Skip to main content
Log in

On the Geometric Structure of Hamiltonian Systems with Ports

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this article the geometric structure of Hamiltonian systems with ports is clarified. Particularly, it is shown that the theory of Hamiltonian systems with ports fits into the paradigm that the state space of a mechanical system should be modeled by a manifold M endowed with a(n almost) Dirac structure in a Courant algebroid.

Here, the Courant algebroid is TM TM * E E *, where E is a vector bundle over M endowed with a flat covariant derivative , and the bracket is

$$\begin{array}{l}\bigl[(X,\alpha,\lambda_{\mathrm{out}},\lambda_{\mathrm{in}}),(X',\alpha',\lambda_{\mathrm{out}}',\lambda_{\mathrm{in}}')\bigr]\\\noalign{\vspace{5pt}}\quad :=\bigl([X,X'],L_X\alpha'-i_{X'}d\alpha +(\nabla \lambda_{\mathrm{in}})(\lambda_{\mathrm{out}}')+\lambda_{\mathrm{in}}'(\nabla \lambda_{\mathrm{out}}),\\\noalign{\vspace{5pt}}\phantom{\quad \bigl(:=}\nabla_X\lambda_{\mathrm{out}}'-\nabla_{X'}\lambda_{\mathrm{out}},\nabla_X\lambda_{\mathrm{in}}'-\nabla_{X'}\lambda_{\mathrm{in}}\bigr).\end{array}$$

Further, the integrability of almost Dirac structures DTM TM * E E * given by the graph of \(\bigl(\fontsize{7.6}{7.6}\selectfont \begin{array}{c@{\ }c}\omega &-(A\circ \omega)^{*}\\A\circ \omega &0\end{array}\bigr)\) for a two-form ω on M or the cograph of \(\bigl(\fontsize{7.6}{7.6}\selectfont \begin{array}{c@{\ }c}\pi &-A^{*}\\A&0\end{array}\bigr)\) for a bivector field π on M is discussed, where the bundle map A:TM *E models the port.

Moreover, conditions are obtained to guarantee the integrability of almost Dirac structures induced by closing ports or by power-conserving interconnections. These conditions are formulated in terms of the covariant Schouten bracket defined in the Appendix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Blankenstein, G., van der Schaft, A.J.: Closedness of interconnected Dirac structures. In: Preprints 4th NOLCOS’98, pp. 381–386. Elsevier, Amsterdam (1998)

    Google Scholar 

  • Bloch, A.M.: Nonholonomic Mechanics and Control. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  • Bursztyn, H., Crainic, M., Severa, P.: Quasi-Poisson structures as Dirac structures. Trav. Math. XVI, 41–52 (2005)

    MathSciNet  Google Scholar 

  • Cervera, J., van der Schaft, A.J., Banos, A.: Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica 43, 212–225 (2007)

    Article  MATH  Google Scholar 

  • Courant, T.: Dirac manifolds. Trans. Am. Math. Soc. 319, 631–661 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • Courant, T., Weinstein, A.: Beyond Poisson structures, Séminaire Sud-Rhodanien de Géométrie VIII. Trav. En Cours 27, 39–49 (1988)

    MathSciNet  Google Scholar 

  • Dalsmo, M., van der Schaft, A.: On representations and integrability of mathematical structures in energy-conserving physical systems. SIAM J. Control Optim. 37, 54–91 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Dorfman, I.: Dirac Structures and Integrability of Nonlinear Evolution Equations. Wiley, New York (1993)

    Google Scholar 

  • Kosmann-Schwarzbach, Y.: Quasi, twisted, and all that…in Poisson geometry and Lie algebroid theory. In: Marsden, J.E., Ratiu, T. (eds.) The Breadth of Symplectic and Poisson Geometry. Progr. Math., vol. 232, pp. 363–389. Birkhäuser, Basel (2005)

    Chapter  Google Scholar 

  • Liu, Z., Weinstein, A., Xu, P.: Manin triples for Lie bialgebroids. J. Differ. Geom. 45, 647–574 (1997)

    MathSciNet  Google Scholar 

  • Marsden, J.E., Yoshimura, H.: Dirac structures in Lagrangian mechanics: Parts I and II. J. Geom. Phys. 57, 133–156 and 209–250 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Roytenberg, D., Courant algebroids, derived brackets, and even symplectic supermanifolds. Ph.D. thesis, University of California, Berkeley (1999)

  • Severa, P., Weinstein, A.: Poisson geometry with a 3-form background. Prog. Theor. Phys. Suppl. 144, 145–154 (2001)

    Article  MathSciNet  Google Scholar 

  • van der Schaft, A.J.: L 2-Gain and Passivity Techniques in Nonlinear Control. Springer, Berlin (2000)

    MATH  Google Scholar 

  • van der Schaft, A.J., Maschke, B.M.: On the Hamiltonian formulation of nonholonomic mechanical systems. Rep. Math. Phys. 34, 225–233 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • van der Schaft, A.J., Maschke, B.M.: The Hamiltonian formulation of energy conserving physical systems with external ports. Arch. Elektr. Übertrag. 49, 362–371 (1995)

    Google Scholar 

  • van der Schaft, A.J., Maschke, B.M.: Interconnected mechanical systems. Parts I and II. In: Modelling and Control of Mechanical Systems, pp. 1–30. Imperial College Press, London (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Merker.

Additional information

Communicated by C. Rowley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merker, J. On the Geometric Structure of Hamiltonian Systems with Ports. J Nonlinear Sci 19, 717 (2009). https://doi.org/10.1007/s00332-009-9052-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-009-9052-3

Keywords

Mathematics Subject Classification (2000)

Navigation