Skip to main content

Advertisement

Log in

On the Relation between Energy-Conserving Low-Order Models and a System of Coupled Generalized Volterra Gyrostats with Nonlinear Feedback

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper we first prove the equivalence between the system of coupled Volterra gyrostats and a special class of energy-conserving low-order models. We then extend the definition of the classical Volterra gyrostat to include nonlinear feedback, resulting in a class of generalized Volterra gyrostats. Using this new class of gyrostats as a basic building block, we present an algorithm for converting a general class of energy-conserving low-order models that routinely arise in fluid dynamics, turbulence, and atmospheric sciences into a system of coupled generalized Volterra gyrostats with nonlinear feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achatz, V., Schmitz, G., Greisinger, K.M.: Principal interaction patterns in baroclinic wave life cycles. J. Atmos. Sci. 52, 3201–3213 (1995)

    Article  Google Scholar 

  • Bohr, T., Jensen, M.H., Paladin, G., Vulpiani, A.: Dynamical Systems Approach to Turbulence. Cambridge University Press, Cambridge (1998), 350 pp.

    MATH  Google Scholar 

  • Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domain. Springer, New York (2006), 563 pp.

    Google Scholar 

  • Charney, J.G., Devore, J.G.: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci. 36, 1205–1216 (1979)

    Article  Google Scholar 

  • Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2004), 1180 pp.

    MATH  Google Scholar 

  • Crommelin, D.T., Majda, A.J.: Strategies for model reduction: Comparing different optimal bases. J. Atmos. Sci. 61, 2206–2217 (2004)

    Article  MathSciNet  Google Scholar 

  • De Swart, H.E.: Low-order spectral models of the atmospheric circulation—a survey. Acta Appl. Math. 11, 49–96 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • DelSole: Optimally persistent patterns in time varying fields. J. Atmos. Sci. 58, 1341–1356 (2001)

    Article  MathSciNet  Google Scholar 

  • Farell, B.F., Ioannou, P.J.: Accurate low-dimensional approximation of the linear dynamics of fluid flow. J. Atmos. Sci. 58, 2771–2789 (2001)

    Article  Google Scholar 

  • Friedrich, R., Haken, H.: Nonequilibrium phase transition in a system with chaotic dynamics. The ABCDE model. Phys. Lett. A 164, 299–304 (1992)

    Article  Google Scholar 

  • Gluhovsky, A.: Nonlinear systems that are superpositions of gyrostats. Sov. Phys. Dokl. 27, 823–825 (1982)

    Google Scholar 

  • Gluhovsky, A.: Energy conserving and Hamiltonian low-order models in geophysical fluid dynamics. Nonlinear Process. Geophys. 13, 125–133 (2006)

    Google Scholar 

  • Gluhovsky, A., Tong, C.: The structure of energy conserving low-order models. Phys. Fluids 11, 334–343 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Gluhovsky, A., Tong, C., Agee, E.: Selection of modes in convective low-order models. J. Atmos. Sci. 59, 1383–1393 (2002)

    Article  MathSciNet  Google Scholar 

  • Haken, H.: Analogy between higher instabilities in fluids and lasers. Phys. Lett. A 53, 77–79 (1975)

    Article  Google Scholar 

  • Hemati, N.: Strange attractors in brushless DC motors. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 41, 40–45 (1994)

    Article  Google Scholar 

  • Hermiz, K.B., Guzdar, P.N., Finn, J.M.: Improved low-order model for shear flow driven by Rayleigh-Bernard convection. Phys. Rev. E 51, 325–331 (1995)

    Article  Google Scholar 

  • Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996), 420 pp.

    MATH  Google Scholar 

  • Howard, L.N., Krishnamurti, R.: Large-scale flow in turbulent convection: a mathematical model. J. Fluid Mech. 170, 385–410 (1986)

    Article  MATH  Google Scholar 

  • Knobloch, E.: Chaos in segmented disc dynamo. Phys. Lett. A 82, 439–440 (1981)

    Article  MathSciNet  Google Scholar 

  • Krishnamurti, T.N., Bedi, H.S., Hardiker, V.M., Ramaswarny, L.: An Introduction to Global Spectral Modeling, 2nd edn. Springer, New York (2006), 317 pp.

    Google Scholar 

  • Kundu, P.K.: Fluid Mechanics. Academic Press, New York (1990), 638 pp.

    MATH  Google Scholar 

  • Kwasniok, F.: The reduction of complex dynamical systems using principal interaction patterns. Physica D 92, 28–60 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Kwasniok, F.: Low-dimensional models of the Ginsburg-Landau equation. SIAM J. Appl. Math. 61, 2063–2079 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Kwasniok, F.: Empirical low-order models of barotropic flow. J. Atmos. Sci. 61, 235–245 (2004)

    Article  Google Scholar 

  • Lakshmivarahan, S., Wang, Y.: On the structure of energy conserving low-order models and their relation to Volterra gyrostat. Nonlinear Anal. Ser. B: Real World Appl. (2007, to appear)

  • Lakshmivarahan, S., Baldwin, M.E., Zheng, T.: Further analysis of Lorenz’s maximum simplification equation. J. Atmos. Sci. 63, 2673–2699 (2006)

    Article  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Mechanics. Addison-Wesley, Reading (1960)

    MATH  Google Scholar 

  • Legras, B., Ghil, M.: Persistent anomalies, blocking and variations in atmospheric predictability. J. Atmos. Sci. 42, 433–471 (1985)

    Article  Google Scholar 

  • Leipnik, R.B., Newton, T.A.: Double strange attractors in rigid body motion with linear feedback control. Phys. Lett. A 86, 63–67 (1981)

    Article  MathSciNet  Google Scholar 

  • Li, Q., Wang, H.: Has chaos implied by macrovariable equations been justified. Phys. Rev. E 58, R1191–1194 (1998)

    Article  Google Scholar 

  • Lorenz, E.N.: Maximum simplification of the dynamic equations. Tellus 12, 243–254 (1960)

    Google Scholar 

  • Lorenz, E.N.: Simplified dynamic equations applied to the rotating-basin experiments. J. Atmos. Sci. 19, 39–51 (1962)

    Article  Google Scholar 

  • Lorenz, E.N.: Deterministic nonperiodic flows. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  • Lorenz, E.N.: Low-order models of atmospheric circulation. J. Meteorol. Soc. Jpn. 60, 255–267 (1982)

    Google Scholar 

  • Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems. Springer, New York (1999), 582 pp.

    MATH  Google Scholar 

  • Obukhov, A.M.: On the problem of nonlinear interactions in fluid dynamics. Gerlands Beitr. Geophysics 82, 282–290 (1973)

    Google Scholar 

  • Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1987), 710 pp.

    MATH  Google Scholar 

  • Peña, M., Kalnay, E.: Separating fast and slow modes in coupled chaotic systems. Nonlinear Process. Geophys. 11, 319–327 (2004)

    Google Scholar 

  • Platzman, G.W.: An exact integral of complete spectral equation for unsteady one dimensional flow. Tellus 16, 422–431 (1964)

    Article  Google Scholar 

  • Rega, G., Troger, H.: Dimension reduction of dynamical systems: Methods, models, application, special issue on dimension reduction of dynamical systems. Nonlinear Dyn. 41, 1–15 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Rinne, J., Karhilla, V.: A spectral barotropic model in horizontal empirical orthogonal functions. Q. J. Roy. Meteorol. Soc. 101, 365–382 (1975)

    Article  Google Scholar 

  • Roebber, P.J.: Climate variability in a low-order coupled atmosphere-ocean model. Tellus A 47, 473–494 (1995)

    Article  Google Scholar 

  • Saltzman, B.: Finite amplitude free convection as an initial value problem, I. J. Atmos. Sci. 19, 329–341 (1962)

    Article  Google Scholar 

  • Silberman, I.: Planetary waves in the atmosphere. J. Meteorol. 11, 27–34 (1954)

    Google Scholar 

  • Smith, T.R., Moehlis, J., Holmes, P.: Low-dimensional modeling of turbulence using proper orthogonal decomposition: A tutorial. Special issue on dimension reduction of dynamical systems. Nonlinear Dyn. 41, 275–307 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Starostin, E.L.: Three-dimensional shapes of looped DNA. Meccanica 31, 235–271 (1996)

    Article  MATH  Google Scholar 

  • Thiffeault, J.L., Horton, W.: Energy-conserving truncations for convection with shear flow. Phys. Fluids 8, 1715–1719 (1996)

    Article  MATH  Google Scholar 

  • Tong, C., Gluhovsky, A.: Energy-conserving low-order models for three-dimensional Rayleigh–Bénard convection. Phys. Rev. E 65, 04306-1–04396-11 (2002)

    Article  MathSciNet  Google Scholar 

  • Wang, Y., Lakshmivarahan, S.: Analysis of bifurcation and stability of equilibria in energy conserving low-order models: Volterra gyrostat. In: SIAM Conference on the Applications of the Dynamical Systems, Snowbird, Utah, USA, 28 May–1 June 2007

  • Wittenberg, J.: Dynamics of Systems of Rigid Bodies. B.G. Teubner, Stuttgar (1977), 224 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lakshmivarahan.

Additional information

Communicated by P. Holmes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakshmivarahan, S., Wang, Y. On the Relation between Energy-Conserving Low-Order Models and a System of Coupled Generalized Volterra Gyrostats with Nonlinear Feedback. J Nonlinear Sci 18, 75–97 (2008). https://doi.org/10.1007/s00332-007-9006-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-007-9006-6

Keywords

AMS Subject Classifications

Navigation