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Abstract

Spatially periodic complex-valued solutions of the Burgers and KdV-Burgers

equations are studied in this paper. It is shown that for any sufficiently large time

T , there exists an explicit initial data such that its corresponding solution of the

Burgers equation blows up at T . In addition, the global convergence and regularity

of series solutions is established for initial data satisfying mild conditions.
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1 Introduction

This work addresses the global regularity issue on solutions of the complex Burgers and
KdV-Burgers equations

ut − 6uux + αuxxx − νuxx = 0, (1.1)

where ν ≥ 0 and α ≥ 0 are parameters and u = u(x, t) is a complex-valued function.
Attention will be focused on the spatially periodic solutions, namely x ∈ T = R/(2π),
the one-torus and we supplement (1.1) with a given initial data

u(x, 0) = u0(x), x ∈ T. (1.2)

Our first major result is for the complex Burgers equation ((1.1) with α = 0) and
it asserts that for any sufficiently large time T , there exists an explicit smooth initial
data u0 such that its corresponding solution blows up at t = T (Theorem 2.1). This
result was partially motivated by a recent paper of Poláčik and Šverák [9], in which
the complex-valued Burgers equation on the whole line was shown to develop finite-
time singularities for compactly supported smooth data. Their proof takes advantage
of the explicit solution formula obtained via the Hopf-Cole transform. By contrast, the
finite-time singular solutions constructed in this paper assume the form

u(x, t) =
∞∑

k=1

ak(t) e
ikx (1.3)

and correspond to the initial data u0(x) = a eix. We emphasize that solutions of the form
(1.3) are locally well-posed in the usual Sobolev space Hs := Hs(T) with a suitable index
s (see Theorem 2.5 for more details). For any T ≥ T0 (a fixed number depending on ν
only), we obtain a lower bound for |ak(T )| through a careful observation of the pattern
that ak(t)’s exhibit and the finite time singularity of (1.3) in L2 then follows if we take
a in u0 to be sufficiently large. This result reveals a fundamental difference between
the real-valued solutions of the Burgers equation and their complex counterparts. The
diffusion in the case of complex-valued solutions no longer dissipates the L2-norm, which
can blow up in a finite time. However, if we know the L2-norm of a complex-valued
solution is bounded, then there would be no finite-time singularity (Theorem 2.6).

We also explore the conditions under which solutions of (1.1) are global in time. A
simple example of the global solutions of (1.1) corresponds to the initial data u0(x) =
a0e

ix with |a0| < 1 provided ν and α satisfy a suitable condition, say ν2 + 4α2 ≥ 9 (see
Theorem 3.5). For general initial data of the form

u0(x) =
∞∑

k=1

a0k e
ikx

with |a0k| < 1, (1.1) possesses a unique local solution (1.3) with ak(t) given by a finite
sum of terms that can be made explicit through an inductive relation. To show the
convergence of (1.3) for large time, it is necessary to estimate |ak(t)| and our approach
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is to count the total number of terms that it contains. This counting problem is closely
related to the number of nonnegative integer solutions to the equation

j1 + 2j2 + 3j3 + · · ·+ kjk = k

for a fixed integer k > 0. Using a result by Hardy and Ramanujan [3], we are able to
establish the global regularity of (1.3) under a mild assumption (see Theorem 3.3). In
addition, ‖u(·, t)‖Hs for any s ≥ 0 decays exponentially in t for large t.

We remark that the study of complex-valued Burgers and KdV-Burgers equations
can be justified both physically and mathematically. Physically these complex equations
do arise in the modeling of several physical phenomena ([4],[5],[6]). Mathematically these
equations exhibit some remarkable features and admit solutions with much richer struc-
tures than those of their real-valued ones. In fact, these equations and other complex-
valued partial differential equations have attracted quite some attention recently. A lot
of efforts have been devoted to the important issue of whether or not their solutions
can blow up in a finite time. In [1] Birnir considered the complex KdV equation and
constructed a family of singular solutions represented by the Weierstrass function. Very
recently Y. Li [8] obtained simple explicit formulas for finite-time blowup solutions of
the complex KdV equation through Darboux transform. In [2] Bona and Weissler ad-
dressed the blowup issue for a family of complex-valued nonlinear dispersive equations.
The papers of Yuan and Wu ([11],[12],[13]) treated the complex KdV and KdV-Burgers
equations as systems of two nonlinearly coupled equations and clarified how the poten-
tial singularities of the real part are related to those of the imaginary part. In addition,
extensive numerical experiments were performed to reveal the blowup structures. An-
other important example that shows significant differences between the real-valued and
complex-valued solutions is the Navier-Stokes equations. It remains open whether or not
classical solutions of the 3D incompressible Navier-Stokes equations can develop finite-
time singularities. However, Li and Sinai [7] recently showed that the complex solutions
of the 3D Navier-Stokes equations corresponding to large parameter family of initial
data blow up in finite time. Their work motivated the study of Poláčik and Šverák on
the complex-valued solutions of the Burgers equation, as we mentioned earlier.

The rest of this paper is divided into three sections. The second section focuses on
the complex Burgers equation and presents Theorems 2.1, 2.5 and 2.6. The third section
details the global regularity results concerning the complex KdV-Burgers equations.

2 Blowup for the complex Burgers equation

This section presents three major results. The first one is a blowup result for the complex
Burgers equation in a periodic domain T= [0, 2π], namely

{
ut − 6uux − νuxx = 0, x ∈ T, t > 0,
u(x, 0) = u0(x), x ∈ T

(2.1)
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It states that for any sufficiently large T > 0, there exists an initial data u0 such that
its corresponding solution u blows up at t = T . This solution can be represented by

u(x, t) =
∞∑

k=1

ak(t) e
ikx (2.2)

and the blowup is in the L2 sense.

For the sake of completeness of our theory on (2.1), we also present a local existence
and uniqueness result on solutions of the form (2.2) to the complex-valued KdV-Burgers
type equation

ut − 6uux + ν(−∆)γu+ αuxxx = 0, (2.3)

which reduces to the complex Burgers equation when γ = 1 and α = 0. The fractal
Laplacian (−∆)γ is defined through Fourier transform,

̂(−∆)γu(ξ) = |ξ|2γ û(ξ).

The third result asserts that if the L2-norm of a solution of (2.3) is bounded on [0, T ],
then all higher derivatives are bounded and no singularity is possible on [0, T ].

We divide the rest of this section into two subsections with the first devoted to the
blowup result and the second to the local existence uniqueness.

2.1. Finite-time blowup

Theorem 2.1 For every sufficiently large T > 0, there exists an initial data u0 of the
form

u0(x) = a eix (2.4)

such that the corresponding solution u of (2.1) blows up at t = T in the L2-norm, namely

‖u(·, T )‖L2(T) = ∞. (2.5)

For any s ∈ R, the homogeneous Sobolev space H̊s(T) and the inhomogeneous
Sobolev space Hs(T) are defined in the standard fashion. In particular, a function of
the form

u(x, t) =
∞∑

k=1

ak e
ikx

is in H̊s(T) if

‖u‖2
H̊s(T)

≡
∞∑

k=1

k2s |ak|2 < ∞,

and in Hs(T) if

‖u‖2Hs(T) ≡
∞∑

k=1

(1 + k2)s |ak|2 < ∞.
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Clearly, L2(T) can be identified with H0(T).

For u0 given by (2.4), the local existence and uniqueness result of the next subsection
asserts that the corresponding solution u can be written as

u(x, t) =
∞∑

k=1

ak(t) e
ikx

before it blows up. The idea is to choose large a such that

‖u(·, T )‖2L2 =
∞∑

k=1

|ak(T )|2 = ∞.

We attempt to find an explicit representation for ak(t). It is easy to verify the following
iterative formula

a1(t) = a e−νt, ak(t) = 3ik e−νk2 t
∫ t

0
eνk

2 τ
∑

k1+k2=k

ak1(τ) ak2(τ) dτ, k = 2, 3, · · · .

(2.6)
To see the pattern in ak(t), we calculate the first few of them explicitly:

a1(t) = a e−νt, (2.7)

a2(t) = −ia2 ν−1
[
−3e−2νt + 3e−4νt

]
, (2.8)

a3(t) = −a3 ν−2
[
9e−3νt − 27

2
e−5νt +

9

2
e−9νt

]
, (2.9)

a4(t) = ia4 ν−3
[
−27e−4νt + 54e−6νt − 27

2
e−8νt − 18e−10νt +

9

2
e−16νt

]
, (2.10)

a5(t) = a5 ν−4
[
81e−5νt − 405

2
e−7νt +

405

4
e−9νt +

135

2
e−11νt − 135

4
e−13νt

−135

8
e−17νt +

27

8
e−25νt

]
,

a6(t) = −ia6 ν−5
[
−243e−6νt + 729e−8νt − 2187

4
e−10νt − 729

4
e−12νt

+243e−14νt +
81

2
e−18νt − 243

8
e−20νt − 243

20
e−26νt +

81

40
e−36νt

]
.

The following lemma summarizes the pattern exhibited by ak(t)’s.

Lemma 2.2 For any t > 0,

a1(t) = a b1(t), a2(t) = ia2 b2(t), a3(t) = −a3 b3(t), a4(t) = −ia4 b4(t) (2.11)

and more generally, for k = 4n+ j with n = 0, 1, 2, · · · and j = 1, 2, 3, 4,

ak(t) = a4n+j(t) = ij−1 a4n+j b4n+j(t), (2.12)

where b4n+j(t) > 0 for any t > 0.
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Remark. A special consequence of this lemma is that all terms in the summation in
(2.6) have the same sign and thus

|ak(t)| = 3ke−νk2t
∫ t

0
eνk

2τ
∑

k1+k2=k

|ak1(τ)| |ak2(τ)| dτ. (2.13)

Proof of Lemma 2.2. (2.12) can be shown through induction. For n = 0, (2.12) is just
(2.11). By (2.6), a1(t) = a e−νt and

a2(t) = 6i a2e−4νt
∫ t

0
e4ντ b21(τ) dτ = ia2b2(t),

where b2(t) = 6e−4νt
∫ t
0 e

4ντ b21(τ) dτ > 0. Similarly, a3(t) = −a3 b3(t) and a4(t) =
−ia4 b4(t) for some b3(t) > 0 and b4(t) > 0.

We now consider the general case. Without loss of generality, we prove (2.12) with
k = 4n+ 1. Assume (2.12) is true for all k < 4n+ 1. By (2.6),

ak(t) = 3ik e−νk2 t
∫ t

0
eνk

2 τ
∑

k1+k2=k

ak1(τ) ak2(τ) dτ.

Noticing that ak1(τ) ak2(τ) with k1 + k2 = 4n + 1 assumes two forms

a4n1
(τ) a4n2+1(τ) and a4n1+2(τ) a4n2−1(τ)

where n1 ≥ 0, n2 ≥ 0 and n1 + n2 = n, we conclude by the inductive assumptions that
ak1(τ) ak2(τ) must be of the form −i akbk1,k2(τ) for some positive function bk1,k2(τ) > 0.
Therefore,

ak(t) = a4n+1(t) = ak bk(t)

with

bk(t) = 3k e−νk2 t
∫ t

0
eνk

2 τ
∑

k1+k2=k

bk1,k2(τ) dτ > 0 for any t > 0.

This completes the proof of Lemma 2.2.

Proof of Theorem 2.1. Without loss of generality, we set ν = 1. Assume

T ≥ T0 ≡
∞∑

k=2

1

k2
ln

3k − 3

2k − 3
(2.14)

and choose a such that
A ≡ a e−T ≥ 1

We prove by induction that

|ak(T )| ≥ Ak for k = 1, 2, 3, · · · (2.15)

which, in particular, yields (2.5). Obviously, for any 0 ≤ t ≤ T ,

|a1(t)| ≥ |a1(T )| = a e−T = A ≥ 1.
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To prove (2.15) for k ≥ 2, we recall (2.13), namely

|ak(t)| = 3ke−k2t
∫ t

0
ek

2τ
∑

k1+k2=k

|ak1(τ)| |ak2(τ)| dτ.

Therefore, for T ≥ t ≥ t2 ≡ 1
4
ln 3,

|a2(t)| = 6e−4t
∫ t

0
e4τa21(τ) dτ =

3

2
A2(1− e−4t) ≥ A2.

For k = 3, if T ≥ t ≥ t3 ≡ t2 +
1
9
ln 2,

|a3(t)| = 9e−9t
∫ t

0
e9τ2|a1(τ)| |a2(τ)| dτ

≥ 9e−9t
∫ t

t2
e9τ2|a1(τ) a2(τ)| dτ

≥ 2A3 (1− e−9(t−t2)) ≥ A3.

More generally, for any ≥ t ≥ tk = tk−1 +
1
k2

ln 3k−3
2k−3

,

|ak(t)| = 3ke−k2t
∫ t

0
ek

2τ (|a1(τ)| |ak−1(τ)|+ |a2(τ)| |ak−2(τ)|
+ · · ·+ |ak−2(τ)||a2(τ)|+ |ak−1(τ)| |a1(τ)|) dτ

≥ 3ke−k2t
∫ t

tk−1

ek
2τ (|a1(τ)| |ak−1(τ)|+ |a2(τ)| |ak−2(τ)|

+ · · ·+ |ak−2(τ)||a2(τ)|+ |ak−1(τ)| |a1(τ)|) dτ

≥ 3k(k − 1)

k2
(1− e−ν k2(t−tk−1))Ak ≥ Ak.

If T ≥ T0 as defined in (2.14), then tk < T for any integer k ≥ 1 and thus

|ak(T )| ≥ Ak.

This completes the proof of Theorem 2.1.

We state and prove a few specific properties for ak(t).

Proposition 2.3 Assume u0 is given by (1.2). For each k ≥ 1, ak(t) is of the form

ak(t) =
k2∑

m=k

αk,me
−mνt (2.16)

where the complex-valued coefficients αk,m satisfy

k2∑

m=k

αk,m = 0 for k ≥ 2, (2.17)

αk,m =
3ik

k2 −m

∑

k1+k2=k

∑

m1+m2=m

αk1,m1
αk2,m2

for k ≤ m < k2. (2.18)

The indices k1, k2, m1 and m2 in the summation above obey

1 ≤ k1 ≤ k − 1, 1 ≤ k2 ≤ k − 1, k1 ≤ m1 ≤ k2
1 and k2 ≤ m2 ≤ k2

2.
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Proof. (2.17) is a consequence of the fact that ak(0) = 0 for k ≥ 2. (2.16) follows
from a simple induction. Obviously, a1(t) = a e−νt. Fix k and assume (2.16) is valid
for all integers up to k. Then, for k1 ≥ 1, k2 ≥ 1, k1 + k2 = k + 1, k1 ≤ m1 ≤ k2

1 and
k2 ≤ m2 ≤ k2

2,

ak+1(t) = 3i(k + 1)
∑

k1+k2=k+1

∑

m1,m2

αk1,m1
αk2,m2

e−ν(k+1)2 t
∫ t

0
eν((k+1)2−(m1+m2)) τ dτ

=
∑

k1+k2=k+1

∑

m1,m2

3i(k + 1)αk1,m1
αk2,m2

ν((k + 1)2 − (m1 +m2))

(
e−ν(m1+m2)t − e−ν(k+1)2t

)
.

Since m1 +m2 ≤ k2
1 + k2

2 ≤ (k1 + k2)
2 = (k + 1)2, this proves (2.16) with (2.18).

Proposition 2.4 Assume that u0 is given by (1.2).

1) Let k ≥ 1 be an integer. Then

αk,k =
(
3i

ν

)k−1

ak and αk,k+2 = −k

2
αk,k; (2.19)

2) Let k ≥ 1 be an integer. Then, for n = 1, 3, 5, · · · ,

αk,k+n = 0;

3) Let k ≥ 1 be an integer and let k2 > m > U(k) ≡ k2 − 2k + 2. Then

αk,m = 0. (2.20)

Proof. Letting m1 = k1 and m2 = k2 in (2.18), we find

αk,k =
∑

k1+k2=k

αk1,k1αk2,k2

3ik

ν(k2 − k)
=

3i

ν(k − 1)

∑

k1+k2=k

αk1,k1αk−k1,k−k1.

A simple induction allows us to obtain the expression for αk,k. To show αk,k+2 = −k
2
αk,k,

we set m = k + 2 in (2.18) to get

αk,k+2 =
3ik

ν(k2 − k − 2)
(α1,1 αk−1,k+1 + α2,2 αk−2,k + α2,4 αk−2,k−2

+ · · · + αk−2,k−2 α2,4 + αk−2,k α2,2 + α1,1 αk−1,k+1). (2.21)

Inserting the inductive assumptions such as

αk−1,k+1 = −k − 1

2
αk−1,k−1, αk−2,k = −k − 2

2
αk−2,k−2, α2,4 = −α2,2

8



in (2.21), we obtain

αk,k+2 =
3ik

ν(k2 − k − 2)


−k

2

k−1∑

k1=1

αk1,k1 αk−k1,k−k1 + α1,1 αk−1,k−1




= −k

2

k2 − k

k2 − k − 2

3ik

ν(k2 − k)

k−1∑

k1=1

αk1,k1 αk−k1,k−k1

+
3ik

ν(k2 − k − 2)
α1,1 αk−1,k−1

= −k

2

k2 − k

k2 − k − 2
αk,k −

k

2

−2

k2 − k − 2
αk,k = −k

2
αk,k.

To show αk,k+1 = 0, we set m = k + 1 to obtain

αk,k+1 =
3ik

ν(k2 − (k + 1))
(α1,1 αk−1,k + α2,2 αk−2,k−1 + · · ·+ αk−1,k α1,1) ,

which can be seen to be zero after inserting the inductive assumptions.

To prove (2.20), it suffices to notice in (2.18) that the second summation is over
m1 +m2 = m with k1 ≤ m1 ≤ k2

1 and k2 ≤ m2 ≤ k2
2. Thus, m = m1 +m2 ≤ k2

1 + k2
2 =

(k1 + k2)
2 − 2k1k2 ≤ k2 − 2(k − 1) and αk,m with U(k) < m < k2 is equal to zero. This

completes the proof of Proposition 2.4.

2.2 Local well-posedness

This subsection establishes the following two major results.

Theorem 2.5 Consider (2.3) with γ > 1
2
. Let s > 1

2
. Assume u0 ∈ Hs(T) has the form

u0(x) =
∞∑

k=1

a0k e
ikx. (2.22)

Then there exists T = T (‖u0‖Hs) such that (2.3) with the initial data u0 has a unique
solution u ∈ C([0, T );Hs) ∩ L2([0, T ); H̊s+γ) that assumes the form

u(x, t) =
∞∑

k=1

ak(t) e
ikx.

In the case when γ ≥ 1, we can actually show that no finite-time singularity is
possible if we know that the L2-norm is bounded a priori. In fact, the following theorem
states that the L2-norm controls all higher-order derivatives.

Theorem 2.6 Let T > 0 and let u be a weak solution of (2.3) with γ ≥ 1 on the time
interval [0, T ]. If we know a priori that u ∈ L∞([0, T ];L2) ∩ L2([0, T ]; H̊γ), namely

M0 ≡ sup
t∈[0,T ]

‖u(·, t)‖2L2 + ν
∫ T

0
‖Λγu(·, t)‖2L2 dt < ∞, (2.23)
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then, for any integer k > 0,

Mk ≡ sup
t∈[0,T ]

‖u(k)(·, t)‖2L2 + ν
∫ T

0
‖Λk+γu(·, t)‖2L2 dt < ∞.

where Λ = (−∆)
1

2 and u(k) denotes any partial derivative of order k.

We first prove Theorem 2.5.
Proof of Theorem 2.5. The existence of such a solution follows from the Galerkin ap-
proximation. LetN ≥ 1 and denote by PN the projection on the subspace {eix, e2ix, · · · , eiNx}.
Let

uN(x, t) =
N∑

k=1

aNk (t) e
ikx

where ak(t) satisfies

d

dt
aNk (t) = 3ik

∑

k1+k2=k

aNk1(t) a
N
k2(t) + iα k3 aNk (t)− νk2γ aNk (t),

aNk (0) = aN0k ≡ a0k. (2.24)

Here 1 ≤ k1 ≤ N and 1 ≤ k2 ≤ N . From the theory of ordinary differential equations,
we know that (2.24) has a unique local solution aNk (t) on [0, T ]. We derive some a priori
bounds for uN(x, t). Clearly, uN(x, t) solves

∂tu
N = 6PN(u

NuN
x ) + αuN

xxx − ν(−∆)γuN , uN(x, 0) = PN u0.

We now show that

d

dt
‖uN‖2Hs + ν‖uN‖2Hs+γ ≤ C(ν, s)‖uN‖

6γ−2

2γ−1

Hs . (2.25)

It follows from the equation

d

dt
aNk (t) + νk2γaNk (t)− iαk3 aNk (t) = 3ik

∑

k1+k2=k

aNk1(t) a
N
k2(t)

that, after omitting the upper index N for notational convenience,

d

dt

N∑

k=1

k2s |ak(t)|2 = −2ν
N∑

k=1

k2(s+γ) |ak(t)|2 − 6
N∑

k=1

k2s+1 I

āk

∑

k1+k2=k

ak1 ak2


 ,

where I denotes the imaginary part. To bound the nonlinear term on the right (denoted
by J), we first notice that the summation over k1 + k2 = k is less than twice the
summation over k1 + k2 = k with k1 ≤ k2 and 2k2 ≥ k. Thus,

J ≤ 6
N∑

k=1

k2s+1 |ak|
∑

k1+k2=k

|ak1 | |ak2|

≤ 12
N∑

k=1

ks+ 1

2 |ak|
∑

k/2≤k2≤k

(2k2)
s+ 1

2 |ak1 | |ak2|.
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Applying Hölder’s inequality and Young’s inequality for series, we have

J ≤ 12

[
N∑

k=1

k2s+1|ak|2
] 1

2




N∑

k=1


 ∑

k/2≤k2≤k

(2k2)
s+ 1

2 |ak1| |ak2|



2



1

2

≤ 12

[
N∑

k=1

k2s+1|ak|2
] 1

2




N∑

k2=1

k2s+1
2 |ak2 |2




1

2 N∑

k1=1

|ak1|.

≤ 12
N∑

k=1

k2s+1|ak|2



N∑

k1=1

|k1|2s|ak1 |



1

2



N∑

k1=1

k−2s
1




1

2

≤ C(s)‖uN‖2
H̊s+1

2
‖uN‖Hs . (2.26)

Thus, we get
d

dt
‖uN‖2Hs + 2ν‖uN‖2

H̊s+γ ≤ C(s)‖uN‖2
H̊s+1

2
‖uN‖Hs (2.27)

By Hölder’s inequality

‖uN‖
H̊s+1

2
≤ ‖uN‖

1

2γ

H̊s+γ
‖uN‖1−

1

2γ

Hs ,

we have

J ≤ C(s)‖uN‖
1

γ

H̊s+γ
‖uN‖3−

1

γ

Hs ≤ ν‖uN‖2
H̊s+γ + C(ν, s) ‖uN‖

6γ−2

2γ−1

Hs . (2.28)

(2.27) and (2.28) yield (2.25). With these bounds at our disposal, the existence of a
solution u of the form (2.2) is then obtained as a limit of uN as N → ∞.

We now turn to the uniqueness. Assume (2.3) has two solutions u1 and u2 satisfying

u1, u2 ∈ C([0, T );Hs) ∩ L2([0, T ); H̊s+γ).

Then their difference w = u1 − u2 satisfies

wt + ν(−∆)γw + αwxxx = 6wu1x + 6u2wx.

Applying the same procedure as in the derivation of (2.27), we find that, for s > 1
2
,

d

dt
‖w‖2Hs + 2ν‖w‖2

H̊s+γ ≤ C(s) ‖w‖2Hs(‖u1‖H̊1 + ‖u2‖H̊1).

The fact that u1, u2 ∈ L2([0, T ); H̊s+γ) with s+ γ > 1 and an application of Gronwall’s
inequality yields the uniqueness. This completes the proof of Theorem 2.5.

Proof of Theorem 2.6. We start with the case k = 1. It is easy to verify that

d

dt
‖ux(·, t)‖2L2 + 2κ‖Λγux‖2L2 = I1 + I2, (2.29)

where

I1 = 2
∫
|ux|2R(ux) dx,

I2 = 2
∫
R(u ux uxx) dx.

11



Here R denotes the real part. By the Gagliardo-Nirenberg type equalities,

|I1| ≤ 2‖ux‖2L2‖ux‖L∞

≤ C‖u‖γ1L2 ‖ux‖2L2 ‖Λ1+γu‖1−γ1
L2 ,

|I2| ≤ C‖u‖L∞ ‖ux‖L2 ‖uxx‖L2

≤ C‖u‖
1

2

L2 ‖ux‖
3

2

L2 ‖uxx‖L2

≤ C‖u‖
1

2
+γ2

L2 ‖ux‖
3

2

L2 ‖Λ1+γu‖1−γ2
L2

where

γ1 =
2γ − 1

2γ + 2
and γ2 =

γ − 1

γ + 1
.

By Young’s inequality,

|I1| ≤ ν

2
‖Λ1+γu‖2L2 + Cν

− 1−γ1
1+γ1 ‖u‖

2γ1
1+γ1

L2 ‖ux‖
4

1+γ1

L2 ,

|I2| ≤ ν

2
‖Λ1+γu‖2L2 + Cν

− 1−γ2
1+γ2 ‖u‖

1+2γ2
1+γ2

L2 ‖ux‖
3

1+γ2

L2 .

Inserting these inequalities in (2.29) and integrating with respect to t yields

sup
t∈[0,T ]

‖ux(·, t)‖2L2 + ν
∫ T

0
‖Λ1+γu‖2L2 dt

≤ C(ν)M
γ1

1+γ1
0

∫ T

0
‖ux‖

4

1+γ1

L2 dt+ C(ν)M
1+2γ2
2+2γ2
0

∫ T

0
‖ux‖

3

1+γ2

L2 dt,

where M0 is specified in (2.23). By (2.23) and the Gagliardo-Nirenberg type inequality

‖ux‖L2 ≤ C‖u‖1−
1

γ

L2 ‖Λγu‖
1

γ

L2,

we have ∫ T

0
‖ux‖2γL2 dt ≤ CMγ

0 .

Therefore,

sup
t∈[0,T ]

‖ux(·, t)‖2L2 + ν
∫ T

0
‖Λ1+γu‖2L2 dt

≤ C(ν)M
4γ2+3γ−1

4γ+1

0 sup
t∈[0,T ]

‖ux(·, t)‖
−8γ2+6γ+8

4γ+1

L2

+C(ν)M
4γ2+3γ−1

4γ

0 sup
t∈[0,T ]

‖ux(·, t)‖
−4γ2+3γ+3

2γ

L2 . (2.30)

When γ > 3
4
, 4γ2 + γ − 3 > 0 and consequently

−8γ2 + 6γ + 8

4γ + 1
< 2 and

−4γ2 + 3γ + 3

2γ
< 2.
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(2.30) then implies that

sup
t∈[0,T ]

‖ux(·, t)‖2L2 + ν
∫ T

0
‖Λ1+γu‖2L2 dt ≤ M1,

where M1 is a constant depending on γ, ν and M0 alone. L2-bounds for higher-order
derivatives can be obtained through iteration. This completes the proof of Theorem 2.6.

3 Global solutions of the complex KdV-Burgers equa-

tion

We consider the initial-value problem for the complex KdV-Burgers equation
{

ut − 6uux + αuxxx − νuxx = 0, x ∈ T, t > 0,
u(x, 0) = u0(x), x ∈ T

(3.1)

and study the global regularity of its solutions of the form

u(x, t) =
∞∑

k=1

ak(t)e
ikx. (3.2)

Here α ≥ 0 and ν ≥ 0 and (3.1) includes the complex Burgers and complex KdV
equations as special cases. Two major results are established. Theorem 3.3 presents a
general conditional global regularity result and Theorem 3.5 asserts the global regularity
of (3.2) for a special case.

Assume the initial data u0 is of the form

u0(x) =
∞∑

k=1

a0k e
ikx (3.3)

and is in Hs with s > 1
2
. According to Theorem 2.5, (3.1) has a unique local solution

u ∈ C([0, T );Hs) of the form (3.2) for some T > 0. To study the global regularity of
(3.2), we explore the structure of ak(t) and obtain the following two propositions.

Proposition 3.1 If (3.2) solves (3.1), then ak(t) can be written as

ak(t) =
∑

k≤h≤k2, k≤l≤k3

ak, h, l e
−(νh−αil)t (3.4)

where ak, h, l consists of a finite number of terms of the form

C(α, ν, k, h, l, j1, · · · , jk) aj101 aj202 · · · ajk0k (3.5)

with j1, j2 ,· · ·, jk being nonnegative integers and satisfying

j1 + 2j2 + · · ·+ kjk = k. (3.6)

13



Proposition 3.2 Let k ≥ 1 be an integer. Let U(k) = k2 − 2k + 2 and V (k) =
k3 − 3k2 + 3k. The coefficients ak,h,l in (3.4) have the following properties

(1) For k ≤ h < k2 and k ≤ l < k3,

ak,h,l =
3ik

ν(k2 − h)− iα(k3 − l)

∑

k1+k2=k

∑

h1+h2=h

∑

11+12=l

αk1,h1,l1αk2,h2,l2 (3.7)

(2) For h = k2 and l = k3,

ak,k2,k3 = ak(0)−
∑

k≤h<k2

∑

k≤l<k3

ak,h,l (3.8)

(3) For U(k) < h < k2 or V (k) < l < k3,

ak,h,l = 0. (3.9)

Proof of Proposition 3.1. If (3.2) solves (3.1) , then ak(t) solves the ordinary differential
equation

d

dt
ak(t) + (νk2 − αik3)ak(t)− 3ik

∑

k1+k2=k

ak1(t) ak2(t) = 0.

The equivalent integral form is given by

ak(t) = e−(νk2−αik3)t


a0k + 3ik

∫ t

0
e(νk

2−αik3)τ
∑

k1+k2=k

ak1(τ) ak2(τ) dτ


 . (3.10)

It is easy to show through an inductive process that ak is of the form (3.4). In addition,
for k ≤ h < k2 and k ≤ l < k3, the term in (3.5) with fixed j1, j2, · · ·, jk satisfying

j1 + 2j2 + · · ·+ kjk = k

can be expressed as

C(α, ν, k, h, l, j1, · · · , jk) aj101 aj202 · · · ajk0k
=

3ik

ν(k2 − h)− iα(k3 − l)

∑

m1+n1=j1

· · ·
∑

mk+nk=jk

C(α, ν, k1, h1, l1, m1, · · · , mk1)

×C(α, ν, k2, h2, l2, n1, · · · , nk2) a
m1+n1

01 am2+n2

02 · · · amk+nk

0k (3.11)

where the indices satisfy

1 ≤ k1 ≤ k, 1 ≤ k2 ≤ k, k1 + k2 = k,

k1 ≤ h1 ≤ k2
1, k2 ≤ h2 ≤ k2

2, h1 + h2 = h,

k1 ≤ l1 ≤ k3
1, k2 ≤ l2 ≤ k3

2, l1 + l2 = l,

m1 + n1 = j1, m2 + n2 = j2, · · · , mk + nk = jk.

(mr = 0 for r > k1 and nr = 0 for r > k2)

m1 + 2m2 + · · ·+ k1mk1 = k1, n1 + 2n2 + · · ·+ k2nk2 = k2.
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When h = k2 and l = k3,

C(α, ν, k, k2, k3, j1, j2, · · · , jk) =
{

1 for (j1, j2, · · · , jk) = (0, 0, · · · , 1),
−C(α, ν, k, h, l, j1, j2, · · · , jk) otherwise

(3.12)

for some h < k2 and l < k3. To illustrate these formulas, we list ak for k = 1, 2, 3,

a1(t) = a01 e
−(ν−iα)t,

a2(t) =
6i

2ν − 6αi
a201 e

−(2ν−2αi)t +
[
a02 −

6i

2ν − 6αi
a201

]
e−(4ν−8iα)t,

a3(t) =
108a301

(2ν − 6αi)(6ν − 24αi)
e(−3ν+3αi)t

+

[
18ia01a02
4ν − 18αi

− 108a301
(2ν − 6αi)(4ν − 18αi)

]
e(−5ν+9iα)t

+

[
a03 −

18ia01a02
4ν − 18αi

+
108a301

(2ν − 6αi)(4ν − 18αi)
− 108a301

(2ν − 6αi)(6ν − 24αi)

]

× e(−9ν+27αi)t.

Proof of Proposition 3.2. (3.7) follows from a simple induction. (3.8) is obtained by
set t = 0 in (3.4). To show (3.9), we notice that the second summation in (3.7) is over
h1 + h2 = h with k1 ≤ h1 ≤ k2

1 and k2 ≤ h2 ≤ k2
2 while the third summation is over

l1 + l2 = l with k1 ≤ l1 ≤ k3
1 and k2 ≤ l2 ≤ k3

2. Thus,

h = h1 + h2 ≤ k2
1 + k2

2 = k2 − 2k1 k2 ≤ k2 − 2(k − 1) = U(k),

l = l1 + l2 ≤ k3
1 + k3

2 = k3 − 3k k1 k2 ≤ k3 − 3k(k − 1) = V (k).

That means, ak,h,l = 0 if U(k) < h < k2 and V (k) < l < k3.

Theorem 3.3 Consider (3.1) with ν > 0. Assume u0 ∈ Hs(T) with s > 1
2
can be

represented in the form (3.3) with

|a0k| ≤ 1, k = 1, 2, · · · (3.13)

If we have the uniform bound

|C(α, ν, k, h, l, j1, · · · , jk)| ≤ C0(α, ν) (3.14)

for all k ≥ 1, k ≤ h < k2, k ≤ l < k3 and (j1, j2, · · · , jk) satisfying (3.6), then (3.1) has
a unique global solution u given by (3.2). In addition, for any s ≥ 0, there are T0 > 0
and δ > 0 such that for any t ≥ T0,

‖u(·, t)‖Hs <
C(α, ν, s)

1− e−νt
e−δνkt (3.15)

where C is a constant depending on α, ν and s only.
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We remark that the assumption in (3.14) can be verified for the case when a01 > 0
and a02 = a03 = · · · = 0. We assume that ν and α satisfy ν2 + 9α2 ≥ 36 and show by
induction that

|C(α, ν, k, h, l, j1, · · · , jk)| ≤ 1.

Since a02 = a03 = · · · = 0, these coefficients are nonzero only if j1 = k and j2 = j3 =
· · · = jk = 0. For any k ≤ h < k2 and k ≤ l < k3, we have, according to (3.11),

|C(α, ν, k, h, l, j1, · · · , jk)|

≤
∣∣∣∣∣

3ik

ν(k2 − h)− iα(k3 − l)

∣∣∣∣∣
∑

m1+n1=j1

|C(α, ν, k1, h1, l1, m1, · · · , mk1)|

× |C(α, ν, k2, h2, l2, n1, · · · , nk2)|.

For j1 = k, the number of terms in the summation m1 + n1 = j1 is at most k. By the
inductive assumption,

|C(α, ν, k, h, l, j1, · · · , jk)| ≤
3k2

√
ν2(k2 − h)2 + α2(k3 − l)2

Applying (3.9), h ≤ U(k) ≡ k2 − 2k + 2 and l ≤ V (k) ≡ k3 − 3k2 + 3k and thus
|C(α, ν, k, h, l, j1, · · · , jk)| ≤ 1 by taking into account the assumption on ν and α. When
h = k2 and l = k3, the boundedness of the coefficient follows from (3.12).

The proof of Theorem 3.3 involves a very classical problem in number theory, namely
the number of integer solutions (j1, j2, · · · , jk) to the equation defined in (3.6) for a given
positive integer k. This problem is not as simple as it may look like. An upper bound
and an asymptotic approximation for the number of nonnegative solutions are given by
G.H. Hardy and S. Ramanujan [3], as stated in the following lemma.

Lemma 3.4 Let k > 0 be an integer and let Nk denote the number of nonnegative
solutions to the equation

j1 + 2j2 + · · ·+ kjk = k.

Then, for some constant C1,

Nk <
C1

k
e2

√
2 k.

In addition, Nk has the following asymptotic behavior:

Nk ∼ 1

4
√
3k

eπ
√

2k
3 , as k → ∞.

Proof of Theorem 3.3. Applying (3.13) and (3.14), we obtain the following bound for
ak, h, l in (3.4)

|ak, h, l| ≤ C0(α, ν)Nk ≤
C2

k
e2

√
2 k,
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where C2 = C0C1 and we have used Lemma 3.4. Therefore,

|ak(t)| ≤
∑

k≤h≤k2

∑

k≤l≤k3

|ak,h,l| e−νht

≤ C2 (k
2 − 1) e2

√
2
√
k e−νkt

1− e−νt
. (3.16)

For any fixed t > 0, we can choose K = K(ν) and 0 < M = M(ν) < 1 such that

|ak(t)| ≤
C2

1− e−νt
Mk for k ≥ K.

Therefore, u represented by (3.2) converges for any t > 0. In addition, u(·, t) ∈ Hs

for any s ≥ 0. To see the exponential decay of ‖u(·, t)‖Hs for large time, we choose
T0 = T0(ν, s) such that for any t ≥ T0 and k ≥ 1

(1 + k2)s|ak(t)|2 ≤ C2M
k
1

e−δ νkt

1− e−νt
,

where M1 > 0 and δ > 0 are some constants. This bound then implies (3.15). This
completes the proof of Theorem 3.3.

We finally present a direct proof of the fact that (3.2) is global in time for special
case a02 = a03 = · · · = 0.

Theorem 3.5 Consider (3.1) with ν and α satisfying ν2 + 4α2 ≥ 9. If

u0(x) = a01 e
ix with |a01| < 1,

then (3.1) has a unique global solution, which can be represented by (3.2). In addition,
for any s ≥ 0, u(·, t) ∈ Hs for all t ≥ 0.

Proof. We prove by induction that, for any t > 0,

|ak(t)| ≤ |a01|k, k = 1, 2, · · · . (3.17)

Obviously, |a1(t)| ≤ |a01|. To prove (3.17) for k ≥ 2, we recall (3.10), namely

ak(t) = 3ik e−(νk2−αik3)t
∫ t

0
e(νk

2−αik3)τ
∑

k1+k2=k

ak1(τ) ak2(τ) dτ.

Since ν2 + 4α2 ≥ 9, we have

|a2(t)| ≤
∣∣∣∣

3

2ν − 4αi

∣∣∣∣ |a01|2
(
1− e−(4ν−8αi)t

)
≤ |a01|2

and more generally,

|ak(t)| ≤
∣∣∣∣∣
3(k − 1)

ν k − αi k2

∣∣∣∣∣ |a01|
k
(
1− e−(ν k2−αi k3)t

)
≤ |a01|k.
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It is then clear that (3.2) converges in Hs with s ≥ 0 for any t ≥ 0. This completes the
proof of Theorem 3.5.
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