1 ≤ λ2 ≤ . . . and {wj}∞j=1 the eigenvalues and the

corresponding eigenfunctions of the Stokes operator A: Awj = λjwj . The asymptotic
behavior λk ∼ 4πk

|Ω|
as k → ∞ was established in [32], while in this work we use the
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following explicit non-asymptotic lower bounds for the eigenvalues {λj}∞j=1 (see [23]):

m∑

j=1

λj ≥
πm2

|Ω| and, consequently, λm ≥ πm

|Ω| , m ≥ 1; λ1 ≥
2π

|Ω| . (2.3)

The Hilbert space V = D(A1/2) is the space H1
0(Ω)

2 ∩H with norm

‖u‖D(A1/2) = ‖∇ u‖ = ‖ rotu‖,
where ‖ ·‖ = ‖ ·‖L2(Ω). The nonlinear operator B(v, v) satisfies the well-known inequalities
(see, for instance, [10], [30], [37], [38])

|(B(v, v), u)| = |(B(v, u), v)| ≤ c1‖v‖‖∇ v‖‖∇ u‖,
|(B(u, v), w)| ≤ c2‖u‖1/2‖∇ u‖1/2‖∇ v‖‖w‖1/2‖∇w‖1/2,

(2.4)

where it was shown in [6] that

c1 =: cb ≤
(

8

27π

)1/2

c2 ≤
√
2cb ≤

(
16

27π

)1/2

. (2.5)

Let u and v be the solutions of the Navier–Stokes equations

∂tu+B(u, u) + νAu = f, u(0) = u0,

∂tv +B(v, v) + νAv = g, v(0) = v0,
(2.6)

where f, g ∈ L∞(0,∞;H).
We denote by Pm the L2-orthogonal projection onto the space Span{w1, . . . , wm}, and

we set Qm = I − Pm.

Definition 2.1. We call a set of modes {wj}mj=1 determining (see [12], [15]) if

lim
t→∞

‖u(t)− v(t)‖ = 0, (2.7)

as long as

lim
t→∞

‖f(t)− g(t)‖ = 0 and lim
t→∞

‖Pm(u(t)− v(t))‖ = 0.

Accordingly, a set of points {xi}Ni=1 ⊂ Ω is called a set of determining nodes (see [12], [16])
if (2.7) holds as long as

lim
t→∞

‖f(t)− g(t)‖ = 0 and lim
t→∞

η(u(t)− v(t)) = 0

where η(w) = maxj=1,...,N |w(xj)|.
We further suppose that

lim sup
t→∞

‖f(t)‖ =: f <∞ (2.8)

Subtracting in (2.6) the second equation from the first and setting w(t) = u(t) − v(t)
and h(t) = f(t)− g(t) we obtain

∂tw + νAw +B(u, w) +B(w, u)− B(w,w) = h(t).

We write w = p+ q, where p = Pmw, q = Qmw and take the scalar product with q:

1

2
∂t‖q‖2 + ν‖∇ q‖2 + b(q, u, q) = (h, q)− b(u, p, q)− b(p, u, q) + b(p, p, q) + b(q, p, q),

where b(u, v, w) = (B(u, v), w).
A variant of the Gronwall lemma [12], [13], [28] is essential in the estimates below.
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Lemma 2.1. Suppose that α(t) and β(t) are locally integrable functions on (0,∞) satis-
fying for some T > 0 the following conditions:

lim inf
t→∞

1

T

∫ t+T

t

α(τ)dτ = γ, lim sup
t→∞

1

T

∫ t+T

t

α−(τ)dτ = Γ, lim
t→∞

1

T

∫ t+T

t

β+(τ)dτ = 0,

where γ > 0, Γ < ∞ and α− = max{−α, 0}, β+ = max{β, 0}. If ξ(t) ≥ 0, an absolutely

continuous function, satisfies

ξ′ + αξ ≤ β on (0,∞),

then ξ(t) → 0 as t→ ∞.

All the terms on the right-hand side containing h or p can be absorbed in the function
β(t) in Lemma 2.1. For example, using the second inequality in (2.4) we obtain

|b(u, p, q)| ≤ c2‖u‖1/2‖∇ u‖1/2‖∇ p‖‖q‖1/2‖∇ q‖1/2

≤ c2(λm/λ1)
1/2‖p‖‖∇ u‖‖∇ q‖ ≤ (c2/2)(λm/λ1)

1/2‖p‖(‖∇ u‖2 + ‖∇ q‖2).
Our claim follows since ‖p(t)‖ → 0 and in view of (2.9)

1

T

∫ t+T

t

‖p(τ)‖(‖∇ u(τ)‖2 + ‖∇ q(τ)‖2)dτ

≤ max
τ∈[t,t+T ]

‖p(τ)‖ 1

T

∫ t+T

t

(‖∇ u(τ)‖2 + ‖∇ q(τ)‖2)dτ → 0 as t→ ∞.

The remaining terms can be treated in exactly the same way. Therefore we obtain

∂t‖q‖2 + 2ν‖∇ q‖2 + 2b(q, u, q) ≤ β(t),

where β(t) → 0 as t→ ∞.
Using the first inequality in (2.4) we have

2|b(q, u, q)| ≤ ν‖∇ q‖2 + c2bν
−1‖q‖2‖∇ u‖2

and then using the Poincaré inequality λm+1‖q‖2 ≤ ‖∇ q‖2 we obtain

∂t‖q‖2 + α(t)‖q‖2 ≤ β(t), where α(t) = νλm+1 − ν−1c2b‖∇ u(t)‖2.
Since by the well-known estimates for the Navier–Stokes system (see, for instance, [10],[38])

lim sup
t→∞

1

T

∫ t+T

t

‖∇ u(τ)‖2dτ ≤ f2

Tν3λ21
+

f2

ν2λ1
, (2.9)

it follows that α satisfies the conditions of Lemma 2.1 provided that T is sufficiently large
and

λm+1 >
c2bf

2

ν4λ1
. (2.10)

In view of (2.3) and (2.4), (2.5) we have proved the following theorem.

Theorem 2.1. The first m eigenfunctions of the Stokes operator are determining for the

two-dimensional Navier–Stokes system with Dirichlet boundary conditions if

m+ 1 >
4

27π3
G2, where G =

f |Ω|
ν2

. (2.11)

Remark 2.1. The above theorem without explicit value of the constant has been mentioned
as a remark in [20] and was also proved in [12] and [29].
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Periodic boundary conditions. Determining modes. We now consider the Navier–
Stokes system (2.1) with space periodic boundary conditions x ∈ Ω = [0, L1]× [0, L2]. We
set L2 = L and L1 = L/γ. Without loss of generality we assume that γ ≤ 1. As before,
|Ω| denotes the measure of the periodic domain Ω: |Ω| = L1L2 = L2/γ.

We further assume that u, p and f have mean value zero over the torus. Applying
the rot (curl) operator to the first equation in (2.1) we obtain the well-known vorticity
equation

∂tϕ+ J(∆−1ϕ, ϕ)− ν∆ϕ = rot f, (2.12)

where rotu = ϕ, u = ∇⊥∆−1ϕ, J(a, b) = ∂1a∂2b− ∂2a∂1b = ∇⊥ a · ∇ b, ∇⊥ψ = k×∇ψ =
(−∂2ψ, ∂1ψ), and k is the vertical unit vector.

We now recall that the spectrum {λj}∞j=1 of the Stokes operator with periodic boundary
conditions coincides with that of the negative scalar Laplacian

−∆ϕj = λjϕj

and the corresponding eigenfunctions are as follows:

Awj = λjwj , wj = λ
−1/2
j ∇⊥ϕj = λ

−1/2
j (−∂2ϕj, ∂1ϕj).

Therefore the modes {w1, . . . , wm} are determining for the Navier–Stokes system (2.1)
with periodic boundary conditions if the modes {ϕ1, . . . , ϕm} are determining for the
equation (2.12).

Similarly to (2.6) we write

∂tϕ+ J(∆−1ϕ, ϕ)− ν∆ϕ = rot f(t),

∂tψ + J(∆−1ψ, ψ)− ν∆ψ = rot g(t).
(2.13)

Setting ω = ϕ− ψ and H(t) = rot f(t)− rot g(t) we obtain for ω the equation

∂tω − ν∆ω + J(∆−1ϕ, ω) + J(∆−1ω, ϕ)− J(∆−1ω, ω) = H. (2.14)

As before, we write ω = p + q, where p = Pmω and qm = Qmω and where Pm is the
orthogonal projection Pm : L2(Ω) → Span(ϕ1, . . . , ϕm). Taking the scalar product with q
we obtain

1

2
∂t‖q‖2 + ν‖∇ q‖2 + (J(∆−1q, ϕ), q)

= (H, q)− (J(∆−1ϕ, p), q)− (J(∆−1p, ϕ), q) + (J(∆−1p, p), q) + (J(∆−1q, p), q) =: β(t).

As before, all the terms on the right-hand side containing p can be absorbed in β(t) in
Lemma 2.1. Next we have

|(J(∆−1q, ϕ), q)| ≤
∫

|∇∆−1q||∇ϕ| |q| dx ≤ ‖∇∆−1q‖L4
‖∇ϕ‖‖q‖L4

≤ cL(γ)
2‖∇∆−1q‖1/2‖q‖‖∇ q‖1/2‖∇ϕ‖ ≤ λ−1/2

m cL(γ)
2‖q‖‖∇ϕ‖‖∇ q‖,

where we used the Ladyzhenskaya inequality (see, for instance, [10], [30], [37])

‖ϕ‖L4
≤ cL(γ)‖ϕ‖1/2‖∇ϕ‖1/2, ‖∇ϕ‖L4

≤ cL(γ)‖∇ϕ‖1/2‖∆ϕ‖1/2.
We arrive at the same estimate if we use the integral identity

(J(f, g), h) = (J(h, f), g)

and the Agmon inequality (see Theorem 4.1)

‖ϕ‖∞ ≤ cAT(γ)‖ϕ‖1/2‖∆ϕ‖1/2.



6 A.A. ILYIN AND E.S. TITI

In fact,

|(J(∆−1q, ϕ), q)| = |(J(ϕ, q),∆−1q)| ≤ ‖∆−1q‖∞‖∇ϕ‖‖∇ q‖
≤ cAT(γ)‖∆−1q‖1/2‖q‖1/2‖∇ q‖‖∇ϕ‖ ≤ λ−1/2

m cAT(γ)‖q‖‖∇ϕ‖‖∇ q‖,
which gives

|(J(∆−1q, ϕ), q)| ≤ λ−1/2
m cJ‖q‖‖∇ϕ‖‖∇ q‖, where cJ = min(cL(γ)

2, cAT(γ)).

As before we obtain the differential inequality

∂t‖q‖2 + α(t)‖q‖2 ≤ 2β(t), where α(t) = νλm+1 − ν−1λ−1
m+1c

2
J‖∇ϕ(t)‖2.

It follows from the well-known a priory estimate on the time average of the H2-norm of a
solution u (see, for instance, [2], [10], [28], [38])

lim sup
t→∞

1

T

∫ t+T

t

‖∇ϕ(τ)‖2dτ = lim sup
t→∞

1

T

∫ t+T

t

‖Au(τ)‖2dτ ≤ f2

Tν3λ1
+

f2

ν2
(2.15)

that α satisfies conditions of Lemma 2.1 provided that T is sufficiently large and

λ2m+1 >
c2Jf

2

ν4
. (2.16)

It was shown in [26], [25] that cL(γ) ≤ (6/(γπ))1/4. In the Appendix in section 4 we will
show that cAT(γ) ≤ 1/

√
γπ. Hence we can take cJ = 1/

√
γπ. Furthermore, for γ = 1

λm ≥ (λ1/4)m, where λ1 = 4π2L−2. We obtain the following theorem.

Theorem 2.2. The first m eigenfunctions of the Stokes operator are determining for the

two-dimensional Navier–Stokes system with periodic boundary conditions if

λm+1 >

(
1

γπ

)1/2
f

ν2
. (2.17)

For a square torus (γ = 1) this condition is satisfied if

m+ 1 >
1

π3/2
G, where G =

fL2

ν2
. (2.18)

Remark 2.2. The first eigenvalues λ1, λ2, . . . of the Laplacian on the periodic domain
Ω = [0, L/γ]× [0, L] are of order γ2 when γ ≪ 1. It was shown in [25] (see Proposition 4.1)
that if m ≥ 2/γ, then

λm ≥ mγ

8
· 4π

2

L2
=
π2

2
· m|Ω| . (2.19)

Therefore condition (2.17) is satisfied if

m+ 1 >
2

γ
+

2

π2

(
1

γπ

)1/2
f |Ω|
ν2

. (2.20)

Determining nodes. Suppose that the periodic domain Ω is divided intoN equal squares
with side of length l and for each square there is a point xj , j = 1, . . . , N chosen arbitrarily
in it. For the two solutions u and v of the Navier-Stokes equations we assume that

η(w(t)) = max
j=1,...,N

|w(t, xj)| → 0 as t→ ∞, where w = u− v.

We take the scalar product of (2.14) and ω:

∂t‖ω‖2 + 2ν‖∇ω‖2 = β(t)− 2(J(∆−1ω, ϕ), ω), where β(t) = 2(H,ω).
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For the nonlinear term using inequalities (4.14), (4.17) and Young’s inequality we have

2|(J(∆−1ω, ϕ), ω)| ≤ 2‖∇∆−1ω‖∞‖∇ϕ‖‖ω‖ ≤ 2cAT(γ)‖∇∆−1ω‖1/2‖∇ω‖1/2‖ω‖‖∇ϕ‖ ≤
2cAT(γ)(4|Ω|)1/4η1/2(w)‖∇ω‖1/2‖ω‖‖∇ϕ‖+ 2cAT(γ)68

1/4l‖∇ω‖‖ω‖‖∇ϕ‖ ≤
β1(t) + cAT(γ)

2681/2l2ν−1‖ω‖2‖∇ϕ‖2 + ν‖∇ω‖2.

Hence

∂t‖ω‖2 + ν‖∇ω‖2 ≤ β1(t) + cAT(γ)
2681/2l2ν−1‖ω‖2‖∇ϕ‖2.

Using inequality (4.16) in the form ‖∇ω‖2 ≥ 68−1/2l−2‖ω‖2 − β2(t) to bound from below
the second term on the left-hand side we obtain

∂t‖ω‖2 + α(t)‖ω‖2 ≤ β(t),

where

α(t) = 68−1/2νl−2 − cAT(γ)
2681/2ν−1l2‖∇ϕ‖2.

Taking into account (2.15) we see that if the number of squares N = |Ω|/l2 is sufficiently
large (or, equivalently, the typical distance l between the nodes is sufficiently small), then
α satisfies conditions of Lemma 2.1 and the corresponding N nodes are determining. We
obtained the following result.

Theorem 2.3. If

N >

(
68

γπ

)1/2
f |Ω|
ν2

=

(
68

γ3π

)1/2
fL2

ν2
(2.21)

equal squares tile Ω = [0, L/γ]×[0, L], then N nodes (chosen arbitrarily one in each square)
are determining for the space periodic Navier–Stokes system in Ω.

Remark 2.3. The estimates for determining modes and nodes of Theorems 2.2 and 2.3
were obtained for γ = 1 in [28].

3. Determining modes and nodes for damped Navier–Stokes equations

In this section we consider the damped-driven Navier–Stokes system having important
applications in geophysical hydrodynamics [11], [33]

∂tu+

2∑

i=1

ui∂iu = ν∆ u− µu−∇ p+ f,

div u = 0, u(0) = u0.

(3.1)

Periodic boundary conditions. We first consider this system on the torus x ∈ Ω =
[0, L/γ] × [0, L], with space periodic boundary conditions. The right-hand side f = f(t)
satisfies the condition

lim sup
t→∞

‖ rot f(t)‖∞ =: F∞ <∞. (3.2)

Lemma 3.1. The following bound holds for u(t):

lim sup
t→∞

‖ rotu(t)‖∞ ≤ F∞

µ
. (3.3)
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Proof. We use the vorticity formulation of the system (3.1)

∂tϕ+ J(∆−1ϕ, ϕ)− ν∆ϕ+ µϕ = rot f (3.4)

and take the scalar product with ϕ2k−1, where k ≥ 1 is integer, and use the identity
(J(ψ, ϕ), ϕ2k−1) = (2k)−1

∫
J(ψ, ϕ2k)dx = (2k)−1

∫
div(ϕ2k∇⊥ψ)dx = 0. We obtain

‖ϕ‖2k−1
L2k

∂t‖ϕ‖L2k
+ (2k − 1)ν

∫
|∇ϕ|2ϕ2k−2dx+ µ‖ϕ‖2kL2k

=

= (rot f(t), ϕ2k−1) ≤ ‖ rot f(t)‖L2k
‖ϕ‖2k−1

L2k
.

Hence, by Gronwall’s inequality

‖ϕ(t+ τ)‖L2k
≤ ‖ϕ(τ)‖L2k

e−µt + µ−1 sup
s∈[τ,∞)

‖ rot f(s)‖L2k
(1− e−µt),

and passing to the limit as k → ∞ we find

‖ϕ(t+ τ)‖∞ ≤ ‖ϕ(τ)‖∞e−µt + µ−1 sup
s∈[τ,∞)

‖ rot f(s)‖∞(1− e−µt).

Now, we let t→ ∞ to obtain

lim sup
t→∞

‖ϕ(t)‖∞ ≤ F∞

µ
.

�

We consider the systems (3.1) with right-hand sides f and g such that

lim
t→∞

‖ rot(f(t)− g(t))‖∞ = 0.

Similarly to (2.13) for ω = ϕ− ψ we obtain the equation

∂tω − ν∆ω + µω + J(∆−1ϕ, ω) + J(∆−1ω, ϕ)− J(∆−1ω, ω) = H, (3.5)

where H(t) = rot f(t)− rot g(t).

Determining modes. We take the scalar product of (3.5) with q = Qmω:

∂t‖q‖2 + 2ν‖∇ q‖2 + 2µ‖q‖2 ≤ 2β(t) + 2|(J(∆−1q, ϕ), q)| ≤
2β(t) + 2‖∇q‖‖∇∆−1q‖‖ϕ‖∞ ≤ 2β(t) + ν‖∇ q‖2 + ν−1λ−1

m+1‖q‖2‖ϕ‖2∞,
where we used Young’s and Poincaré inequalities. Dropping the µ-term on the left-hand
side and again using the Poincaré inequality we obtain

∂t‖q‖2 + ‖q‖2(νλm+1 − ν−1λ−1
m+1‖ϕ(t)‖2∞) ≤ 2β(t).

By estimate (3.3) and Lemma 2.1 the first m modes are determining provided

λm+1 ≥
F∞

µν
. (3.6)

Using (2.19) we see that this condition is satisfied if

m+ 1 > max

{
2

γ
,

2

π2

F∞|Ω|
µν

}
. (3.7)

For a square torus λm ≥ λ1/4, λ1 = 4π2/L2, hence condition (3.6) is satisfied if

m+ 1 ≥ 1

π2

F∞L
2

µν
. (3.8)



SHARP ESTIMATES FOR THE NUMBER OF DEGREES OF FREEDOM 9

Determining nodes. Suppose that our periodic domain Ω is divided intoN equal squares
Qj with side of length l, j = 1, . . . , N and we chose arbitrarily a point xj ∈ Qj for each
j = 1, . . . , N .

For u ∈ H2
per(Ω) we set

η(u) = max
j=1,...,N

|u(xj)|. (3.9)

Suppose that η(w(t)) → 0 as t → ∞ for w(t) = u(t) − v(t), where u and w are two
solutions of (3.1).

We take the scalar product of (3.5) with ω:

1

2
∂t‖ω‖2 + ν‖∇ω‖2 + µ‖ω‖2 = (H,ω)− (J(∆−1ω, ϕ), ω).

We estimate the nonlinear term by means of inequality (4.17)

|(J(∆−1ω, ϕ), ω)| = |(J(ω,∆−1ω), ϕ)| ≤ ‖∇ω‖‖∇∆−1ω‖‖ϕ‖∞ ≤
2|Ω|1/2η(w)‖∇ω‖‖ϕ‖∞ +

√
68|Ω|N−1‖∇ω‖2‖ϕ‖∞ .

As a result we obtain
1

2
∂t‖ω‖2 + α(t)‖∇ω‖2 ≤ β(t),

where

α(t) = ν −
√
68|Ω|N−1‖ϕ(t)‖∞, β(t) = (H(t), ω) + 2|Ω|1/2η(w(t))‖∇ω‖‖ϕ(t)‖∞ .

As before β(t) → 0 as t→ ∞, while in view of (3.3) α(t) ≥ const > 0 for all t large enough
provided that N >

√
68F∞|Ω|/(µν) .

We combine the results so obtained above in the following theorem.

Theorem 3.1. The first m modes of the Stokes operator are determining for the Navier–

Stokes system with damping (3.1) if

m+ 1 >
2

γ
+

2

π2

F∞|Ω|
µν

. (3.10)

If Ω is tiled by N equal squares, then any collection of nodes (one in each square) is

determining if

N >
√
68

F∞|Ω|
µν

. (3.11)

Remark 3.1. We observe that estimates for the number of the determining modes and
nodes (3.7) and (3.11) depend linearly on the measure of the periodic domain |Ω| and
depend on the aspect ratio γ of the torus only via |Ω| = L2/γ. Furthermore, the charac-
teristic microscopic length l of the lattice of the determining nodes satisfies the following
Ω-independent estimate from above

l < 68−1/4

(
µν

F∞

)1/2

. (3.12)

Remark 3.2. It was shown in [26] that the fractal dimension of the global attractor of the
autonomous system (3.1) on the torus [0, L]2 satisfies the estimate

dimF A ≤
(

6

π3

)1/2 ‖ rot f‖L
µν

. (3.13)
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It was also shown that for the Kolmogorov forcing of the form

f = fs =

{
f1 = A(µ, ν) sin s2πx2

L
,

f2 = 0,
(3.14)

one has a lower bound

dimF A ≥ const
‖ rot f‖L

µν
(3.15)

in the limit ν → 0+ (accordingly, s = (µL2/ν)1/2 → ∞).
Since ‖ rot f‖ ≤ ‖ rot f‖∞L, it follows that

dimF A ≤
(

6

π3

)1/2 ‖ rot f‖∞L2

µν
, (3.16)

and since ‖ rot fs‖ = (L/
√
2)‖ rot fs‖∞, it follows from (3.15) that the estimate (3.16) is

also sharp with respect to the dimensionless number ‖ rot f‖∞L2

µν
.

Hence the bounds (3.8) and (3.11) for the number of determining modes and nodes for
the damped Navier–Stokes system are of the same order as the fractal dimension of the
global attractor.

We point out that in general and for the Navier–Stokes equations there is a gap between
the number of the determining modes and nodes and the dimension of the global attractor.
However, the works [14], [21] and [17] indicate that one can perturb the points or the
projections to obtain the number of nodes and the rank of the projections comparable
with the dimension of the global attractor. Here, however, we show that there is no need
for perturbation and that the usual projections Pm and any choice of points will do. It
will therefore be interesting to understand the role of damping term here in terms of the
generic results of [14], [21], [17] which rely heavily on the Mãné embedding theorem.

Stress-free boundary conditions. Let Ω ⊂ R
2 be a bounded simply connected domain

with C2 boundary. Let n be the outward unit normal vector. We consider the system (3.1)
supplemented with the so-called stress-free boundary conditions

u · n|∂Ω = 0, rotu|∂Ω = 0. (3.17)

Then any smooth vector field u, div u = 0, satisfying (3.17) has a unique single valued
stream function ψ, u = ∇⊥ψ with ψ|∂Ω = 0 and ∆ψ|∂Ω = rotu|∂Ω = 0. Therefore, the
vorticity formulation for the system (3.1), (3.17) is the equation (3.4) with zero boundary
condition both for ϕ and ψ:

∂tϕ+ J(ψ, ϕ)− ν∆ϕ + µϕ = rot f,

∆ψ = ϕ,

ϕ|∂Ω = ψ|∂Ω = 0.

(3.18)

For the Stokes eigenvalue problem with boundary conditions (3.17)

−∆wk +∇ pk = λkwk, divwk = 0,

wk · n|∂Ω = 0, rotwk|∂Ω = 0,
(3.19)

we have (as in the case of periodic boundary conditions) that {λk}∞k=1 are the eigenvalues

of the scalar Dirichlet problem −∆ϕk = λkϕk, ϕk|∂Ω = 0 and wk = λ
−1/2
k ∇⊥ϕk. Hence we

can use the Li–Yau lower bound [31] for the eigenvalues λk

λk ≥
2πk

|Ω| . (3.20)
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Lemma 3.1 and the subsequent argument for estimates of the determining modes still hold
and we obtain that condition (3.6) is sufficient for the first m modes to be determining.
In view of (3.20) we obtain the following result.

Theorem 3.2. The first m modes of the Stokes operator are determining for the Navier–

Stokes system with damping (3.1) with stress-free boundary conditions (3.17) if

m+ 1 >
1

2π

F∞|Ω|
µν

.

Remark 3.3. As in the space-periodic case this estimate agrees with the estimate for the
fractal dimension of the attractor [26], but, unlike the latter, does not involve constants
depending on the smoothness and shape of the boundary.

Remark 3.4. A similar result holds for the determining nodes and other determining func-
tionals and projections (see [8], [9]) if we use extension operators mapping Sobolev spaces
defined on Ω to the spaces defined on corresponding periodic rectangular domain contain-
ing Ω. In this case, however, the estimate involves a constant depending on the smoothness
and shape of the boundary.

4. Appendix. Proof of auxiliary inequalities

The embedding of the Sobolev space H l(M) with norm ‖u‖2Hl = ‖u‖2 + ‖(−∆)l/2u‖2
into the space of bounded continuous functions C(M), where dimM = n and l > n/2,
can be written as a multiplicative inequality

‖u‖∞ ≤ cM(l)‖u‖θ‖(−∆)l/2u‖1−θ, where θ = (2l − n)/2l. (4.1)

Inequalities of this type are sometimes called the Agmon inequalities (see [1]). The best
constant cM(l) forM = R in this inequality was found in [36] (the results of [36] can easily
be generalized to the case when M = R

n). Sharp constants in inequalities for periodic
functions and functions defined on the sphere were found in [24]. Following [24] we consider
below the case of a two-dimensional torus.

The constant in inequality (4.1) on a two-dimensional torus clearly depends only on the
aspect ratio γ of the torus. We first consider the case of a square torus γ = 1, and then
without loss of generality we assume that Ω = T2 = [0, 2π]2.

We consider the negative Laplacian −∆ in H = L2(T
2)∩{ϕ,

∫
ϕdx = 0} and order its

eigenvalues according to magnitude and multiplicity:

1 = λ1 ≤ λ2 ≤ . . . , {λj, j = 1, . . . } = {k2 = k21 + k22, k = (k1, k2) ∈ Z
2
0}, (4.2)

where Z
2
0 = Z

2 \ {0}. The corresponding basis of orthonormal eigenfunctions wj(x),
−∆wj = λjwj , is the basis of trigonometric functions

⋃

j∈N

wj(x) =
⋃

k∈Z2
+

{
(
√
2π)−1 sin kx, (

√
2π)−1 cos kx

}
,

Z
2
+ = {k ∈ Z

2
0, k1 ≥ 0, k2 ≥ 0} ∪ {k ∈ Z

2
0, k1 ≥ 1, k2 ≤ 0}.

(4.3)

Similarly to (4.2), we write

1 = Λ1 ≤ Λ2 ≤ . . . , {Λj, j = 1, . . . } = {k2, k ∈ Z
2
+} (4.4)

and observe that
∞⋃

j=1

{λj} =

∞⋃

l=1

{Λl,Λl}. (4.5)
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Hence, for j ≥ 1, we have Λj = λ2j = λ2j−1 and, corresponding to each Λ = Λj, there are

two eigenfunctions uj(x) = (
√
2π)−1 sin kx and vj(x) = (

√
2π)−1 cos kx for some uniquely

defined kj = (k1(j), k2(j)) with k
2
j = Λj . We obviously have

uj(x)
2 + vj(x)

2 =
1

2π2
. (4.6)

Theorem 4.1. The sharp constant cAT in the inequality

‖ϕ‖∞ ≤ cAT‖ϕ‖1/2‖∆ϕ‖1/2, ϕ ∈ H ∩H2
per(T

2), (4.7)

is given by

c2AT =
1

π2
sup
µ>0

µ

∞∑

n=1

1

µ2 + Λ2
n

(4.8)

and, in particular,

c2AT <
1

π
. (4.9)

Proof. Writing ϕ in terms of the Fourier series ϕ(x) =
∑∞

n=1 cnwn(x), for an arbitrary
point x0 and a positive parameter ν we have

ϕ(x0)
2 =

( ∞∑

n=1

cnwn(x0)

)2

≤
∞∑

n=1

wn(x0)
2

1 + νλ2n

∞∑

n=1

c2n(1 + νλ2n) =

1

2π2

∞∑

n=1

1

1 + νΛ2
n

·
(
‖ϕ‖2 + ν‖∆ϕ‖2

)
,

(4.10)

where we used (4.5), (4.6). Since the right-hand side of (4.10) is independent of x0, it
follows that

‖ϕ‖2∞ ≤ 1

2π2

∞∑

n=1

1

1 + νΛ2
n

·
(
‖ϕ‖2 + ν‖∆ϕ‖2

)
. (4.11)

Let x0 be fixed. Then there is equality in (4.10), (4.11) if and only if

cn = (1 + νλ2n)wn(x0),

that is, if

ϕ(x) =
∞∑

n=1

wn(x)wn(x0)

1 + νλ2n
=

1

2π2

∞∑

n=1

cos(kn(x− x0))

1 + νΛ2
n

. (4.12)

We now set ν = ν∗ = ‖ϕ‖2/‖∆ϕ‖2. Then ‖ϕ‖2+ν∗‖∆ϕ‖2 = 2ν
1/2
∗ ‖ϕ‖‖∆ϕ‖ and therefore

‖ϕ‖2∞ ≤ 1

π2
ν1/2∗

∞∑

n=1

1

1 + ν∗Λ2
n

· ‖ϕ‖‖∆ϕ‖ ≤ 1

π2
sup
ν>0

ν1/2
∞∑

n=1

1

1 + νΛ2
n

· ‖ϕ‖‖∆ϕ‖,

which shows (with ν = µ−2) that c2AT is less than or equal to the right-hand side of (4.8).
Suppose now that the supremum of the function H(ν) = ν1/2

∑∞
n=1(1 + νΛ2

n)
−1 is

attained at a finite point ν∗, 0 < ν∗ <∞. Then

1

2

∞∑

n=1

1

1 + ν∗Λ2
n

= ν∗

∞∑

n=1

Λ2
n

(1 + ν∗Λ2
n)

2
,

1

2

∞∑

n=1

1

1 + ν∗Λ2
n

=
∞∑

n=1

1

(1 + ν∗Λ2
n)

2
. (4.13)

In fact, the first equality follows from H ′(ν∗) = 0. Summing the the first and the second
equalities we obtain a valid identity, hence the second equality also holds.
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Next we set ν = ν∗ in (4.12) and x0 = 0. Then for the corresponding ϕ = ϕ∗ we have

‖ϕ∗‖2 =
∞∑

n=1

1

(1 + ν∗Λ2
n)

2
, ‖∆ϕ∗‖2 =

∞∑

n=1

Λ2
n

(1 + ν∗Λ2
n)

2
.

Then it follows from (4.13) that ‖ϕ∗‖2/‖∆ϕ∗‖2 = ν∗. Hence

‖ϕ∗‖2∞ =
1

π2
H(ν∗)‖ϕ∗‖‖∆ϕ∗‖,

which proves the theorem in the case when 0 < ν∗ <∞.
Suppose now that supremum is attained as ν → 0 (observe that H(ν) → 0 as ν → ∞).

We consider inequality (4.7) on the finite dimensional space TN = Span{sin kx, cos kx},
k2 ≤ N . The corresponding sharp constant cAT(N) is given by the formula

cAT(N)2 =
1

π2
max
ν>0

HN(ν), HN(ν) = ν1/2
∑

Λn≤N

1

1 + νλ2n
.

The maximum is attained since HN(0) = 0 and HN(ν) → 0 as ν → ∞. Hence there
exists an extremal function ϕN

∗ ∈ TN . Since the spaces TN are dense in the Sobolev space
H2

per(T
2), it follows that

cAT = lim
N→∞

cAT(N), and c2AT =
1

π2
sup
ν>0

ν1/2
∞∑

n=1

1

1 + νΛ2
n

.

It remains to prove (4.9). Using the lower bound Λn ≥ n/2 (see [26]) we have

ν1/2
∞∑

n=1

1

1 + νΛ2
n

=
1

µ

∞∑

n=1

1

1 + (Λn/µ)2
<

1

µ

∞∑

n=1

1

1 + (n/(2µ))2
<

∫ ∞

0

f(x) dx = π,

where f(x) = 1/(1 + (x/2)2) is monotone decreasing and the third term in the above
formula is the Riemann sum with step 1/µ for the corresponding integral. �

Remark 4.1. In the vector case u ∈ H2
per(T

2)2 we have the same constant in the corre-
sponding inequality

‖u‖∞ ≤ cAT‖u‖1/2‖∆ u‖1/2. (4.14)

In fact, for u = {u1, u2} we have

‖u‖2∞ ≤ ‖u1‖2∞ + ‖u2‖2∞ ≤ c2AT(‖u1‖‖∆ u1‖+ ‖u2‖‖∆ u2‖) ≤
c2AT
2

(ε(‖u1‖2 + ‖u2‖2) + ε−1(‖∆ u1‖2 + ‖∆ u2‖2)) = c2AT
2

(ε‖u‖2 + ε−1‖∆ u‖2)

and minimizing with respect to ε we obtain inequality (4.14).

Corollary 4.1. The constant cAT(γ) on the torus Ω = [0, L/γ] × [0, L], γ ≤ 1, satisfies
the estimate cAT(γ) ≤ cAT/

√
γ ≤ 1/

√
γπ.

Proof. We assume for simplicity that 1/γ is integer. Given a function ϕ ∈ H2
per(Ω) we

extent it by periodicity in x2-direction 1/γ times and denote the function so obtained

by ϕ̃. Then ϕ̃ ∈ H2
per(Ω̃), where Ω̃ = [0, L/γ]2 is a square-shaped periodic domain so that

‖ϕ̃‖L∞(Ω̃) ≤ cAT‖ϕ̃‖1/2L2(Ω̃)
‖∆ ϕ̃‖1/2

L2(Ω̃)
. Since ‖ϕ‖L∞(Ω) = ‖ϕ̃‖L∞(Ω̃), ‖ϕ‖2L2(Ω) = γ‖ϕ̃‖2

L2(Ω̃)
,

and ‖∆ϕ‖2L2(Ω) = γ‖∆ ϕ̃‖2
L2(Ω̃)

, the corollary is proved. �

We now prove the remaining two inequalities used for estimates of the number of the
determining nodes.
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Lemma 4.1. (see [12], [28]). Let Ω = [0, L1] × [0, L2] be divided into N equal squares

Qj with side l and let xj ∈ Qj for j = 1, . . . , N . Then for u ∈ H2
per(Ω) the following

inequalities hold:

‖u‖2 ≤ 4l2N η2(u) + 68l4‖∆ u‖2, (4.15)

‖∇ u‖2 ≤ 2 · 68−1/2Nη2(u) + 681/2l2‖∆ u‖2, (4.16)

where η(u) = maxj=1,...,N |u(xj)|.
Proof. We consider the scalar case and prove the first inequality. Let u ∈ H2(Q), where
Q = [0, l]2. For any two points x = (x, y) and x0 = (x0, y0) in Q we have

u(x)− u(x0) =

∫ x

x0

ux(ξ, y)dξ +

∫ y

y0

uy(x0, η)dη.

Hence

(u(x)− u(x0))2 ≤ 2l

∫ l

0

ux(ξ, y)
2dξ + 2l

∫ l

0

uy(x0, η)
2dη,

which gives after integration over Q with respect to x, y that

‖u− u(x0)‖2L2(Q) ≤ 2l2‖ux‖2L2(Q) + 2l3
∫ l

0

uy(x0, η)
2dη.

For the second term on the right we have

uy(x0, η)
2 ≤ uy(x, η)

2 + 2

∫ l

0

|uy(ξ, η||uyx(ξ, η)|dξ,

hence, integrating with respect to x and η over Q we find

l

∫ l

0

uy(x0, η)
2dη ≤ ‖uy‖2L2(Q)+2l

∫ l

0

∫ l

0

|uy(ξ, η||uyx(ξ, η)|dξdη ≤ 2‖uy‖2L2(Q)+l
2‖uxy‖2L2(Q).

Therefore

‖u− u(x0)‖2L2(Q) ≤ 4l2‖∇u‖2L2(Q) + 2l4‖uxy‖2L2(Q).

Temporarily denoting the right-side by K and using Young’s inequality we have

‖u‖2L2(Q) ≤K + 2u(x0)

∫

Q

u(x, y)dxdy − l2u(x0)2 ≤

K + 2u(x0) l‖u‖L2(Q) − l2u(x0)2 ≤ K + l2u(x0)2 +
1

2
‖u‖2L2(Q).

Hence

‖u‖2L2(Q) − 2l2u(x0)2 ≤ 8l2‖∇u‖2L2(Q) + 4l4‖uxy‖2L2(Q).

We now divide Ω = [0, L1]× [0, L2] into N equal squares of side l = (|Ω|/N)1/2 and choose
a point xj in each square Qj , j = 1, . . . , N . Summing over j we obtain

‖u‖2 − 2l2
N∑

j=1

u(xj)2 ≤ 8l2‖∇u‖2 + 2l4‖∆ u‖2,

where we used the periodic boundary conditions so that ‖uxy‖2 =
∫
uxxuyydxdy ≤ 1

2
‖∆ u‖2.

Next we use the interpolation inequality

‖∇u‖2 ≤ ‖u‖‖∆ u‖ ≤ 1

16l2
‖u‖2 + 4l2‖∆ u‖2
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and finally obtain

‖u‖2 ≤ 4l2
N∑

j=1

u(xj)2 + 68l4‖∆ u‖2 ≤ 4l2N η2(u) + 68l4‖∆ u‖2,

which proves inequality (4.15) for the scalar case. For the vector case we apply the above
inequality for each component and add up the results.

Finally, if u ∈ H2
per(Ω), div u = 0, and rot u = ω, then taking into account that ‖u‖ =

‖∇∆−1ω‖ and ‖∇ω‖ = ‖∆ u‖ we can write the previous inequality in the form

‖∇∆−1ω‖2 ≤ 4l2Nη2(u) + 68l4‖∇ω‖2 = 4|Ω|η2(u) + 68|Ω|2N−2‖∇ω‖2. (4.17)

For the proof of (4.16) we have

‖∇ u‖2 ≤ ‖u‖‖∆ u‖ ≤ ε‖u‖2 + (4ε)−1‖∆ u‖2 ≤ 4Nl2εη2(u) + (68l4ε+ (4ε)−1)‖∆ u‖2,
which gives (4.16) by setting ε−1 = 2 · 681/2l2. �
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