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Abstract

We study the effect of a magnetic field on the behaviour of a slender conducting elastic structure,

motivated by stability problems of electrodynamic space tethers. Both statical (buckling) and

dynamical (whirling) instability are considered and we also compute post-buckling configurations.

The equations used are the geometrically exact Kirchhoff equations. Magnetic buckling of a welded

rod is found to be described by a surprisingly degenerate bifurcation, which is unfolded when both

transverse anisotropy of the rod and angular velocity are considered. By solving the linearised

equations about the (quasi-) stationary solutions we find various secondary instabilities. Our

results are relevant for current designs of electrodynamic space tethers and potentially for future

applications in nano- and molecular wires.
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FIG. 1: Experimental setup for a conducting wire.

I. INTRODUCTION

A straight current-carrying wire held in tension between pole faces of a magnet is well

known to buckle into a (roughly) helical configuration at a critical current (see Figure 1). A

photograph of this phenomenon is shown in Section 10.4.3 of [24], where a linear stability

analysis is carried out for a simple string model. (A string is here meant to be a perfectly

flexible elastic wire.) The problem was studied by Wolfe [21] by means of a rigorous bifurca-

tion analysis for a (nonlinearly elastic) string suspended between fixed supports and placed

in a uniform magnetic field directed parallel to the undeformed wire. He found that an

infinite number of solution branches bifurcate from the trivial straight solution, much like in

the Euler elastica under compressive load. Minimisation of the potential energy indicated

that the first branch of bifurcating solutions is stable while all other branches are unstable.

In a subsequent paper Wolfe [22] extends the analysis to a uniformly rotating (whirling)

string and shows again the existence of bifurcating branches of whirling non-trivial solutions.

This result was further extended by Healey [7] using equivariant bifurcation theory in order

to deal with the symmetries of the problem, which caused the bifurcations to be degenerate.

Wolfe also considered a conducting rod in a uniform magnetic field [23]. In addition to

extension a rod can undergo flexure, torsion and shear, and for the case of welded boundary

conditions it was found that in certain cases bifurcation occurs, with the usual infinity of

non-trivial equilibrium states. All the works cited above were content with showing the

existence of bifurcating solutions and did not study their post-buckling behaviour. The

Hamiltonian structure of the equations for a rod in a magnetic field was investigated in [17]

where it was shown that in the case of an isotropic, inextensible and unshearable rod the
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equations are completely integrable.

The study of strings and rods in a magnetic field is of great interest to space tethers.

Although space tethers in the last 20 years or so have become a well established concept

in astrodynamics [2], new designs continue to be proposed that hold great potential for

future space applications. A space tether is a long cable used to connect spacecraft to

each other or to other orbiting bodies such as space stations, boosters, payloads, etc. in

order to transfer energy and momentum thus providing space propulsion without consuming

propellant. These tethers have been studied as elastic strings (e.g., [10]) and as dumb-

bell systems (e.g., [25]). An important class of space tethers is formed by the so-called

electrodynamic tethers (ETs). These employ the earth’s magnetic field and ionospheric

plasma to generate a current, according to Faraday’s Law, and hence thrust or drag forces

without expending chemical fuel. An example is the Short Electrodynamic Tether (SET)

prototype of the European Space Agency [18, 19]. This tether system, which comprises a

central module from which two tethers each about a hundred metres long extend, is designed

to operate at high inclination and in low orbit. Due to the shape of the earth’s magnetic field

this means that the desirable orientation of the tether is the horizontal one (i.e., with the axis

of smallest moment of inertia normal to the orbit plane). The gravity gradient ordinarily

causes a tether to drift to the stable radial position. Therefore, in order to keep the system

in the horizontal position, an axial spin velocity is applied for gyroscopic stability [8, 15, 18].

This requires significant torsional and bending rigidity of the tether which therefore has to

be modelled as a rod, not a string. The applied spin causes large deformations that present

stability issues similar to those in an unbalanced rotor system, which have been studied in

previous work [19, 20].

In this paper we apply large-deformation rod theory to study the effect of a magnetic field

on the behaviour of a slender conducting elastic structure possibly subject to end forces.

Both statical (buckling) and dynamical (whirling) instability are considered and we also

compute post-buckling configurations. The work extends the stability analysis of the SET

in [19] by including the effect of the magnetic field. This effect was considered small for the

SET but that need not be true for other tether designs. For instance, very long and flexible

tethers subject to boundary conditions that are not too restraining (e.g., no big end masses)

might well operate in the region of the first magnetic buckling instability.

We consider welded boundary conditions. These are appropriate for tethers with suffi-
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ciently large attached end masses (see Figure 2). Unlike in string buckling the rod does

not require a tensile force in the trivial state, but we allow for such an applied force as

well. The pertinent dimensionless parameter that governs buckling measures the product of

current and magnetic field against the bending force. We find that magnetic buckling of the

welded rod is described by a remarkably degenerate pitchfork bifurcation. Wolfe considered

welded boundary conditions in his statical study in [23] and encountered degeneracies (even-

dimensional eigenspaces) because of rotational symmetry of the problem, but we show that

further complications occur, involving branches connecting the bifurcating branches.

We also study steady whirling solutions for which we introduce a rotating coordinate

system. This extends Wolfe’s analysis of whirling strings to whirling rods. It is found that

applied spin resolves the degeneracies of the pitchfork bifurcations, provided that the rod

is transversely anisotropic. We perform a stability analysis by computing eigenvalues of

the linearised boudary-value problem about a (quasi-) stationary solution. For this we use a

continuation (or homotopy) approach that takes advantage of the fact that exact expressions

for the (imaginary) eigenvalues can be obtained in an appropriate limit (no spin, no magnetic

field). The eigenvalues in this limit are then traced as system parameters are varied.

The paper is organised as follows. First, in Section 2, we give more details about the

tether application and discuss the effect of the earth’s magnetic field on an electrodynamic

tether. Then we present our rod mechanics formulation in Section 3, in which the magnetic

field enters the force balance equation through the Lorentz body force. For the study of

whirling solutions the equilibrium equations are transformed to a coordinate system rotating

at constant angular velocity (Section 4). The linearisation is presented in Section 5 and our

continuation approach to stability analysis is discussed in Section 6. Results are presented in

the form of bifurcation diagrams in Section 7, both for the statical and dynamical case. We

also pick up some secondary bifurcations with associated loss of stability. Finally, in Section

8 we comment on the implications of our results for electrodynamic tethers and draw some

conclusions.

II. ELECTRODYNAMIC TETHERS AND THE EARTH’S MAGNETIC FIELD

Electrodynamic tethers are electrical conductors that interact with the geomagnetic field

in such a way that an electromotive force (e.m.f.) is generated along the tether due to
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FIG. 2: An electrodynamic tether in the Earth’s magnetic field.

Faraday’s Law [11]. The electrical circuit is closed by means of two contactors attached to

the ends of the tether which interact with the surrounding ionospheric plasma and allow a

current to flow.

Figure 2 shows an electrodynamic tether connecting two satellites. Let {i, j,k} be the

orbital frame, which may be assumed to be inertial. This is due to the fact that external

forces on the tether system, that is, electrodynamic forces, are small enough to consider

a circular Keplerian orbit which allows to decouple translational orbital dynamics from

structural deformation dynamics [11]. Besides, since the angular velocity of the tether

around the earth is much smaller than the typical spin velocity about its axis, rotational

orbital dynamics can also be decoupled from structural dynamics of the tether subjected to

spin rotation, which is the main issue of the present paper [19]. In such a case, the tether

is assumed to travel with a velocity v in the direction of i. The e.m.f. between the ends

induced by this motion is given by

E =

∫

l

(v ×B0) · dl, (1)

where B0 is the magnetic field and dl is a differential along the length of the tether. Because

the tether is part of a closed circuit a current I will flow in the direction of increasing E

and the system functions as a generator. This current in turn gives rise to a Lorentz force
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F L through

dF L = dI ×B0. (2)

This force can be used to drag the system without expending chemical fuel [2, 11]. Alter-

natively, if a current is forced against the e.m.f. the system becomes a motor boosting itself

to a higher orbit.

If we denote the position co-ordinates of the tether’s central axis relative to {i, j,k} by

(X, Y, Z), then the current vector, which is directed along the tangent of the tether, can be

expressed as

dI = Idl = I

(

∂X

∂s
,
∂Y

∂s
,
∂Z

∂s

)T

ds. (3)

The maximum force is generated when I and B0 are perpendicular. In the ET opera-

tion conditions both vectors will in general not be perpendicular because the tether is not

perfectly straight and the magnetic field lines will not be perpendicular to the tether over

its entire length. In order to represent this imperfection let us therefore assume that the

magnetic field has an extra component in the k direction,

B0 = (0, B1, B2)
T , (4)

where the desired component of the field B1 ≫ B2. Introducing (3) and (4) into (2), the

differential of the Lorentz force is found to be

dF L = I

(

∂Y

∂s
B2 −

∂Z

∂s
B1,−

∂X

∂s
B2,

∂X

∂s
B1

)T

ds. (5)

The term −∂Z
∂s
B1Ids in the i component opposes the motion and drags the ET system, as

intended. However, the crossed B2 terms in the i and j components (due to the imperfection

B2) will tend to coil the tether. This undesirable effect has been reported in some tether

flights [2, 11].

In this paper we study the interaction of elastic and electromagnetic forces in a conducting

rod and the tendency to generate three-dimensional coiled configurations (for instance as a

result of buckling at critical loads).

III. THE ROD MECHANICS MODEL

We describe the elastic behaviour of a conducting cable by the Kirchhoff equations for

the dynamics of thin rods. The rod is assumed to be uniform, inextensible, unshearable
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FIG. 3: Cosserat model of a rod.

and intrinsically straight and prismatic. The inextensible and unshearable assumptions are

appropriate for thin rods with low external forces (electrodynamic), as the tether. For the

background of the Kirchhoff equations the reader is referred to [1, 3]. These equations were

also used in [19] to analyse the dynamics of the SET. To these equations will be added the

Lorentz force to account for the electromagnetic interaction.

Let x denote the position of the rod’s centreline and let {d1,d2,d3} be a right-handed

orthonormal frame of directors (the Cosserat triad) defined at each point along the centreline.

Since the centreline is assumed to be inextensible we can take d3 in the direction of the local

tangent:

x′(s, t) = d3(s, t), (6)

where the prime denotes differentiation with respect to arclength s measured along the

centreline, and t is time. The directors d1 and d2 will be taken to point along the principal

bending axes of the cross-section (see Figure 3). The unstressed rod is taken to lie along

the basis vector k of a fixed inertial frame {i, j,k}.
Looking at Figure 3 we note that the position vector of an arbitrary point of the rod can

be expressed as

X(s, ξ1, ξ2, t) =x(s, t) + ξ1d1(s, t) + ξ2d2(s, t)

=x(s, t) + r(s, ξ1, ξ2, t),
(7)

where (ξ1, ξ2) are the components of r in the cross-section relative to {d1(s),d2(s)}. The rod
is thus viewed as a set of infinitesimal slices centred at all s. A one-dimensional description

will be obtained by averaging of forces and moments over each cross-section. The internal

traction, which is the projection of the stress tensor onto the cross-sectional plane, is given

by a force which we denote by f = f(s, ξ1, ξ2, t) (see Figure 3). The resultant elastic force

7



exerted in a section S(s) is given by

F (s, t) =

∫

S(s)

f (s, ξ1, ξ2, t) dS, (8)

where dS is an infinitesimal area element. This force can be expressed in the director basis

as F =
∑3

i=1 Fi di. The resultant moment in the section S(s) is given by

M(s, t) =

∫

S(s)

r(s, ξ1, ξ2, t)× f (s, ξ1, ξ2, t) dS, (9)

and will be expressed as M =
∑3

i=1Midi.

The rod is assumed to carry an electric current for which we can write

I = Ix′ = Id3. (10)

Here we have assumed the current to have the same direction as the rod, which is consistent

with a one-dimensional rod theory. It amounts to the assumption that the cross-section

of the conducting wire is small enough to make currents within the cross-section (eddy

currents) induced by the motion negligible. The current I interacts with the magnetic field

B0 to generate a (Lorentz) body force given by

F L = Id3 ×B0. (11)

Following [21] we assume the magnetic field to be uniform and directed along the unstressed

rod, i.e.,

B0 = B0k, (12)

modelling the undesired component of the magnetic field, B2 in equation (4).

The balancing of forces and moments across an infinitesimal rod element [19] then yields

the following set of partial differential equations:

F ′ + IB0d3 × k = ρAẍ, (13)

M ′ + d3 × F = ρ(I2d1 × d̈1 + I1d2 × d̈2), (14)

where ρ is the (volumetric) mass density, A the cross-sectional area, I1 and I2 the second mo-

ment of area of the cross-section about d1 and d2 respectively, and ˙( ) denotes differentiation

with respect to time.
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For a closed system of equations these balance equations need to be supplemented by

constitutive relations that characterise the material behaviour of the rod. We assume the

rod to be made of homogeneous isotropic linear viscoelastic material so that stress-strain

relations, based on a model by Valverde et al. [19], are

M1 = EI1(κ1 + γvκ̇1),

M2 = EI2(κ2 + γvκ̇2),

M3 = GJ(κ3 + γvκ̇3),

(15)

where κ1 and κ2 are the curvatures about d1 and d2, respectively, while κ3 is the twist about

d3. The constant γv is the viscoelastic coefficient of the material, E is Young’s modulus, G

is the shear modulus and J is the second moment of area of the cross-section about d3. We

shall assume that the section is symmetric with respect to the principal axes, in which case

J = I1 + I2.

The κi are the components of the curvature vector

κ =

3
∑

i=1

κi di, (16)

which governs the evolution in space of the frame of directors as one moves along the

centreline:

d′

i = κ× di (i = 1, 2, 3). (17)

The constitutive relations (15) can be used to replace the κi in (17) by moments, after

which the equations (6), (13), (14) and (17) form a system of 18 differential equations for

the 18 unknowns (x,F ,M ,d1,d2,d3).

Remark: In general when a conducting wire moves in a magnetic field an additional elec-

tromagnetic induction effect occurs which opposes the motion. The electromotive force as

a result of this effect is proportional to the rate of change of the enclosed magnetic flux [9].

However, in the case of a steadily whirling wire in a uniform magnetic field the enclosed

magnetic flux does not change and the effect is zero.

A. Equations of motion in the moving frame

Since we are interested in steadily rotating solutions we transform the equilibrium equa-

tions (13) and (14) to a co-ordinate frame {e1, e2, e3} that rotates with constant angular

9



velocity ω = ωk about the k axis (and the axis of the rod in its trivial unstressed state).

Noting that the derivative with respect to time of an arbitrary vector V (s, t) is given by

dV (s, t)

dt

∣

∣

∣

∣

i

=
dV (s, t)

dt

∣

∣

∣

∣

m

+ ω × V (s, t), (18)

where d
dt

∣

∣

i
indicates the derivative with respect to time in the inertial frame and d

dt

∣

∣

m
stands

for the derivative with respect to time in the moving frame, the equations (13) and (14)

expressed relative to {e1, e2, e3} become

F ′ + IB0d3 × e3 = ρA(ẍ+ 2ω × ẋ+ ω × (ω × x)), (19)

M ′ + d3 × F = ρI2(d1 × d̈1 + 2d1 × (ω × ḋ1) + (ω · d1)(d1 × ω))

+ ρI1(d2 × d̈2 + 2d2 × (ω × ḋ2) + (ω · d2)(d2 × ω)).
(20)

Steadily rotating (whirling) solutions satisfy the equations (19) and (20) with the dotted

variables set to zero:

F ′ + IB0d3 × e3 = ρAω × (ω × x), (21)

M ′ + d3 × F = ρI2(ω · d1)(d1 × ω) + ρI1(ω · d2)(d2 × ω). (22)

The other equations (6) and (17) do not change their form, but all vectors are now to be

considered as expressed relative to the rotating frame {e1, e2, e3}. Statical solutions are

simply obtained by setting ω equal to zero.

For a well-posed problem the final 18 ODEs require 18 boundary conditions to be speci-

fied.

B. The boundary conditions

We follow [23] and consider welded boundary conditions. These conditions also describe

an electrodynamic tether that is welded to the end contactors or modules if these bodies are

sufficiently massive (see Figure 2). We assume the rod to be fixed at s = L and to be able to

slide along e3 = k at s = 0 where a controlled force T is applied (positive for tension). L is

the length of the rod. Writing x = xe1 + ye2 + ze3 a consistent set of boundary conditions
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is thus given by

x(0, t) = 0, (23)

y(0, t) = 0, (24)

F (0, t) · e3 = T, (25)

d3(0, t) · e1 = 0, (26)

d3(0, t) · e2 = 0, (27)

d1(0, t) · e2 = 0, (28)

at s = 0 and

x(L, t) = 0, (29)

y(L, t) = 0, (30)

z(L, t) = L, (31)

d3(L, t) · e1 = 0, (32)

d3(L, t) · e2 = 0, (33)

d1(L, t) · e2 = 0, (34)

at s = L. To these conditions we have to add conditions that ensure the orthonormality of

the director basis, for which we can take

d1(0, t) · d1(0, t) = 1,

d2(0, t) · d2(0, t) = 1,

d3(0, t) · d3(0, t) = 1,

d1(0, t) · d2(0, t) = 0,

d1(0, t) · d3(0, t) = 0,

d2(0, t) · d3(0, t) = 0,

(35)

for a total of 18 boundary conditions, as required. Note that these conditions imply that at

s = 0 and s = L the director frame {d1,d2,d3} is aligned with {e1, e2, e3}.
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IV. NONDIMENSIONALISATION

We make the system of equations dimensionless by scaling the variables in the following

way

ωc =

√

f
EI1
ρAL4

, t̄ = tωc, s̄ =
s

L
∈ [0, 1], ω̄ =

ω

ωc
, x̄ =

x

L
,

F̄ = F
L2

fEI1
, T̄ = T

L2

fEI1
, M̄ = M

L

fEI1
, κ̄ = κL.

(36)

Here ωc is a reference bending natural frequency which, through tuning of the numerical

constant f , can be adapted to the particular boundary conditions at hand and the natural

mode considered. In the analysis in Section VI we shall take f = 1, but since in the welded

case we consider realistic data for electrodynamic tethers we shall take f = 500.5639 in that

case so as to get convenient numbers when presenting our numerical results. This value for

f corresponds to the first bending natural frequency of a welded-welded beam about d1.

With this nondimensionalisation the equations become (dropping the overbars for sim-

plicity and letting a prime denote d
ds̄
):

F ′ +Bd3 × k = ẍ+ 2ω × ẋ+ ω × (ω × x), (37)

M ′ + d3 × F = P
[

R(d1 × d̈1 + 2d1 × ω × ḋ1 + (ω · d1)(d1 × ω))

+(d2 × d̈2 + 2d2 × ω × ḋ2 + (ω · d2)(d2 × ω))
]

, (38)

x′ = d3, (39)

d′

i = κ× di, (40)

and the constitutive relations can be written as

M =
1

f

[

(κ1 + γκ̇1)d1 +R(κ2 + γκ̇2)d2 +
Γ(1 +R)

2
(κ3 + γκ̇3)d3

]

, (41)

where the dimensionless parameters are

P =
I1
AL2

, R =
I2
I1
, B =

B0IL
3

fEI1
, Γ =

2G

E
, γ = γvωc, (42)

and ( 1
Γ
− 1) is equal to Poisson’s ratio. For the boundary conditions we can still use (23)

to (35) if we assume that they now refer to dimensionless variables and that the right-hand

conditions are imposed at s̄ = 1.
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V. PERTURBATION SCHEME

We consider whirling solutions (relative equilibria) that are stationary in the moving

frame {e1, e2, e3}. Such solutions are found by solving the set of equations (37)–(41) with

the dotted variables set to zero (thus obtaining an ODE). To study their stability we linearise

the full PDE (37)–(41) about these whirling solutions. We follow the approach in [19], which

is similar to approaches in [5, 6]. The stability of statical (non-whirling) solutions can be

investigated by simply setting the angular velocity ω to zero.

We start our perturbation analysis by writing

di(s, t) = d0
i (s) + δdt

i(s, t) +O(δ2), i = 1, 2, 3, (43)

where d0
i (s) are the basis vectors of a quasi-stationary solution, dt

i(s, t) are the basis vectors

of a time-dependent perturbation and δ is a small bookkeeping parameter introduced to

separate scales. Note that, in order to preserve orthonormality to O(δ) (di ·dj = δij+O(δ2)),

we must have

dt
i(s, t) =

3
∑

j=1

Aij(s, t)d
0
j(s), i = 1, 2, 3, (44)

where the matrix Aij is skew-symmetric and can be written as

A =











0 α3 −α2

−α3 0 α1

α2 −α1 0











. (45)

Thus, the nine components of the director basis perturbation are described by only three

independent parameters, and if we introduce

α = (α1, α2, α3)
T , (46)

(with respect to the unperturbed director basis) then the perturbed director basis can be

expressed as

di(s, t) = d0
i (s) + δα(s, t)× d0

i (s) +O(δ2), i = 1, 2, 3. (47)

Using (47), the perturbation of an arbitrary vector V =
∑3

i=1 Vidi can be written on the

basis {d0
1,d

0
2,d

0
3} as

V = V 0 + δV t +O(δ2) =
3

∑

i=1

[V 0
i + δ(V t

i + (α× V 0)i)]d
0
i +O(δ2), (48)
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where ()i denotes the component along d0
i and time and space dependence of the variables

have been suppressed for the sake of simplicity.

Applying this perturbation scheme to the PDEs (37)–(41) and the boundary conditions,

we arrive at an O(1) nonlinear ODE for the quasi-stationary solutions and an O(δ) linear

PDE governing their stability.

A. The O(1) equations – quasi-stationary whirl

The O(1) equations are time-independent. Recalling that ω = ωe3, we find the O(1)

terms of the linear momentum equation (37), projected on the director basis {d0
1,d

0
2,d

0
3},

to give

(F 0
1 )

′ − F 0
2 κ

0
3 + F 0

3 κ
0
2 +B(d032d

0
11 − d031d

0
12) = −ω2(x0d011 + y0d012), (49)

(F 0
2 )

′ − F 0
3 κ

0
1 + F 0

1 κ
0
3 +B(d032d

0
21 − d031d

0
22) = −ω2(x0d021 + y0d022), (50)

(F 0
3 )

′ − F 0
1 κ

0
2 + F 0

2 κ
0
1 = −ω2(x0d031 + y0d032), (51)

where subscripts are used to indicate components relative to the basis vectors {d0
1,d

0
2,d

0
3}

(but the d0
i components are relative to {e1, e2, e3}). Similarly, the O(1) term of the angular

momentum equation (38), projected on the director basis {d0
1,d

0
2,d

0
3} gives

(M0
1 )

′ =
2fM0

3M
0
2

Γ(1 +R)
− fM0

2M
0
3

R
+ F 0

2 + Pω2d023(d
0
22d

0
11 − d021d

0
12), (52)

(M0
2 )

′ = −2fM0
3M

0
1

Γ(1 +R)
+ fM0

1M
0
3 − F 0

1 + PRω2d013(d
0
21d

0
12 − d011d

0
22), (53)

(M0
3 )

′ =
fM0

2M
0
1

R
− fM0

1M
0
2 + PRω2d013(d

0
12d

0
31 − d011d

0
32) + Pω2d023(d

0
22d

0
31 − d021d

0
32).(54)

The O(1) term of equation (39) can be expressed as

(x0)′ = d0
3, (55)

and the twist equation (40) by

(d0
i )

′ = κ0 × d0
i , i = 1, 2, 3, (56)
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where κ0 =
∑3

j=1 κ
0
jd

0
j . The O(1) term of constitutive relations (41) can be expressed as

M0
1 =

1

f
κ0
1, M0

2 =
R

f
κ0
2, M0

1 =
Γ(1 +R)

2f
κ0
3, (57)

which can be used to express the κ0
i in (56) in terms of the moments M0

i .

Proceeding in the same way, the O(1) part of the boundary conditions is given by

x0(0) = 0, (58)

y0(0) = 0, (59)

F 0(0) · e3 = T, (60)

d0
3(0) · e1 = 0, (61)

d0
3(0) · e2 = 0, (62)

d0
1(0) · e2 = 0, (63)

x0(1) = 0, (64)

y0(1) = 0, (65)

z0(1) = 1, (66)

d0
3(1) · e1 = 0, (67)

d0
3(1) · e2 = 0, (68)

d0
1(1) · e2 = 0, (69)

d0
1(0) · d0

1(0) = 1,

d0
2(0) · d0

2(0) = 1,

d0
3(0) · d0

3(0) = 1,

d0
1(0) · d0

2(0) = 0,

d0
1(0) · d0

3(0) = 0,

d0
2(0) · d0

3(0) = 0,

(70)
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B. The O(δ) equations – linearisation

The O(δ) part of the linear momentum equation (37) can be written as

(F t(s, t))′+B1(s)F
t(s, t) +B2(s)x

t(s, t) +B3(s)α
′(s, t) +B4(s)α(s, t)

=B5(s)ẍ
t(s, t) +B6(s)ẋ

t(s, t),
(71)

where the 3 × 3 matrices Bi(s) are given in the Appendix. Here we have expressed F t

relative to {d0
1,d

0
2,d

0
3} and xt relative to {e1, e2, e3}. For the O(δ) part of the angular

momentum equation (38) we can write

(M t(s, t))′+C1(s)M
t(s, t) +C2(s)α

′(s, t) +C3(s)α(s, t) +C4(s)F
t(s, t)

=C5(s)α̈(s, t) +C6(s)α̇(s, t),
(72)

where the matrices Ci(s) are again given in the Appendix. M t is expressed relative to

{d0
1,d

0
2,d

0
3}. The 9 twist equations (40) at O(δ) are reduced to only 3 independent equations

that relate κt and α as

κt(s, t) = α′(s, t) + κ0(s)×α(s, t). (73)

Introducing these relations into the O(δ) part of the constitutive relations gives

M t(s, t) +D1(s)α
′(s, t) +D2(s)α(s, t) = D3(s)α̇(s, t) +D4(s)

∂2

∂s∂t
(α(s, t)), (74)

where the matrices Di(s) are given in the Appendix. Finally, the O(δ) part of equation (39)

yields

(xt(s, t))′ = α(s, t)× d0
3(s). (75)

Applying the perturbation scheme to the boundary conditions at O(δ), we obtain

xt(0, t) = 0, (76)

yt(0, t) = 0, (77)

F t(0, t) · e3 = 0, (78)

α(0, t) = 0, (79)

xt(1, t) = 0, (80)

α(1, t) = 0. (81)
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After elimination of the κ0
i by means of (57), the set of 12 equations (71), (72), (74) and

(75) together with the 12 boundary conditions (76)–(81), with appropriate initial conditions,

form a well-posed initial-boundary-value problem.

VI. STABILITY ANALYSIS

Since we are interested in stability of solutions we look for solutions of the O(δ) equations

of the form

xt(s, t) = x̂t(s)eλt, (82)

α(s, t) = α̂(s)eλt, (83)

F t(s, t) = F̂
t
(s)eλt, (84)

M t(s, t) = M̂
t
(s)eλt. (85)

When these expressions are inserted into (71)–(75) a linear eigenvalue problem for a 12-

dimensional ODE is obtained in terms of the variables (x̂t, α̂t, F̂
t
,M̂

t
). The eigenvalue

λ measures the growth of small perturbations and is to be found as past of the solution.

Eigenvalues come as complex conjugate pairs. A whirling state is unstable if at least one of

the (in general infinitely many) λ’s has positive real part.

To solve a real system of equations we split the eigenvalues and variables (eigenfunctions)

into real and imaginary parts, λ = λr + iλi, x̂
t = x̂t

r + ix̂t
i, α̂

t = α̂t
r + iα̂t

i, F̂
t
= F̂

t

r + iF̂
t

i

and M̂
t
= M̂

t

r + iM̂
t

i. The equations (71)–(75), along with the boundary conditions (76)–

(81), are similarly split into real and imaginary parts. Thus we end up with a doubled

24-dimensional linearised boundary-value problem.

A. Stability of the straight rod – magnetic buckling

The trivial solution of the O(1) equations (49)–(57), representing a straight and untwisted

rod, is given by

x(s) = se3, F (s) = −Te3, M(s) = 0, di(s) = ei (i = 1, 2, 3), s ∈ [0, 1]. (86)
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For the statical case (ω = 0) without end force (T = 0) the O(δ) equations (71), (72), (74),

(75) about this trivial solution, on inserting (82)–(85), can be written as

x′′′′ − λ2Px′′ +
λ2

R
x− B

R
y′ = 0,

y′′′′ − λ2Py′′ + λ2y +Bx′ = 0, (87)

M ′′

3 − 2λ2P

Γ
M3 = 0,

with boundary conditions

x(0) = x(1) = x′(0) = x′(1) = y(0) = y(1) = y′(0) = y′(1) = M ′

3(0) = M ′

3(1) = 0, (88)

while F3 ≡ 0, z ≡ 0. Note that the torsional (M3) modes decouple from the bending (x, y)

modes.

To find the statical magnetic buckling loads we set λ = 0. The bending equations then

reduce to

z′′′′′′ +
B2

R
z = 0, for z = x′, (89)

subject to

x(0) = x(1) = x′(0) = x′(1) = x′′′′(0) = x′′′′(1) = 0. (90)

On setting z = eiks we obtain the characteristic equation −k6 + B2/R = 0 with solutions

k1,2 = ±β, k3,4,5,6 = ±β
(

1± i
√
3
)

/2, where β = B1/3/R1/6. Application of the boundary

conditions (90) to the general solution z(s) =
∑6

j=1 aje
ikjs leads to the following critical

condition:

χ(β) := 2 cos β + cos 2β − 2

(

cos
β

2
+ cos

3β

2

)

cosh

√
3β

2
+ (2− cos β) cosh

√
3β

−
√
3 sin β sinh

√
3β − 2

√
3

(

sin
β

2
− sin

3β

2

)

sinh

√
3β

2
= 0. (91)

The critical loads correspond to pitchfork bifurcations where non-trivial solutions bifurcate

from the trivial straight solution. A plot of χ (Figure 4) shows that in the welded case the

pitchfork bifurcations are (doubly) degenerate, as was also found by Wolfe [23]. We stress

that the above calculation is only possible for the statics case. If ω 6= 0 then the x and y

equations do not decouple and no simple characteristic equation is obtained.
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FIG. 4: Degenerate zeroes of the characteristic equation for the welded rod. The first three critical

β values are 7.332130, 13.613561 and 19.896753.

B. Eigenvalues for the unperturbed problem (T = 0, γ = 0, ω = 0, B = 0)

We shall call the case where T = 0, γ = 0, ω = 0 and B = 0 the unperturbed problem.

For this problem explicit expressions can be obtained for the eigenvalues of the linearisation

about the straight solution. The x and y equations in (87) decouple into two fourth-order

beam equations:

x′′′′ − λ2Px′′ +
λ2

R
x = 0,

y′′′′ − λ2Py′′ + λ2y = 0,

(92)

subject to boundary conditions (88). Since we anticipate imaginary eigenvalues we set

λ = iµ, x = eiks, y = eiκs, and find for the x equation

k1,2 = ±
(

1

2
µ2P +

1

2

√

µ4P 2 + 4µ2/R

)1/2

=: ±a,

k3,4 = ±i

(

1

2

√

µ4P 2 + 4µ2/R− 1

2
µ2P

)1/2

=: ±ib,

while for the y equation

κ1,2 = ±
(

1

2
µ2P +

1

2

√

µ4P 2 + 4µ2

)1/2

=: ±α,

κ3,4 = ±i

(

1

2

√

µ4P 2 + 4µ2 − 1

2
µ2P

)1/2

=: ±iβ,
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where a, b, α, β are non-negative real numbers. The general solutions are

x(s) = Ax sin as+Bx cos as + Cx sinh bs +Dx cosh bs,

y(s) = Ay sinαs+By cosαs+ Cy sinh βs+Dy cosh βs.

Application of the boundary conditions (88) leads to

(a2 − b2) sin a sinh b = 2ab(1− cos a cosh b),

(α2 − β2) sinα sinh β = 2αβ(1− cosα cosh β).

In order to obtain the eigenvalues these two transcendental equations can be solved nu-

merically using a Newton-Raphson scheme. Meanwhile, the torsional eigenvalues of the M3

equation in (87) are given by

µ = ±nπ

√

Γ

2P
.

These are all the eigenvalues for the unperturbed problem. They will be used as starting

values in the numerical procedure described next.

C. Numerical procedure

The main idea is to use the known eigenvalues in the unperturbed problem as starting

values in a continuation procedure in order to compute the eigenvalues and corresponding

eigenfunctions for general values of the parameters T , γ, ω and B. For this we use the well-

tested code AUTO [4] (specifically AUTO2000). AUTO solves boundary-value problems

by means of orthogonal collocation. It requires a starting solution and can then trace out

solution curves as a parameter of the problem is varied. Bifurcations are detected where

branches of solutions intersect. At such points AUTO is able to switch branches and compute

curves of bifurcating solutions.

Our procedure takes advantage of the fact that λ appears only quadratically in the

linearisation (71), (72), (74) and (75) if γ = 0 and ω = 0. To explain the method consider

the typical O(δ) equation

z′′′′ − λ2f(s)z′′ + λ2g(s)z = 0, (93)

where f and g are functions of the O(1) solution. Writing z = x+ iy, λ = λr + iλi, we can
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decompose the z equation into

x′′′′ − (λ2
r − λ2

i )f(s)x
′′ + 2λrλif(s)y

′′ + (λ2
r − λ2

i )g(s)x− 2λrλig(s)y = 0,

y′′′′ − (λ2
r − λ2

i )f(s)y
′′ − 2λrλif(s)x

′′ + (λ2
r − λ2

i )g(s)y + 2λrλig(s)x = 0.
(94)

The important thing to note here is that these equations decouple into two identical equa-

tions if the eigenvalue is either imaginary (λr = 0) or real (λi = 0).

This suggests the following sequence of steps, involving boundary-value problems of in-

creasing dimension, to compute eigenvalues of statical or uniformly whirling solutions.

1. Consider the unperturbed problem of Section VIB and, noting that all eigenvalues are

purely imaginary, solve the 30-dimensional system of 18 O(1) equations and one 12-

dimensional system for the imaginary part of the O(δ) equations (cf. the y equation in

(94)). Set λr = 0 and use λi as the continuation parameter in AUTO in order to com-

pute the eigenvalues (instead of solving the transcendental equations in Section VIB).

These eigenvalues will show up as branching points (BP), or pitchfork bifurcations, as

eigenvalues by definition are those values for which non-zero BVP solutions exist. By

symmetry it is only necessary to consider λi > 0.

2. Keeping the same 30-dimensional system, switch branches at a BP to compute (‘grow’)

the corresponding (imaginary) eigenfunction. Since the equations are linear the value

of λi will not change in this run. For later use we monitor the non-zero solu-

tion by means of some measure ||.||i (not necesarily a proper norm) on the space

{x̂t
i, α̂

t
i, F̂

t

i,M̂
t

i} of imaginary linearised variables.

3. Now consider the full system of 42 equations (18 O(1) equations and two sets of 12-

dimensional O(δ) equations (cf. (94)). Fix the measure ||.||i on the imaginary part

and release λr instead in order to compute the real eigenfunction (since the imaginary

part of the solution is fixed there is only one branch of solutions through the starting

point and there is nowhere else to go for the continuation but to ‘grow’ the real

eigenfunction). Again we monitor this function by means of a suitable measure ||.||r.
In this run neither λr nor λi will change.

This approach works because the solution obtained in step 2 also solves the full 42-

dimensional system when the extra 12 variables (x̂t
r, α̂

t
r, F̂

t

r,M̂
t

r) are set to zero. This

is a consequence of the fact that the real and imaginary parts of the O(δ) equations
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decouple if λr = 0, as a result of the quadratic dependence of the eigenvalue problem

on λ (cf. (94)).

Steps 2 and 3 can be performed for as many of the BPs computed in step 1 as required and

will give the corrsponding eigenvalues and eigenfunctions. Once these have been obtained

both measures ||.||r and ||.||i can be fixed and an extra system parameter such as B or ω

released in order to trace the eigenvalues (and hence monitor stability changes) as system

parameters are varied. (Note that fixing ||.||r and ||.||i makes sense as eigenfunctions are

only defined up to a multiplicative factor.)

The above 3-step procedure is not limited to linearisations about the trivial straight

solution. It can be applied to any starting solution that has no eigenvalue with both λr and λi

non-zero, as these would not be picked up in step 1. (It is of course no problem if eigenvalues

become fully complex (e.g., in a Hopf bifurcation) in the course of further continuations.)

For instance, we find that at the first critical B, given by (91), the lowest conjugate pair of

eigenvalues ±λi goes to zero and becomes a real pair of eigenvalues, signalling a stability

change of the straight rod. The (first-mode) solution bifurcating at this point is stable

with all eigenvalues being imaginary and the above procedure can be applied to find the

eigenvalues.

We end this section with a few comments:

(i) There are infinitely many eigenvalues and the above procedure only finds the lowest

order ones. This is of course a limitation of any numerical scheme. We find that

eigenvalues vary slowly with system parameters, suggesting that stability is governed

by the lowest-order eigenvalues. We typically consider 5 or 6 eigenvalues.

(ii) Note that in steps 1 and 2 above we could not have taken the full 42-dimensional system

of equations as that would have made the branching points (pitchfork bifurcations)

degenerate and AUTO would not detect a BP. This is because if λr = 0 (or λi = 0)

the two sets of 12-dimensional linearised equations are identical (cf. (94)).
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TABLE I: Dimensional and dimensionless parameters for the SET.

L 100 m P 0.001

A 2.879 × 10−11 m2 R 0.5526

E 1.32 × 1011 N/m2 Γ 0.76923

EI1 38 Nm2 f 500.5639

EI2 21 Nm2

VII. NUMERICAL RESULTS

A. The statics case, ω = 0

Figures 5 and 6 show the bifurcation diagram obtained when the magnetic field parameter

B is varied, using different measures along the vertical axes. The dimensionless parameters

taken are those of the SET and are listed in Table I, along with the dimensional parameters.

We observe that at critical values of B pairs of non-trivial solution branches bifurcate,

thus confirming the degenerate nature of the bifurcation found analytically in Section VIA.

The first three bifurcations occur at B = 0.585 (BP1), 3.747 (BP2) and 11.698 (BP3), in

agreement with Figure 4 when the numerical factor f is taken into account. In addition

to these primary branches, there are branches, labelled b12, b34 and b56, connecting these

pairs. One end of these connecting branches reaches down to the horizontal axis, while the

other end comes out of a secondary pitchfork bifurcation along the first branch of the pair of

primary branches. They in fact come in symmetric pairs as is brought out by the measure

plotted in Figure 6. The shapes of the rod along the connecting branches form a smooth

transition between the shapes on the connected branches; see Figure 7 where projections

onto the {e1-e3} and {e2-e3} planes of bifurcating solutions along branches b1, b2 and b12

are shown at constant measure1 = 0.04.

Solutions bifurcating at larger B values have successively more coils. Figure 8 shows the

three-dimensional shape of a solution on the fifth bifurcating branch.

Figure 9 shows the evolution of the imaginary and real parts of the first five pairs of

eigenvalues along the trivial solution, from B = 0 to B > BP2 (i.e., beyond the second

pitchfork). As the branches are born in pairs at the degenerate pitchfork, two pairs of pure
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FIG. 5: Bifurcation diagram for the statical case (ω = 0). System parameters are those of Table I.

measure1 =
∫ 1
0 |x0(s)|ds.
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FIG. 6: Bifurcation diagram for the statical case (ω = 0) using a different solution measure.

measure2 =
∫ 1
0 x0(s)y0(s)ds. The primary branches have measure2 = 0.
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the {e1-e3} and {e2-e3} planes at constant measure1 = 0.04. Values of B are: 0.595 (b1), 0.605

(b12) and 0.7 (b2).
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FIG. 8: 3D view of a solution along branch b5.

imaginary eigenvalues collide at zero and become pure real pairs at B = 0.585 (BP1). One

of the eigenvalues of each real pair is positive, meaning that the trivial solution becomes

unstable at B = BP1, as one would expect. A similar further loss of stability occurs at

25



(a) (b)

0 1 2 3 4 5
-3

-2

-1

0

1

2

3
 

 

Im
(
i)

B
0 1 2 3 4 5

-4.5

-3.0

-1.5

0.0

1.5

3.0

4.5

 

 

R
e(

i)

B

FIG. 9: Evolution of imaginary (a) and real (b) part of the first five pairs of eigenvalues along the

trivial solution as B is increased from 0 to > BP2.

B = BP2.

Figure 10 shows the evolution of the first five pairs of purely imaginary eigenvalues when

switching from the stable trivial branch to branch b1, which is initially found to be stable.

The figure reveals that branch b1 loses stability at the secondary pitchfork bifurcation at

B = 1.942, where b12 connects. At this point the first pair of eigenvalues becomes real, as

illustrated in Figure 11. This figure also shows that connecting branch b12 is unstable as it

too has a pair of real eigenvalues.

Considering the problem of the ET from a design point of view, it is interesting to

quantify the value of the geomagnetic field at which the straight tether would buckle. In

the case at hand, this value is B = 0.587 (see Figure 5), which in dimensional parameters

yields IB0 = 2.104 × 10−5 N
m
. Noting that the maximum value of the geomagnetic field is

Bg = 7×10−5 T [11], and assuming that the maximum current that will flow along the tether

would be I = 1 A [11], the maximum expected value for the constant IBg = 7 × 10−5 N
m
.

This means that the ET would be below the critical value at any time. Note, though, that

B goes as the cube of L and for longer tethers, which are common in radially stabilised ETs,

the critical value may be exceeded resulting in buckling into a coiled shape (cf. Figure 8),

as has been reported in some tether flights such as the PGM and TSS-1R missions [2, 11].
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FIG. 10: Imaginary part evolution of the first five pairs of eigenvalues along the trivial solution

from B = 0 to B = BP1, then following branch b1 beyond the secondary pitchfork.

B. Whirling solutions (relative equilibria), ω 6= 0

We now introduce angular velocity ω to the ET and seek relative equilibria, that is,

solutions that appear static when viewed from the rotating frame {e1, e2, e3}. Figures 12, 13
and 14 show the effect of increasing angular velocity on the bifurcation diagram of Figure 5.

The degenerate pitchfork bifurcations get resolved and the connecting branches move up

along the principal branches. For ω = 0.25 (Figure 12) all branches, b1, b2, ..., bifurcate,

as in the statics case of Figure 5, and the trivial solution is stable up to the first primary

pitchfork. However, at ω = 0.75 (Figure 13), b1 has merged with its symmetric partner at

B < 0 and lifted off the horizontal axis, leaving no stable straight solutions. b2 similarly

lifts off near ω = 1.25. Figure 14 shows the bifurcation diagram at ω = 2. An extra

branch of connecting solutions (b22) has appeared, but no further branches have become

non-bifurcating.

Figure 15 shows the bifurcation diagram at ω = 2 for the case of an isotropic rod (R = 1).

Here the bifurcations become degenerate again but the connecting branches do not move

down. In fact, they turn into vertical branches. We conclude that neither anisotropy (R)

nor whirl (ω) alone resolves the pitchfork degeneracy; both are required.

To investigate the stability of non-trivial solutions we follow the eigenvalues computed
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bifurcate (at distinct values of B) and trivial solutions before the first pitchfork are stable.
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FIG. 16: Evolution with ω of real (a) and imaginary (b) parts of the first five pairs of eigenvalues

from branch b1 of Figure 5 (ω = 0) with B = 0.5869.

earlier as ω is increased from 0. Figure 16 shows the evolution of the real and imaginary

parts of the first five conjugate pairs of eigenvalues when continuing in ω from a static

solution on the first branch (b1) of Figure 5 at fixed B = 0.5869. Note that the first and

second eigenvalues are almost coincident and can hardly be distinguished in the figure. Both

eigenvalues acquire positive real parts; hence the static coiled tether becomes unstable as
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FIG. 17: Evolution with respect to ω of the real part of the first three pairs of eigenvalues for a

solution along b1 at γ = 0.04375 (solid) and γ = 0.01 (dashed). (B = 1.2.)

soon as it is being rotated about k. The other eigenvalues move to the negative real half-

plane as ω is increased. The angular velocity is increased to ω = 2, which is beyond the

critical velocity in the B = 0-case where the tether buckles at the first bending natural

frequency of the beam, ω =
√
R [19].

Next we consider the combined effect of both damping and spin on the stability of the

rod. Figure 17 and 18 show the evolution of the first three eigenvalues as ω is increased for

a solution along the first bifurcating branch b1 at constant B = 1.2 and two different values

of the damping coefficient. The value γ = 0.04375 was estimated by Valverde et al. [19]

to be the damping value for a real electrodynamic tether under working conditions. The

figures show that the solution remains stable at least up to ω = 4 (higher-order eigenvalues

do not seem to alter this picture). However, at the lower value of γ = 0.01 we observe a Hopf

bifurcation at ω ≈ 1.5 where the conjugate pair of eigenvalues (λ1, λ̄1) acquires a positive
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FIG. 18: Evolution with respect to ω of the imaginary part of the first three pairs of eigenvalues

for a solution along b1 at γ = 0.04375 (solid) and γ = 0.01 (dashed). The curves are independent

of γ. (B = 1.2.)

real part (at ω ≈ 2.2 the second pair of eigenvalues (λ2, λ̄2) moves into the positive real half

plane, returning to the negative half plane at ω ≈ 6). Also note that damping only affects

the real parts of the eigenvalues, not the imaginary parts (Figure 18).

Figure 19 shows curves of these Hopf bifurcations, both of λ1 and λ2, in the B-ω parameter

plane for various values of γ, as well as the curve of secondary pitchfork bifurcations. The

latter curve is independent of γ. This makes sense as our (quasi-) statics problem, and hence

the bifurcation diagrams in Figures 12, 13 and 14, do not depend on γ, and therefore the

secondary pitchfork bifurcations, where a real eigenvalue goes through zero, must also be

independent of γ. Interestingly, the Hopf bifurcation curves of λ1 are closed, with instability

inside the curves, while the Hopf bifurcation curves of λ2 are open. The closed curves shrink

to zero at γ = 0.023, leaving only instability due to Hopf bifurcations of λ2 for larger values
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FIG. 19: Curves of secondary pitchfork bifurcations (dark grey), Hopf bifurcations of λ1 (black)

and Hopf bifurcations of λ2 (light grey) at γ = 0.01, 0.013, 0.016, 0.02 and 0.022 (from outside to

inside). The stable region is below the dark grey curve and around the black and light grey knees.

of γ. In the limit γ → 0 the Hopf curves approach the coordinate axes ω = 0, B = 0. The

region of stable b1 solutions in the diagram is the connected L-shaped region between the

secondary pitchfork and Hopf curves.

VIII. CONCLUSION

We have shown that whirling current-carrying rods bifurcate under increasing magnetic

field (or current). For the welded boundary conditions considered here this bifurcation is

doubly degenerate (even for a transversely isotropic rod). This is because the equations are

invariant under rotation about the axis (e3 axis) of the supports. This symmetry property

complicated Wolfe’s analysis, both for the whirling string [22] and the statical rod [23]. In

both models account had to be taken of the variational nature of the problem to prove

existence of non-trivial bifurcating states. We find that for the rod, eigenvalues become

simple when rotating states are considered, provided the rod is anisotropic. Neither spin

nor anisotropy alone resolves the degeneracy.

Wolfe’s analysis [21] for non-whirling strings suggests that the first bifurcating branch is

stable and that all other branches are unstable. We find the same to be true for a welded

rod, initially, but a secondary pitchfork bifurcation occurs where the post-buckling solution
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(along b1) loses stability. Unfortunately, our method allows us only to study stationary or

quasi-stationary (whirling) solutions, so it is not clear what type of solutions occur when the

(quasi-) stationary solutions lose stability in these secondary bifurcations. To investigate

this one would have to do simulations based on direct discretisation of the PDEs (19) and

(20).

Associated with the secondary pitchfork bifurcations are connecting orbits (b12, b34,

etc.) which interfere with the primary pitchfork bifurcations in the limit ω → 0. Another

interesting bifurcation scenario concerns the merging of symmetrically related branches (at

B = 0) and the subsequent ’lifting off’ of these branches, thereby becoming non-bifurcating.

In the case of b1 (Figure 13) this leads to the disappearance of stable trivial (straight)

solutions.

We have performed the, as far as we are aware, first study of the magnetically induced

post-buckling behaviour of elastic rods. Our results may be of interest to the design of

static as well as spinning electrodynamic tethers, which often operate in the post-buckling

regime. As we pointed out in Section 7.1, the critical values of the magnetic field (or current)

that we find may be close to operating values for certain tether types. Furthermore, axial

spin tends to destabilise the post-buckling state of the tether through Hopf bifurcations,

although typical viscoelastic material damping levels go some way towards avoiding Hopf

instabilities. On the other hand, spin has a stabilising effect in that it tends to push the

secondary pitchfork bifurcation to higher values of the magnetic field. We have mapped out

stable regions in the B-ω parameter plane (Figure 19).

We finally like to speculate on another possible application of this work. There is great

current interest in conducting nanowires. These can either be silicon-based wires, carbon

nanotubes or metal-coated biological fibres such as proteins, DNA molecules and micro-

tubules [16]. In addition there is the ongoing discussion whether or not DNA molecules are

electrical conductors [12]. All these nanometer-scale structures are believed to have great

potential as building blocks for future electronic devices. The interaction of these wires with

magnetic fields could conceivably be exploited to obtain certain desirable properties.
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Appendix A: Matrices for the linearisation

The matrices Bi appearing in equation (71) are given by

B1 =











0 −κ0
3 κ0

2

κ0
3 0 −κ0

1

−κ0
2 κ0

1 0











,

B2 = ω2











d011 d012 0

d021 d022 0

d031 d032 0











,

B3 =











0 F 0
3 −F 0

2

−F 0
3 0 F 0

1

F 0
2 −F 0

1 0











,

B4 =











F 0
2 κ

0
2 + F 0

3 κ
0
3 −B(d022d

0
11 − d021d

0
12) (F 0
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′ − F 0

1 κ
0
2 −(F 0
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′ − F 0
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−(F 0
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2 κ
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1 F3κ
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1 κ
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0
12) (F 0
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′ − F 0

2 κ
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(F 0
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′ − F3κ
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31 − d021d
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′ − F 0

3 κ
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2 +B(d012d
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31 − d011d

0
32) F 0

1 κ
0
1 + F 0

2 κ
0
2











,

B5 =











d011 d012 d013

d021 d022 d023

d031 d032 d033











,

B6 = 2ω











d012 −d011 0

d022 −d021 0

d032 −d031 0











.

Matrices C i appearing in equation (72) are given by

C1 = B1,

C2 =











0 M0
3 −M0

2

−M0
3 0 M0

1

M0
2 −M0

1 0











,
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C3 =











C11
3 C12

3 C13
3

C21
3 C22

3 C23
3

C31
3 C32

3 C33
3











,

where

C11
3 = M0

3κ
0
3 +M0

2κ
0
2 − P (ω · d0

3)(d
0
2 × ω · d0

1)− P (ω · d0
2)(d

0
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.

Matrices Di appearing in equation (74) are given by
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D1 =
1

f
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0 −R 0

0 0 −Γ(1+R)
2











,

D2 =











0 1
f
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f
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− 1
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,

D3 =
γ

f











0 −κ0
3 κ0

2

Rκ0
3 0 −Rκ0

1

−Γ(1+R)
2

κ0
2

Γ(1+R)
2

κ0
1 0











,

D4 = −γD1.

All the κ0
i in the above can be expressed in terms of the moments M0

i by means of the

constitutive relations (57).
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