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Abstract

Quasipatterns (two-dimensional patterns that are quasiperiodic in any
spatial direction) remain one of the outstanding problems of pattern for-
mation. As with problems involving quasiperiodicity, there is a small
divisor problem. In this paper, we consider 8-fold, 10-fold, 12-fold, and
higher order quasipattern solutions of the Swift–Hohenberg equation. We
prove that a formal solution, given by a divergent series, may be used to
build a smooth quasiperiodic function which is an approximate solution
of the pattern-forming PDE up to an exponentially small error.
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1 Introduction

Quasipatterns remain one of the outstanding problems of pattern formation.
These are two-dimensional patterns that have no translation symmetries and
are quasiperiodic in any spatial direction (see figure 1). In spite of the lack
of translation symmetry (in contrast to periodic patterns), the spatial Fourier
transforms of quasipatterns have discrete rotational order (most often, 8, 10
or 12-fold). Quasipatterns were first discovered in nonlinear pattern-forming
systems in the Faraday wave experiment [10, 14], in which a layer of fluid is
subjected to vertical oscillations. Since their discovery, they have also been
found in nonlinear optical systems [19], shaken convection [29,33] and in liquid
crystals [26], as well as being investigated in detail in large aspect ratio Faraday
wave experiments [1, 4, 5, 25].
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Figure 1: Example 8-fold quasipattern. This is an approximate solution of
the Swift–Hohenberg equation (1) with μ = 0.1, computed by using Newton
iteration to find an equilibrium solution of the PDE truncated to wavenumbers
satisfying |k| ≤ √

5 and to the quasilattice Γ27.

In many of these experiments, the domain is large compared to the size of
the pattern, and the boundaries appear to have little effect. Furthermore, the
pattern is usually formed in two directions (x and y), while the third direction
(z) plays little role. Mathematical models of the experiments are therefore often
posed with two unbounded directions, and the basic symmetry of the problem is
E(2), the Euclidean group of rotations, translations and reflections of the (x, y)
plane.

The mathematical basis for understanding the formation of periodic patterns
is well founded in equivariant bifurcation theory [16]. With spatially periodic
patterns, the pattern-forming problem (usually a PDE) is posed in a periodic
spatial domain instead of the infinite plane. Spatially periodic patterns have
Fourier expansions with wavevectors that live on a lattice. There is a parame-
ter μ in the PDE, and at the point of onset of the pattern-forming instability
(μ = 0), the primary modes have zero growth rate and all other modes on the
lattice have negative growth rates that are bounded away from zero. In this case,
the infinite-dimensional PDE can be reduced rigorously to a finite-dimensional
set of equations for the amplitudes of the primary modes [8, 9, 17, 21, 32], and
existence of periodic patterns as solutions of the pattern-forming PDE can be
proved. The coefficients of leading order terms in these amplitude equations can
be calculated and the values of these coefficients determine how the amplitude
of the pattern depends on the parameter μ, and which of the regular patterns
that fit into the periodic domain are stable. Due to symmetries, the solutions of
the PDE are in general expressed as power series in

√
μ, which can be computed,

and which have a non-zero radius of convergence.
In contrast, quasipatterns do not fit into any spatially periodic domain and
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have Fourier expansions with wavevectors that live on a quasilattice (defined
below). At the onset of pattern formation, the primary modes have zero growth
rate but there are other modes on the quasilattice that have growth rates arbi-
trarily close to zero, and techniques that are used for periodic patterns cannot
be applied. These small growth rates appear as small divisors, as seen below,
and correspond at criticality (μ = 0) to the fact that for the linearized opera-
tor at the origin (denoted −L0 below), the 0 eigenvalue is not isolated in the
spectrum.

If weakly nonlinear theory is applied in this case without regard to its va-
lidity, this results in a divergent power series [30], and this approach does not
lead to a convincing argument for the existence of quasipattern solutions of the
pattern-forming problem.

This paper is primarily concerned with proving the existence of quasipatterns
as approximate steady solutions of the simplest pattern-forming PDE, the Swift–
Hohenberg equation:

∂U

∂t
= μU − (1 + Δ)2U − U3 (1)

where U(x, y, t) is real and μ is a parameter. We do not prove the existence
of quasipatterns as exact steady solutions of the PDE. We are not concerned
with the stability of these quasipatterns: in fact, they are almost certainly un-
stable in the Swift–Hohenberg equation. Stability of a pattern depends on the
coefficients in the amplitude equations (as computed using weakly nonlinear
theory). In the Faraday wave experiment, and in more general parametrically
forced pattern forming problems, resonant mode interactions have been identi-
fied as the primary mechanism for the stabilisation of quasipatterns and other
complex patterns (see [31] and references therein). These mode interactions are
not present in the Swift–Hohenberg equation, though their presence would not
significantly alter our results.

In many situations involving a combination of nonlinearity and quasiperiod-
icity, small divisors can be handled using hard implicit function theorems [13],
of which the KAM theorem is an example. Unfortunately, there is as yet no
successful existence proof for quasipatterns using this approach, although these
ideas have been applied successfully to a range of small-divisor problems arising
in other types of PDEs [12, 22, 23]. There are also alternative approaches to
describing quasicrystals based on Penrose tilings and on projections of high-
dimensional regular lattices onto low-dimensional spaces [24].

We take a different approach in this paper: we show how the divergent power
series that is generated by the naive application of weakly nonlinear theory can
be used to generate a smooth quasiperiodic function that (a) shares the same
asymptotic expansion as the naive divergent series, and (b) satisfies the PDE (1)
with an exponentially small error as μ tends to 0. This approach is based on
summation techniques for divergent power series: see [2,7,28] for other examples.
In order to make the paper self-contained, we put in Appendices some proofs of
useful results, even though they are “known”.
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In section 2, we define the quasilattice and derive Diophantine bounds for the
small divisors that will arise in the nonlinear problem, for Q-fold quasilattices:
Lemma 2.1 extends the results of [30] covering the cases Q = 8, 10, 12, to any
even Q ≥ 8. We then compute in section 3 (following [30]) the power series
in

√
μ for a formal Q-quasipattern solution U of the Swift–Hohenberg equation,

where μ is the bifurcation parameter in the PDE.
In section 4, we define an appropriate function space Hs: each term in the

formal power series U is in this space. In section 5, we prove (Theorem 5.1)
bounds on the norm of each term in the formal power series solution of the PDE.
In the Q-fold case, the norm of the μn+ 1

2 term in the power series for the
quasipattern is bounded by a constant times Kn(n!)4l, where K is a constant
and l + 1 is the order of the algebraic number ω = 2 cos(2π/Q), which is also
half of Euler’s Totient function ϕ(Q) (l = 1 for Q = 8, 10 and 12, l = 2 for
Q = 14 and 18, l = 3 for Q = 16, 20, 24, 30, . . . ). This result was announced
in [30] for Q ≤ 12, and is extended here to Q ≥ 14. With a bound that grows
in this way with n, the power series is Gevrey-4l, taking values in a space of
Q-fold quasiperiodic functions.

In section 6, for convenience, we consider the cases Q = 8, 10 and 12. We
introduce a small parameter ζ related to the bifurcation parameter μ by ζ = 4

√
μ,

so that the norm of the ζ4n+2 term in the power series for U is also bounded
by a constant times Kn(n!)4 < Kn(4n!). We use the Borel transform Û of the
formal solution U : the ζ4n+2 term in the power series for Û is the ζ4n+2 term
in the power series for U divided by (4n + 2)!. With this definition, Û is an
analytic function of ζ in the disk |ζ| < K−1/4, and for each ζ in this disk, Û
is a Q-fold quasiperiodic function of (x, y) in the space Hs. Of course the new
function Û does not satisfy the original PDE, but we prove that it satisfies a
transformed PDE (Theorem 6.2).

The next stage would be to invert the Borel transform: however, the usual
inverse Borel transform is a line integral (related to the Laplace transform)
taking ζ from 0 to ∞, and Û is only an analytic function of ζ for ζ in a disk.
If the definition of Û could be extended to a line in the complex ζ plane, the
inverse Borel transform would provide a quasiperiodic solution of the PDE –
this remains an open problem.

Since the full inverse Borel transform cannot be used, in section 7, we use
a truncated integral to define Ū(ν). This involves integrating ζ along a line
segment inside the disk where Û is analytic, weighted by an exponential that
decays rapidly as ν → 0. We show that Ū(ν) and U(μ) have the same power
series expansion when we set ν = 4

√
μ, but unlike U , Ū(ν) is a C∞ function

of ν in a neighbourhood of 0, taking values in Hs. In other words, Ū(μ1/4) is a
Q-fold quasiperiodic function of (x, y) for small enough μ. This function is not
an exact solution of the Swift–Hohenberg PDE, but we show in Theorem 7.2
that the residual, when Ū(μ1/4) is substituted into the PDE, is exponentially
small as μ → 0. Finally, in the last section 8, we show that by taking as initial
data the above approximate solution, the time dependent solution U(t) stays
exponentially close to the approximate solution for a long time, of the order
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O(1/μ1+1/4l).
In conclusion, we have shown that, for any even Q ≥ 8, the divergent power

series U(μ) generated by the naive application of weakly nonlinear theory can
be used to find a smooth Q-fold quasiperiodic function Ū(μ1/4l) that shares the
same asymptotic expansion as U , and that satisfies the PDE with an exponen-
tially small error.

This technique does not prove the existence of a quasiperiodic solution of
the PDE. However, this is a first step towards an existence proof for quasiperi-
odic solutions of PDEs like (1). In particular, we may hope to use Ū as a
starting point for the Newton iteration process that would form part of an ex-
istence proof using the Nash–Moser theorem. As an aside, ordinary numerical
Newton iteration succeeds in finding an approximate solution of the truncated
PDE for values of μ where the formal power series has already diverged, as in
figure 3.

An analogous result may be proved for example in the Rayleigh–Bénard con-
vection problem (see [20]), using the fact that the dispersion equation possesses
the same property as in the present model: at the critical value of the parame-
ter there is a circle of critical wavevectors in the plane. The method might also
extend to the case of the Faraday wave experiment by considering fixed points
of a stroboscopic map.

In the present work we consider quasilattices generated by regularly spaced
wavevectors on the unit circle, and solutions invariant under 2π/Q rotations. It
might be worth studying the case of solutions having less symmetry on the same
quasilattice, or quasilattices (still dense in the plane) generated by wavevectors
that are irregularly spaced.

Acknowledgments: We are grateful for useful discussions with Sylvie Ben-
zoni, W. Crawley-Boevey, André Galligo, Ian Melbourne, Jonathan Partington,
David Sauzin and Gene Wayne. We are also grateful to the Isaac Newton In-
stitute for Mathematical Sciences, where some of this work was carried out.

2 Small divisors: Quasilattices and Diophantine
bounds

Let Q ∈ N (Q ≥ 8) be the order of a quasipattern and define wavevectors

kj =
(

cos
(

2π
j − 1

Q

)
, sin
(

2π
j − 1

Q

))
, j = 1, 2, . . . , Q

(see figure 2a). We define the quasilattice Γ ⊂ R2 to be the set of points spanned
by integer combinations km of the form

km =
Q∑

j=1

mjkj , where m = (m1, m2, . . . , mQ) ∈ NQ. (2)
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Figure 2: Example quasilattice with Q = 8, after [30]. (a) The 8 wavevectors
with |k| = 1 that form the basis of the quasilattice. (b,c) The truncated quasi-
lattices Γ9 and Γ27. The small dots mark the positions of combinations of up
to 9 or 27 of the 8 basis vectors on the unit circle. Note how the density of
points increases with Nk.

The set Γ is dense in R2.
We are interested in real functions U(x) that are linear combinations of

Fourier modes eik·x, with x ∈ R2 and k ∈ Γ. If U(x) is to be a real function, we
need Q to be even, with kj and −kj in Γ, hence the quasilattice Γ is symmetric
with respect to the origin.

In the calculations that follow, we will require Diophantine bounds on the
magnitude of the small divisors. We see below that the small divisors are∣∣|k|2 − 1

∣∣, for k ∈ Γ. To compute the required lower bound, we start with

|km|2 =
∑

1≤j1<j2≤Q

2mj1mj2 cos(j1 − j2)θ0 +
∑

1≤j≤Q

m2
j ,

where θ0 = 2π/Q. Let us define

ω = 2 cos θ0

We now show how
∣∣|km|2 − 1

∣∣ can be expressed as a polynomial in ω.
First, we can express 2 cos pθ0 as a polynomial in ω, for 1 ≤ p ≤ Q − 1:

2 cos pθ0 = ωp − pωp−2 +
p(p − 3)

2
ωp−4 . . .

with integer coefficients which only depend on Q (easy proof by induction), and
the leading coefficient being 1, and since cos(p + Q/2)θ0 = − cos θ0, this leads
to

|km|2 =
∑

0≤r≤Q/2−1

q′rω
r, q′r ∈ Z, r = 0, 1, . . . , Q/2 − 1, (3)

where the integers q′r are quadratic forms of m.
Next, we use the property that ω is an algebraic integer, since it is the sum

of two algebraic integers eiθ0 + e(Q−1)iθ0 . More precisely, ω is a root of the
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(minimal) polynomial P (ω) with integer coefficients, with leading coefficient
equal to 1, and which is of degree ϕ(Q)/2 := l + 1, where ϕ(Q) is Euler’s
Totient function [3], the number of positive integers j < Q such that j and Q
are relatively prime. For example, ϕ(14) = 6 since the 6 numbers 1, 3, 5, 9, 11
and 13 have no factors in common with 14, and so l +1 = 3 in the case Q = 14.
In the cases Q = 8, 10 and 12, the irrational numbers ω = 2 cos θ0 are

√
2, 1+

√
5

2

and
√

3: these are quadratic algebraic numbers (l + 1 = 2), while for Q = 14, ω
is cubic.

Finally, dividing (3) by P (ω) we obtain a remainder of degree l such that

|km|2 − 1 = q0 + ωq1 + · · · + ωlql (4)

where q0 + 1 and qj , j = 1, . . . , l are integer-valued quadratic forms of m.
Define |m| =

∑
j mj , then, for a given wavevector k ∈ Γ, we define the order

Nk of k by
Nk = min{|m|;k = km,km ∈ Γ}. (5)

The reason for this is that, for a given k, there is an infinite set of m’s satisfying
k = km. For example, we could increase mj and mj+Q/2 by 1: this increases |m|
by 2 but does not change km. Whenever solutions are computed numerically,
it is necessary to use only a finite number of Fourier modes, so we define the
truncated quasilattice ΓN to be:

ΓN = {k ∈ Γ : Nk ≤ N} . (6)

Figure 2(b,c) shows the truncated quasilattices Γ9 and Γ27 in the case Q = 8.
For example, we have in the case Q = 8:

|km|2 =
4∑

j=1

m′
j
2 +

√
2 (m′

1m
′
2 + m′

2m
′
3 + m′

3m
′
4 − m′

4m
′
1) , (7)

Nk =
4∑

j=1

|m′
j | (8)

where m′
j = mj − mj+Q/2. More generally we have

Nk ≤
Q/2∑
j=1

|m′
j |.

The above inequality can occur strictly (for example) in the case Q = 12,
because only 4 of the 12 vectors kj are rationally independent in this case.
More generally only ϕ(Q) vectors kj are rationally independent [34].

Now, the quantity in (4), |q0 +ωq1 + · · ·+ωlql|, may be as small as we want
for good choices of large integers qj , and we need to have a lower bound when
this is different from 0.
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In [30], it was proved that in the cases Q = 8, 10 and 12, there is a constant
c > 0 such that∣∣|k|2 − 1

∣∣ ≥ c

N2
k

, for any k ∈ Γ with |k| 	= 1. (9)

The proof relies on the fact that for quadratic algebraic numbers, there exists
C > 0 such that

|p − ωq| ≥ C

q

holds for any (p, q) ∈ Z2, q 	= 0 [18]. Now using the fact that q is quadratic in
m (see (7)) we have

q ≤ QN2
k (10)

from which (9) can be deduced.
The Diophantine bound (9) may be extended to any even Q ≥ 8, and there

exists c > 0 depending only on Q, such that for any k ∈ Γ, with |k| 	= 1, we
have ∣∣|k|2 − 1

∣∣ ≥ c

N2l
k

. (11)

To show this, we use the following known result (see [11]) proved in Appendix A:

Lemma 2.1 Let ω be an algebraic number of order l + 1, that is, a solution
of P (ω) = 0 where P is a polynomial of degree l + 1 with integer coefficients,
that is irreducible on Q. Then, there exists a constant C > 0 such that for any
q = (q0, q1, . . . , ql) ∈ Zl+1\{0}, the following estimate

|q0 + q1ω + q2ω
2 + · · · + qlω

l| ≥ C

|q|l (12)

holds, where |q| =
∑

0≤j≤l |qj |.
In the general case, by choosing m such that |m| = Nkm , the estimate (10)

is replaced by
|q| ≤ c(Q)N2

k

where c(Q) depends only on Q. Then estimate (11) is satisfied by taking

c =
C

[c(Q)]l
.

It remains to show that |k|2 	= 1 for all k ∈ Γ, apart from k = k1, . . . ,kQ.
This is solved by denoting ζ = eiθ0 , the Qth primitive root of unity, and relat-
ing kj+1 to ζj , and km to

∑Q−1
j=0 mj+1ζ

j . We then use the Kronecker–Weber
theorem which says that “every abelian extension of Q is cyclotomic” [34]. This
implies that if

∑
j mjζ

j (which is an algebraic integer) has modulus 1, then it is
necessarily a root of unity. Knowing that the dimension of the Q-vector space
spanned by the ζj is ϕ(Q), this implies that this root of unity is one of the ζj ,
j = 1, . . . , Q.
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3 Formal power series computation

Let us consider the steady Swift–Hohenberg equation

(1 + Δ)2U − μU + U3 = 0 (13)

where we look for a Q-fold quasiperiodic function U of x ∈ R2, defined by
Fourier coefficients Uk on a quasilattice Γ as defined above. Let us rewrite (13)
in the form

L0U = μU − U3 (14)

where
L0 = (1 + Δ)2.

We write formally
U(x) =

∑
k∈Γ

Ukeik·x,

the meaning of this sum being given in section 4. We seek a solution of (13),
bifurcating from the origin when μ = 0, that is invariant under rotations by
2π/Q. First we look for a formal solution in the form of a power series of an
amplitude. More precisely we look for the series

U(x, μ) =
√

μ

β

∑
n≥0

μnU (n)(x) (15)

as a formal solution of (13), where all factors U (n) are invariant under rotations
by 2π/Q of the plane. The coefficient β will be given by fixing U

(0)
k1

.
At order O(

√|μ|) in (13) we have

L0U
(0) = 0 (16)

and we choose the solution

U (0) =
Q∑

j=1

eikj ·x, (17)

which is invariant under rotations by 2π/Q and defined up to a factor which we
take equal to 1.

In writing U (0) in this way, we have made use of the fact that the only
solutions k ∈ Γ of |k| = 1 are k = k1, . . . ,kQ (see discussion at the end of sec-
tion 2). This implies that the kernel of L0 is only one-dimensional if restricted to
functions invariant under rotations by 2π/Q, this kernel being spanned by U (0).

At order O(|μ|3/2) we have

L0U
(1) = U (0) − β−1(U (0))3. (18)

We need to impose a solvability condition, namely that the coefficients of eikj ·x,
for j = 1, . . . , Q on the right hand side of this equation must be zero. Because of
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the invariance under rotations by 2π/Q, it is sufficient to cancel the coefficient
of eik1·x. This yields

β = 3(Q − 1) > 0, (19)

and U (1) is known up to an element β(1)U (0) in kerL0, which is determined at
the next step:

U (1) = Ũ (1) + β(1)U (0), Ũ (1) =
∑

k∈Γ,Nk=3

αkeik·x, (20)

α3kj = −1/64, α2kj+kl
= − 3

(1 − |2kj + kl|2)2 , kj + kl 	= 0,

αkj+kl+kr
= − 6

(1 − |kj + kl + kr|2)2 , j 	= l 	= r 	= j,

kj + kl 	= 0, kj + kr 	= 0, kr + kl 	= 0,

where Ũ (1) has no component on eikj ·x.
Order |μ|n+1/2 in (14) leads for n ≥ 2 to

L0U
(n) = U (n−1) − β−1

∑
k+l+r=n−1,

k,l,r≥0

U (k)U (l)U (r). (21)

For n = 2, the solvability condition on the right hand side gives β(1), and U (2)

is then determined up to β(2)U (0). Indeed we obtain on the right hand side

U (1) − 3
β

U (1)U (0)2 = Ũ (1) + β(1)U (0) − 3
β

β(1)U (0)3 − 3
β

Ũ (1)U (0)2

= −2β(1)U (0) + Ũ (1) − 3
β

Ũ (1)U (0)2 − 3
β
L0Ũ

(1), (22)

where we used the fact that the component of U (0)3 on eik1·x is β (see (18)).
Hence 2β(1) is the coefficient of eik1·x in −3β−1Ũ (1)U (0)2, and since all coeffi-
cients of Ũ (1) are negative, we find β(1) > 0. We obtain in the same way the
coefficients β(n−1)U (0) of U (n−1) in using the solvability condition on the right
hand side of (21).

Small divisor problem. It is clear that we can continue to compute this
expansion as far as we wish, where at each step we use the formal inverse of L0

on the complement of the kernel. However, applying L−1
0 to eik·x introduces a

factor
1

(1 − |k|2)2 ,

which may be very large for combinations k = km with large m, since points
km of the quasilattice Γ sit as close as we want to the unit circle. This is a small
divisor problem and computations indicate that the series (15) seems to diverge
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Figure 3: Amplitude A(N) of the quasipattern, as a function of μ and of N , with
Q = 8, N = 1, 3, 9 and 27, and scaled so that A(1) =

√
μ. Increasing the order of

the truncation leads to divergence for smaller values of μ. The squares represent
amplitudes computed by solving the PDE by Newton iteration, truncated to the
quasilattice Γ27 (Nk ≤ 27) and restricted to wavevectors with |k| ≤ √

5. Note
that for μ = 0.1, the Newton iteration succeeds in finding an equilibrium solution
of the PDE, while the formal power series has diverged. The spatial form of the
solution with μ = 0.1 is shown in figure 1.

numerically [30]. We illustrate this in figure 3, plotting the amplitude A(N)

against μ, where

A(N) = ||P0

√
μ

β

(N−1)/2∑
n=0

μnU (n)||s =
√

μ

β

⎛⎝(N−1)/2∑
n=0

μnβ(n)

⎞⎠ ||U (0)||s,

and the norm || · ||s and the projection operator P0 are defined below: A(N) is
essentially the magnitude of the coefficient of eik1·x as a function of μ and of N ,
the maximum order of wavevectors included in the truncated power series.

However, we prove in section 5 that in all cases we can control the diver-
gence of the terms of the series (15), and obtain a Gevrey estimate ||U (n)||s ≤
γKn(n!)4l, where the norm || · ||s is defined below.

Remark 3.1 For Q = 4 or 6, there is no small divisor problem since Γ is a
periodic lattice, and the only points in Γ that lie in a small neighborhood of the
unit circle are {kj ; j = 1, . . . , Q}.

11



4 Function spaces

We characterise the functions of interest by their Fourier coefficients on the
quasilattice Γ generated by the Q unit vectors kj :

U(x) =
∑
k∈Γ

Ukeik·x

Recall that for each k ∈ Γ, there exists a vector m ∈ NQ such that k = km =∑Q
j=1 mjkj and we can choose m such that |m| = Nk as defined in (5). We

have the following properties, proved in Appendix B:

Lemma 4.1 (i) We have the following inequalities:

Nk+k′ ≤ Nk + Nk′ , N−k = Nk, (23)

|k| ≤ Nk. (24)

(ii) We have the following estimate of the numbers of vectors k having a
given Nk:

card{k : Nk = N} ≤ c1(Q)NQ/2−1 (25)

where c1(Q) only depends on Q.

Define now the space of functions

Hs =

{
U =
∑
k∈Γ

Ukeik·x : ||U ||2s =
∑
k∈Γ

(1 + Nk
2)s|Uk|2 < ∞

}
, (26)

which becomes a Hilbert space with the scalar product

〈W, V 〉s =
∑
k∈Γ

(1 + Nk
2)sWkV k. (27)

In the sequel we need the following lemma, proved in Appendix C:

Lemma 4.2 The space Hs is a Banach algebra for s > Q/4. In particular there
exists cs > 0 such that

||UV ||s ≤ cs||U ||s||V ||s. (28)

For � ≥ 0 and s > � + Q/4, Hs is continuously embedded into C�.

From now on, all inner products are s unless otherwise stated, so that we
can remove the s subscripts throughout in scalar products.

We will also use the orthogonal projection on kerL0: for any U ∈ Hs, let

P0U =
∑

j=1,...,Q

Ukj e
ikj ·x,

and we denote by Q0 the orthogonal projection:

Q0 = I − P0,

which consists in suppressing the Fourier components of eikj ·x, j = 1, . . . , Q.
The norm of the linear operator Q0 is 1 in all spaces Hs.

12



5 Gevrey estimates

In this section we prove rigorously a Gevrey estimate of U (n) in (15). The
estimate for Q = 8, 10 and 12 (l = 1) was announced in [30]. Recall that a
formal power series

∑∞
n=0 unζn is Gevrey-k [15], where k is a positive integer,

if there are constants δ > 0 and K > 0 such that

|un| ≤ δKn(n!)k ∀n ≥ 0. (29)

Theorem 5.1 For any even Q ≥ 8, assume that s > Q/4. Then there exist
positive numbers K(Q, c, s) and δ(Q, s) such that there exists a unique formal
solution U(μ) of (13), under the form of a power series in μ1/2, all factors U (n)

belonging to Hs, and which satisfies

U =
√

μ

β

∑
n≥0

μnU (n), (30)

U (n) = β(n)U (0) + Ũ (n), 〈Ũ (n), eikj ·x〉s = 0, j = 1, . . . , Q,

||Ũ (n)||s ≤ δ
(Q − 1)
2s/2c2

sQ
Kn(n!)4l, n ≥ 1,

|β(n)| ≤ δKn(n!)4l, n ≥ 1.

where l = 1
2ϕ(Q) − 1 is the integer defined in Lemma 2.1. From the above

inequalities, it follows that

||U (n)||s ≤ γKn(n!)4l, n ≥ 0,

where γ is related to δ, Q and s only.

Remark 5.2 The above Theorem claims that the series U in powers of
√

μ is
Gevrey-2l taking its values in Hs.

Remark 5.3 In the cases when Q = 4 or 6, the pattern is periodic, and the
above series may be built in the same way, leading to a series which is convergent
for μ < μ0 where μ0 > 0. This results simply, via the Lyapunov–Schmidt
method, from the implicit function theorem in its analytic version. The values
of μ0 for Q = 2, 4 or 6 are estimated in [30].

Proof. We choose s > Q/4 since Lemma 4.2 insures that Hs is then a Banach
algebra. We notice that

||eikj ·x||s = 2s/2,

and
||U (0)||s = 2s/2

√
Q. (31)

We also have β(0) = 1 and Ũ (0) = 0. Now we notice from (11) that for |k| 	= 1
we have ∣∣|k|2 − 1

∣∣−2 ≤ N4l
k

c2
, (32)

13



which controls the unboundedness of the pseudo-inverse L̃−1
0 (inverse of L0

restricted to the orthogonal complement of its kernel). Indeed L̃−1
0 is bounded

from Hs to Hs−4l.

Remark 5.4 We may notice that the set of eigenvalues of L0 is dense in the
positive real line, which constitutes the spectrum. Hence 0 is not isolated in the
spectrum of L0. This explains why the pseudo-inverse of L0 on the complement
of its kernel, is unbounded and satisfies (see (32)):

||L̃0

−1
Q0U ||s−4l ≤ 1

c2
||U ||s, for any U ∈ Hs.

The basic observation here is that the factor U (n) that multiplies μn has a
finite Fourier expansion in eik·x, with k =

∑Q
j=1 mjkj ,

∑
mj ≤ 2n + 1, hence

Nk ≤ 2n + 1. Since for Ũ (1) we have |m| = 3 in all km’s, equation (18) leads to

||Ũ (1)||s ≤ 34lc2
s2

3s/2Q3/2

c23(Q − 1)
. (33)

We set
U (n) = β(n)U (0) + Ũ (n), Ũ (n) = Q0U

(n), (34)

and replacing this decomposition in (21) we obtain, by taking the scalar product
with eik1·x

β(n−1)2s− 1
β

〈
3U (n−1)U (0)2, eik1·x

〉
− 1

β

〈 ∑
k+l+r=n−1,
0≤k,l,r≤n−2

U (k)U (l)U (r), eik1·x
〉

= 0,

where we have used
〈
U (0), eik1·x〉 = ||eik1·x||2s = 2s. Next, we use

〈3U (n−1)U (0)2, eik1·x〉 = β(n−1)〈3U (0)3, eik1·x〉 + 〈3Ũ (n−1)U (0)2, eik1·x〉
= 3ββ(n−1)2s + 〈3Ũ (n−1)U (0)2, eik1·x〉,

and we are led to solve with respect to β(n−1), Ũ (n) the following system for
n ≥ 2

L0Ũ
(n) = Ũ (n−1) − β−1Q0

∑
k+l+r=n−1,

k,l,r≥0

U (k)U (l)U (r), (35)

β(n−1) =
−1

21+sβ

〈
3Ũ (n−1)U (0)2 +

∑
k+l+r=n−1,
0≤k,l,r≤n−2

U (k)U (l)U (r), eik1·x
〉

.(36)

Now we make the following recurrence assumption: there exist positive constants
γ1, δ and K, depending on Q and s, such that

||Ũ (p)||s ≤ γ1K
p(p!)4l, p = 0, 1, . . . , n − 1, (37)

|β(p)| ≤ δKp(p!)4l, p = 1, . . . , n − 2.

14



These estimates hold for Ũ (0) = 0 and for Ũ (1) provided that γ1 and K satisfy

34lc2
s2

3s/2Q3/2

c23(Q − 1)
≤ γ1K. (38)

Putting these together results in

||U (p)||s = ||β(p)U (0) + Ũ (p)||s ≤
(
2s/2δ
√

Q + γ1

)
Kp(p!)4l,

or
||U (p)||s ≤ γKp(p!)4l, with γ = 2s/2δ

√
Q + γ1. (39)

The resolution of (35) and (36) provides β(n−1) and Ũ (n), starting with n = 2.
A useful lemma is the following, proved in Appendix D.

Lemma 5.5 The following estimates hold true for l ≥ 1:

Π3,n =
∑

k+l+r=n
k,l,r≥0

(k!l!r!)4l ≤ 4(n!)4l, n ≥ 1

Π′
3,n =

∑
k+l+r=n

0≤k,l,r≤n−1

(k!l!r!)4l ≤ 10((n − 1)!)4l, n ≥ 2.

Thanks to Lemma 5.5 and the estimate for ||U (p)||s in (39), we observe that∥∥∥∥∥∥∥∥
∑

k+l+r=n−1
0≤k,l,r≤n−2

U (k)U (l)U (r)

∥∥∥∥∥∥∥∥
s

≤ 10c2
sγ

3Kn−1((n − 2)!)4l.

From this it follows that

|β(n−1)| ≤ c2
s

21+s/2β
Kn−1((n − 1)!)4l

{
3γ12

sQ + 10γ3
}

,

and the recurrence assumption is realized if

c2
s

3(Q − 1)21+s/2

{
3γ12

sQ + 10γ3
} ≤ δ (40)

holds. Now we have, still by using Lemma 5.5

||Ũ (n)||s ≤ (2n + 1)4lKn−1((n − 1)!)4l

c2

{
γ1 +

4c2
s

β
γ3

}
(41)

≤ Kn(n!)4l(2 +
1
n

)4l 1
Kc2

{
γ1 +

4c2
s

β
γ3

}
.

The factor (2n + 1)4l/c2 here comes from the pseudo-inverse of L0 acting on
functions containing modes of order up to 2n + 1. The recurrence assumption
is realized if

34l

c2

{
γ1 +

4c2
s

β
γ3

}
≤ γ1K. (42)
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We now must choose γ1, δ and K in such a way as to satisfy the three
conditions (38), (40) and (42). Indeed, we may choose γ1 such that

γ1 = δ
(Q − 1)
2s/2c2

sQ
,

and replacing this value in (39) and (40), then (40) is satisfied as soon as

δ2 ≤ 3(Q − 1)2s/2−1

5c2
s

(
2s/2
√

Q +
Q − 1

2s/2c2
sQ

)−3

holds. Then, choosing K such that

K = max
{

34l

c2

(
1 +

2s+1c2
sQ

5(Q − 1)

)
,
1
δ

34l−122sc4
sQ

5/2

c2(Q − 1)2

}
,

allows to satisfy (38) and (42).
We conclude that the bounds on ||Ũ (n)||s and |β(n)| in Theorem 5.1 hold,

and that (39), which holds for 0 ≤ p ≤ n − 1, also holds for p = n, and so

||U (n)||s ≤ γKn(n!)4l, n ≥ 1.

This ends the proof of Theorem 5.1.

6 Borel transform of the formal solution

In this and subsequent sections, we consider the cases with l = 1 (Q = 8, 10
and 12) and set √

μ = ζ2.

Remark 6.1 In the general case, we should set ζ = μ1/4l.

The formal expansion (30) becomes, after incorporating β−1/2 into U (n),

U = ζ2
∑
n≥0

ζ4nU (n), (43)

and we have the estimate

||U (n)||s ≤ γKn(n!)4 ≤ γKn(4n!).

Thus the formal power series (43) is a Gevrey-1 series in ζ.
Let us now consider the new function ζ → Û(ζ), taking its values in Hs,

defined by

Û(ζ) =
∑
n≥0

ζ4n+2

(4n + 2)!
U (n).

Indeed, by construction, this function is analytic in the disc |ζ| < K−1
1 = K−1/4,

with values in the Hilbert space Hs and invariant under rotations of angle 2π/Q.
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The mapping U → Û , where we divide the coefficient of ζn by n!, is the Borel
transform [6] applied to the series U . Since U satisfies a Gevrey-1 estimate, the
Borel transform Û is analytic in a disc.

We now need to show that this function Û(ζ) is solution of a certain par-
tial differential equation. Let us recall a simple property of Gevrey-1 series.
Consider two scalar Gevrey-1 series u and v

u =
∑
n≥1

unζn, v =
∑
n≥1

vnζn,

|un| ≤ c1K
n
1 n!, |vn| ≤ c2K

n
1 n!,

then we have

(uv)n =
∑

1≤k≤n−1

ukvn−k,

|(uv)n| ≤ c1c2K
n
1 n!,

as this results from Appendix D, by using the following inequality for n ≥ 3

1
(n − 1)!

∑
1≤k≤n−1

k!(n − k)! ≤ 1 + 2(
1
2

+ · · · + 1
n − 1

) ≤ n,

which shows that in our case we can multiply two Gevrey-1 series with coef-
ficients belonging to Hs (the factor c1c2 is then multiplied by cs) and obtain
a new Gevrey-1 series with coefficients in Hs. It is then classical that we can
write

Û3 = Û ∗G Û ∗G Û (44)

where the convolution product, written as ∗G, is well defined by

(û ∗G v̂)(ζ) =
∑
n≥1

∑
1≤k≤n−1

ukvn−k

n!
ζn,

and satisfies
(û ∗G v̂) = (̂uv).

This convolution product is easily extended for two functions f(ζ) and g(ζ),
analytic in the disc |ζ| < K−1

1 , and with no zero order term, by

(f ∗ g)(ζ) =
∑
n≥1

∑
1≤k≤n−1

fkgn−k
k!(n − k)!

n!
ζn. (45)

It is clear that for f = û, and g = v̂ we have

f ∗ g = (û ∗G v̂) = (̂uv).

Since we have (44), it is clear from (21) that we have

( ̂(1 + Δ)2U)(x, ζ) = (1 + Δ)2Û(x, ζ).
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Now let us define a bounded linear operator K as follows: for any function
ζ → V (ζ) analytic in the disc |ζ| < K−1

1 , taking values in Hs, canceling for
ζ = 0, and satisfying

V (ζ) =
∑
n≥1

Vnζn, ||Vn||s ≤ cKn
1 ,

we define
(KV )(ζ) =

∑
n≥1

n!
(n + 4)!

ζn+4Vn.

It is then clear for V = Û that

(KÛ)(ζ) =
∑
n≥0

ζ4n+6

(4n + 6)!
U (n) = (̂ζ4U),

and we see that
∂4

ζ (KÛ) = Û .

We now claim the following:

Theorem 6.2 The Borel transform Û(x, ζ) of the Gevrey solution found in
Theorem 5.1 for l = 1 is the unique solution, analytic in the disc |ζ| < K−1/4,
cancelling for ζ = 0, and taking values in Hs invariant under rotations of angle
2π/Q, of the equation

(1 + Δ)2V −KV + V ∗ V ∗ V = 0. (46)

Proof. We assume l = 1 in what follows. The changes needed for larger l’s are
left to the reader. Let us look for a solution V in the form

V =
∑
n≥1

ζnVn,

where Vn ∈ Hs is invariant under rotations of angle 2π/Q. Then defining a
formal series

U =
∑
n≥1

ζnUn, Un = n!Vn,

it is clear that U satisfies formally

(1 + Δ)2U − ζ4U + U3 = 0,

and by identifying powers of ζ:

L0U1 = 0,

L0U2 = 0,

L0U3 + U3
1 = 0,
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which leads to U1 = 0 because of the last equation where the solvability condi-
tion cannot be satisfied. Then we have

U1 = 0, L0Uj = 0, j = 2, 3, 4, 5,

and
L0U6 − U2 + (U2)3 = 0.

We observe that U2 and U6 satisfy the equations verified by β−1/2U (0) and
β−1/2U (1) (see (18)). This is indeed the only solution invariant under rotations
of 2π/Q. Hence

U2 = β−1/2U (0),

U6 = β−1/2U (1).

Now at order ζ7 we get

L0U7 − U3 + 3U2
2 U3 = 0

and since U3 = CU (0), where C is a constant, the solvability condition gives

C =
3C

β
〈U (0)3, eik1·x〉s = 3C

hence C = 0 and U3 = 0. It is the same for U4 = U5 = 0, and we obtain
L0U7 = L0U8 = L0U9 = 0. Then the computation of higher orders is exactly
as the one for the computation of U (n), since the cubic term cancels if the sum
of the 3 indices p in Up is not 2 mod 4. Coming back to the definition of
Un = n!Vn, it is then clear that Theorem 6.2 is proved.

7 Truncated Laplace transform

Let us take K ′ > K1 and define a linear mapping U → Ū in the set of Gevrey-1
series taking values in Hs

Ū(ν) =
1
ν

∫ 1
K′

0

e−
ζ
ν Û(ζ) dζ, (47)

where Û(ζ) is the Borel transform of U as defined above, which is analytic in
the disc |ζ| < 1/K1. The function ν → Ū(ν) is a truncated Laplace transform
of the Borel transform of U .

Remark 7.1 If Û(ζ) could be shown to be analytic on a line in the complex
ζ plane extending to ∞, instead of just in a disk, then the Laplace transform
in (47) would be the inverse Borel transform, and would provide a quasiperiodic
solution of (13) in Hs.
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It is clear that Ū(ν) is a C∞ function of ν in a neighborhood of 0, taking its
values in Hs, as this results from

Ū(ν) =
∫ 1

K′ν

0

e−zÛ(νz) dz

and from the dominated convergence theorem. Moreover Ū(ν) and U(μ) have
the same asymptotic expansion in powers on ν, when we set μ = ν1/4, as this
results from

1
ν

∫ 1
K′

0

e−
ζ
ν

ζn

n!
dζ = νn−e−

1
K′ν

(
νn

1
+

νn−1

K ′1!
+ · · · + ν

K ′n−1(n − 1)!
+

1
K ′nn!

)
.

(48)
It is also clear that in a little disc near the origin

̂̄U = Û ,

but this does not imply that Ū = U since U is not a function, being defined
as a formal series of ν4, and an asymptotic expansion does not define a unique
function. The real question is whether or not Ū is solution of (13) in Hs.

By construction, we know that the Gevrey-1 expansion of

V (μ1/4) =: (1 + Δ)2Ū(μ1/4) − μŪ(μ1/4) + Ū(μ1/4)3

in powers of μ1/4 is identically 0, but we don’t know whether this function
(smooth in μ1/4), which is in Hs−4, is indeed 0. In fact we have the following

Theorem 7.2 For any even Q ≥ 8, take s > Q/4. Then, l = (1/2)ϕ(Q) − 1
being defined by Lemma 2.1, the quasiperiodic function Ū(μ1/4l) ∈ Hs, with
s > Q/4, defined from the series found in Theorem 5.1, is solution of the Swift–

Hohenberg PDE (13) up to an exponentially small term bounded by C(K ′)e
− 1

K′μ1/4l

in Hs−4, for any K ′ > K1/4l.

Proof. The result of the Theorem follows directly from two elementary lemmas
E.1 and E.2 on Gevrey-1 series shown in Appendix E, and which may be un-
derstood in the function space Hs instead of C. Indeed, for l = 1 this gives an
estimate of the difference beween V (μ1/4) and the truncated Laplace transform
of the left hand side of equation (46) (which is then 0), taking into account of

(1 + Δ)2Ū(μ1/4) =
1

μ1/4

∫ 1
K′

0

e−
ζ
ν (1 + Δ)2Û(ζ)dζ,

which holds in Hs−4. Using Remark 6.1, the extension to larger l’s is left to the
reader.
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8 On the initial value problem

Once we know an approximate solution Ū of the steady PDE (13), a natural
question is: let us start at time t = 0 with U |t=0 = Ū , what can we say about the
solution U(t) of the initial value problem, for t > 0? Let us give the following
partial answer to this question:

Lemma 8.1 Assume Q ≥ 8 and s > Q/4 and consider the solution U(t) of the
initial value problem (1) with U |t=0 = Ū ∈ Hs+4, where Ū is given by Theorem
7.2. Then there are α and C ′ > 0 such that the estimate

||U(t) − Ū ||s ≤ C ′e
− c

μ1/4l

holds for 0 ≤ t ≤ α
μ1+1/4l , where c is the same as in Theorem 7.2.

Proof. We can replace s in Theorem 7.2 by s + 4, hence we have

−L0Ū + μŪ − Ū3 = R ∈ Hs,

with C and c > 0 such that

||Ū ||s+4 ≤ C
√

μ, , ||R||s ≤ Ce
− c

μ1/4l .

Let us introduce the semi-group e−L0t, t ≥ 0, defined for any U ∈ Hs, s ≥ 0, by

(e−L0tU)k = e−(1−|k|2)2tUk.

This semi-group is strongly continuous in Hs, and bounded by 1. Now defining
W (t) = U(t) − Ū , we have in Hs

W (t) =
∫ t

0

e−L0(t−τ){μW (τ) − 3Ū2W (τ) − 3ŪW (τ)2 − W (τ)3}dτ +

+
∫ t

0

e−L0(t−τ)Rdτ. (49)

We know that W (0) = 0, and by standard arguments the solution of the initial
value problem exists at least on a finite interval [0, T ) in Hs. Let us give a more
precise estimate on W (t) for a part of the interval of time where ||W (t)||s ≤
C1

√
μ for a certain C1 > 0. A simple estimate on (49) leads to

||W (t)||s ≤
∫ t

0

γ2||W (τ)||sdτ + tCe
− c

μ1/4l ,

with
γ2 = (1 + 3C2 + 3CC1 + C2

1 )μ.

Then solving this inequality by Gronwall, we obtain

||W (t)||s ≤ Ce
− c

μ1/4l

γ2

(eγ2t − 1)

which leads directly to the result of the Lemma.
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A Proof of Lemma 2.1

We give below an elementary proof of Lemma 2.1.
The polynomial P being irreducible on Q of degree l +1 and the polynomial

Q defined by
Q(x) =

∑
0≤j≤l

qjx
j ,

being of degree l, then by the Bezout Theorem there exist two polynomials A(x)
of degree l − 1 and B(x) of degree l, with coefficients in Q such that

A(x)P (x) + B(x)Q(x) = 1. (50)

Defining coefficients pj , 0 ≤ j ≤ l + 1, aj , 0 ≤ j ≤ l − 1 and bj , 0 ≤ j ≤ l of
polynomials P , A and B, the identity (50) becomes a linear system of 2l + 1
equations, of the form

MX = ξ0, (51)

where the unknown is X with

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aj−1

aj−2

·
a0

bl

bl−1

·
b0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ξ0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
·
·
·
·
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pl+1 0 · 0 ql 0 · · 0
pl pl+1 · · ql−1 ql 0 · ·
· · · 0 ql−2 ql−1 ql · ·
· · · pl+1 · · · · 0

p1 · · pl q0 · · · ql

p0 · · pl−1 0 q0 · · ql−1

0 p0 · pl−2 0 0 · · ·
· · · · · · · · ·
0 · 0 p0 0 · · 0 q0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The (2l+1)× (2l+1) matrix M has integer coefficients and is invertible (other-
wise it would contradict the Bezout Theorem). Hence its determinant is integer
valued and is an homogeneous polynomial of degree l + 1 in q = (q0, . . . , ql).
We may invert the system (51) by Cramer’s formulas and we observe that the
coefficients bj are rational numbers, with a common denominator of degree l+1
in q and with a numerator of degree l only (we replace in the determinant one
column containing the qj ’s by ξ0). It results that the polynomial B(x) is the
ratio of a polynomial with integer coefficients B0 of degree l in q, with an integer
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d, homogeneous polynomial of q of degree l + 1 and which is different from 0
(detM 	= 0). Now taking x = ω in (50) leads to

|Q(ω)| =
d

|B0(ω)| ,

and since d ≥ 1 and the coefficients of B0 are bounded by C ′|q|l, this completes
the proof of Lemma 2.1.

B Proof of Lemma 4.1

Assertion (ii) follows from the fact that we can group the coefficients mj −
mj+Q/2 = m′

j , and since in the Q/2− dimensional space of {m′
j , j = 1, . . . , Q/2}

the set
∑Q/2

j=1 |m′
j | = N is a union of 2Q/2 simplexes of area of order O(NQ/2−1).

To prove the part (i) (23) we observe that

Nk+l = min{|m + n|;k + l =
Q∑

j=1

(mj + nj)kj}

≤ min{|m|;k =
Q∑

j=1

mjkj} + min{|n|; l =
Q∑

j=1

njkj}

≤ Nk + Nl,

where

Nk = min
k=km

Q∑
j=1

mjkj , Nl = min
l=l n

Q∑
j=1

njkj .

We notice that N0 = 0, and N−k = Nk (each m′
j for k is just the opposite for

−k); we deduce that inequality (23) may be strict, since

0 = N0 = Nk−k < N−k + Nk = 2Nk.

The last inequality (24) is easily deduced from

k =
Q∑

j=1

mjkj

where {mj} gives precisely the “norm” Nk; which implies (since |kj | = 1)

|k| ≤
Q∑

j=1

|mj | = Nk,

and the Lemma is proved.
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C Proof of Lemma 4.2

Let u ∈ Hs, then by Cauchy–Schwarz inequality in l2(Γ) (Γ is countable) we
have ∣∣∣∣∣∑

k∈Γ

ukeik·x
∣∣∣∣∣
2

≤
(∑

k∈Γ

(1 + Nk
2)s|uk|2

)∑
k∈Γ

1
(1 + Nk

2)s

≤ ||u||2Hs

∑
k∈Γ

1
(1 + Nk

2)s
.

Now by (25) we have the following estimate∑
k∈Γ

1
(1 + Nk

2)s
≤ c1(Q)

∑
n∈N

nQ/2−1

(1 + n2)s

which is bounded when s > Q/4. Hence for s > Q/4 the series
∑

k∈Γ ukeik·x

converges absolutely and represents a continuous quasiperiodic function, the
norm (uniform norm) of which being bounded as soon as the norm in Hs is
bounded. We may proceed in the same way for the derivatives in using (24),
and show that the series ∑

k∈Γ

|k|lukeik·x

is absolutely convergent for s > Q/4+l. This ends the proof of the last assertion
of the Lemma. Let us now prove the first assertion which is necessary for our
nonlinear problem.

First step: We first use the following inequality due to (23)

(1 + N2
k+k′)s/2 ≤ 2s−1

{
(1 + N2

k)s/2 + (1 + N2
k′)s/2
}

valid for any s ≥ 1, because of (23) and a simple convexity argument (this
inequality is in fact valid for s > 0). Then the following decomposition holds

∑
K

∣∣∣∣∣ ∑
k+k′=K

ukvk′

∣∣∣∣∣
2

(1 + N2
K)s ≤ 22s−1(S1 + S2)

with

S1 =
∑
K

∣∣∣∣∣ ∑
k+k′=K

ukvk′

∣∣∣∣∣
2

(1 + N2
k)s

S2 =
∑
K

∣∣∣∣∣ ∑
k+k′=K

ukvk′

∣∣∣∣∣
2

(1 + N2
k′)s.

For symmetry reasons in the space (k,k′), it is then sufficient to estimate S1.
Let us split the bracket in the sum S1 into two terms: a sum S′

1 containing
(k,k′) such that

Nk ≤ 3Nk′ ,
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and a sum S′′
1 containing (k,k′) such that Nk > 3Nk′ . Hence we have now

S1 ≤ 2(S′
1 + S′′

1 )

with

S′
1 =

∑
K

∣∣∣∣∣∣∣∣
∑

k+k′=K,
Nk≤3Nk′

ukvk′

∣∣∣∣∣∣∣∣
2

(1 + N2
k)s,

S′′
1 =

∑
K

∣∣∣∣∣∣∣∣
∑

k+k′=K,
Nk>3Nk′

ukvk′

∣∣∣∣∣∣∣∣
2

(1 + N2
k)s.

To estimate S′
1 we use (23) which gives NK ≤ 4Nk′ , hence

1
1 + N2

k′
≤ 16

1 + N2
K

,

and, in using again Cauchy–Schwarz

∑
k+k′=K,
Nk≤3Nk′

|ukvk′ |(1 + N2
k)s/2 ≤

∑
k+k′=K,
Nk≤3Nk′

4s|ukvk′ | (1 + N2
k)s/2(1 + N2

k′)s/2

(1 + N2
K)s/2

≤ 4s

(1 + N2
K)s/2

||u||Hs
||v||Hs

.

It results that

S′
1 ≤ ||u||2Hs

||v||2Hs

∑
K

42s

(1 + N2
K)s

which, for s > Q/4 leads to

S′
1 ≤ C||u||2Hs

||v||2Hs
.

Second step: We now find a bound for S′′
1 , which is more technical, since we

split this sum into packets of increasing lengths.
Let us define

Δpu =
∑

2p≤Nk<2p+1

ukeik·x, Δ−1u = u0.

It is clear that for s > Q/4 (the series is absolutely convergent)

u =
∞∑

p=−1

Δpu.
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Moreover, it is clear from the definition that the norm of u ∈ Hs is equivalent
to ( ∞∑

p=−1

22ps||Δpu||20
)1/2

.

To estimate the sum S′′
1 , we notice that in the product uv the terms ΔpuΔqv

only take into account the wavevectors k and k′ such that

2p ≤ Nk < 2p+1, 2q ≤ Nk′ < 2q+1, Nk > 3Nk′ .

This implies
Nk′ < 2p, 2q+1 < Nk,

hence in S′′
1

ΔpuΔqv = 0, for p ≤ q.

Now, we use (for the sum in S′′
1 )

2
3
Nk ≤ NK

S′′
1 ≤ (

2
3
)2s
∑
K

∣∣∣∣∣∣∣∣
∑

k+k′=K,
Nk>3Nk′

ukvk′

∣∣∣∣∣∣∣∣
2

(1 + N2
K)s

and the right hand side is the square of the norm of the product uv computed
on terms such that Nk > 3Nk′ , k + k′ = K. We now use the equivalent norm
defined above with the decomposition in packets, hence

S′′
1 ≤ C

∞∑
j=−1

22js

∥∥∥∥∥∥Δj

⎛⎝∑
p≥0

(
p−1∑

q=−1

Δqv

)
Δpu

⎞⎠∥∥∥∥∥∥
2

0

.

Let us define Sp−1v =
∑p−1

q=−1 Δqv, then we have

Δj

(∑
p

Sp−1vΔpu

)
=

j+1∑
p=j−1

Δj(Sp−1vΔpu)2ps2−ps

hence by Cauchy–Schwarz

22js

∥∥∥∥∥Δj

(∑
p

Sp−1vΔpu

)∥∥∥∥∥
2

0

≤
⎛⎝ j+1∑

p=j−1

22(j−p)s

⎞⎠ j+1∑
p=j−1

22ps ‖Δj(Sp−1vΔpu)‖2
0

Now
‖Sp−1vΔpu‖2

0 =
∑
K

|
∑

k+k′=K,0≤Nk′<2p≤Nk<2p+1

ukvk′ |2
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and a classical computation (convolution l1 ∗ l2) using Cauchy–Schwarz gives∑
K

|
∑

k+k′=K

ukvk′ |2 ≤
∑
K

{
(
∑

k+k′=K

|vk′ ||uk|2)(
∑
k′

|vk′ |)
}

≤ (
∑
k′

|vk′ |)(
∑

k

∑
K

|vK−k||uk|2)

≤
(

(
∑
k′

|vk′ |)
)2∑

k

|uk|2)

which leads to

‖Sp−1vΔpu‖2
0 ≤ ||Δpu||20

(
(
∑
k′

|vk′ |)
)2

and since the series
∑ |vk′ | ≤ c||v||Hs

for s > Q/4, as shown at the beginning of
the proof of Lemma 4.2, we have

‖Sp−1vΔpu‖2
0 ≤ C||Δpu||20||v||2Hs

.

Finally, we obtain
j+1∑

p=j−1

22ps ‖Δj(Sp−1vΔpu)‖2
0 ≤

j+1∑
p=j−1

22ps ‖Sp−1vΔpu‖2
0

≤ C ′||v||2Hs

j+1∑
p=j−1

22ps||Δpu||20,

and

22js

∥∥∥∥∥Δj

(∑
p

Sp−1vΔpu

)∥∥∥∥∥
2

0

≤ C ′′||v||2Hs

j+1∑
p=j−1

22ps||Δpu||20,

hence

S′′
1 ≤ 3C

′′ ||v||2Hs

∞∑
p=−1

22ps||Δpu||20

≤ C1||u||2Hs
||v||2Hs

and Lemma 4.2 is proved.

D Proof of Lemma 5.5

Let us define the two sums

Π2,n =
n∑

k=0

(k!(n − k)!)4l

Π′
2,n =

n−1∑
k=1

(k!(n − k)!)4l
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we have already

Π2,0 = 1, Π2,1 = 2, Π2,2 = (2 +
1

24l
)(2!)4l,

Π′
2,2 = 1, Π′

2,3 = 2(2!)4l,

which shows that Π2,n ≤ (2 + 1
16 )(n!)4 for n = 0, 1, 2, and l ≥ 1. Now we have

for n ≥ 2

Π2,n+1

((n + 1)!)4l
− Π2,n

(n!)4l
=

n−2∑
k=2

(
k!(n − k)!

n!

)4l
{(

n + 1 − k

n + 1

)4l

− 1

}
+

+
2

(n + 1)4l
− 2

n4l
+

24l

(n(n + 1))4l
,

and since n4l − (n + 1)4l + 24l−1 < 0 for n ≥ 1 the above right hand side terms
are negative. It results that for n ≥ 2

Π2,n+1 ≤
(

(n + 1)!
n!

)4l

Πn,2,

hence
Π2,n ≤ (2 +

1
16

)(n!)4l, n ≥ 0. (52)

In the same way

Π′
2,n+1

(n!)4l
− Π′

2,n

((n − 1)!)4l
=

n−2∑
k=2

(
k!(n − k)!

n!

)4l
{(

n + 1 − k

n + 1

)4l

− 1

}
+

24l

n4l
,

hence for n ≥ 2
Π′

2,n+1

(n!)4l
≤ Π′

2,n

((n − 1)!)4l
+

24l

n4l
,

and

Π′
2,n

((n − 1!)4l
≤ 24l

(
1

(n − 1)4l
+ · · · + 1

24l

)
+ Π′

2,2

≤ 2 + 24l

(
1

(n − 1)4l
+ · · · + 1

34l

)
≤ 2 +

2
4l − 1

≤ 3.

Finally
Π′

2,n ≤ 3((n − 1!)4l for n ≥ 2. (53)

Consider now Π3,n defined by

Π3,n =
∑

k+l+r=n
k,l,r≥0

(k!l!r!)4l.
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We already have

Π3,0 = 1, Π3,1 = 3, Π3,2 = (3 +
3

24l
)(2!)4l ≤ 4(2!)4l,

In splitting the sum we obtain easily for n ≥ 3

Π3,n = Π2,n + (n!)4l +
n−1∑
r=1

(r!)4lΠ2,n−r

≤ (3 +
1
16

)(n!)4l + (2 +
1
16

)Π′
2,n

≤ (n!)4l(3 +
1
16

+ 3(2 +
1
16

)
1

n4l
)

≤ (3 +
3
16

+
9
34

)(n!)4l ≤ 4(n!)4l.

Hence
Π3,n ≤ 4(n!)4l (54)

holds for any n ≥ 0. Consider now Π′
3,n defined for n ≥ 2 by

Π′
3,n =

∑
k+l+r=n

0≤k,l,r≤n−1

(k!l!r!)4l.

We already have
Π′

3,2 = 1,

and for n ≥ 3, we obtain in the same way

Π′
3,n = Π′

2,n +
n−1∑
r=1

(r!)4lΠ2,n−r

≤
(

3 + 3(2 +
1
16

)
)

(n − 1!)4l

≤ 10(n − 1!)4l. (55)

Hence, with estimates (54) and (55), Lemma 5.5 is proved.

E Lemmas on Gevrey-1 series

Below we give elementary proofs of two useful lemmas. The interested reader
will find more general results in [28] and [27].

In the following we denote by LK′ the linear operator defined for analytic
functions v on the disc {|z| < 1/K1} by

(LK′v)(ν) =
1
ν

∫ 1/K′

0

e−
z
ν v(z)dz, K ′ > K1.
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We also use the notations

||v||0,K′ = sup
z∈(0,1/K′)

|v(z)|, ||v||1,K′ = sup
z∈(0,1/K′)

|v′(z)|,

and when v(0) = 0, we notice that (integrating by parts for the second estimate)

|(LK′v)(ν)| ≤ ||v||0,K′ , (56)∣∣∣∣∣(LK′v)(ν) −
∫ 1/K′

0

e−
z
ν v′(z)dz

∣∣∣∣∣ ≤ e−
1

K′ν ||v||0,K′ .

Then we have the following Lemmas giving estimates of the commutator of
LK′ ◦B (where B is the Borel transform) with the multiplication by ν4 and with
the mapping u → u3 in the space of Gevrey series.

Lemma E.1 Assume that u(ν) is a Gevrey-1 series, with u0 = 0, then for
ν < 1/K ′

∣∣∣(LK′ û3
)

(ν) − (LK′ û)3 (ν)
∣∣∣ ≤ e−

1
K′ν

(K ′ν)3
||û||0,K′(||û||0,K′ + ν||û||1,K′)2.

For any given Gevrey-1 series u, with u0 = 0, there is C(K ′) > 0 such that for
ν < ν0(K ′) we have the estimate∣∣∣(LK′ û3

)
(ν) − (LK′ û)3 (ν)

∣∣∣ ≤ C(K ′)e−
1

K′ν , K ′ > K1.

Lemma E.2 Assume that u(ν) is a Gevrey-1 series, with u0 = 0, then for
ν < 1/K ′ there exists C(K ′) such that∣∣(LK′Kû)(ν) − ν4LK′ û

∣∣ ≤ C(K ′)||û||0,K′e−
1

K′ν .

Proof of Lemma E.1. From the identity∫ z

0

(∫ z1

0

zk−1
1 zm−1

2 (z − z1 − z2)l

(k − 1)!(m − 1)!l!
dz2

)
dz1 =

zk+m+l

(k + m + l)!
,

from the definition (45) of the convolution product, and from the analyticity of
û in the disc {|z| < 1/K1}, we have

(LK′(û ∗ û ∗ û)) (ν) =
(
LK′ û3
)

(ν) =

=
1
ν

∫ 1/K′

0

e−
z
ν

(∫ z

0

(∫ z1

0

û′(z1)û′(z2)û(z − z1 − z2)dz2

)
dz1

)
dz.

By Fubini’s theorem and a simple change of variables, we obtain(
LK′ û3
)

(ν) =
1
ν

∫
DK′

e−
z1+z2+z3

ν û′(z1)û′(z2)û(z3)dz1dz2dz3 (57)
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where DK′ = {z1, z2, z3 > 0; z1 + z2 + z3 < 1/K ′}. Now, we have

(LK′ û)3 (ν) =
1
ν3

∫
(0,1/K′)3

e−
z1+z2+z3

ν û(z1)û(z2)û(z3)dz1dz2dz3,

and from (56) we obtain∣∣∣∣∣(LK′ û)3 (ν) − 1
ν

∫
(0,1/K′)3

e−
z1+z2+z3

ν û′(z1)û′(z2)û(z3)dz1dz2dz3

∣∣∣∣∣ ≤
≤ e−

1
K′ν ||û||20,K′(||û||0,K′ + ν||û||1,K′). (58)

Now, we observe that (0, 1/K ′)3\DK′ is such that z1 + z2 + z3 > 1/K ′, hence∣∣∣∣∣1ν
∫

(0,1/K′)3\DK′
e−

z1+z2+z3
ν û′(z1)û′(z2)û(z3)dz1dz2dz3

∣∣∣∣∣ ≤ e−
1

K′ν

ν3K ′3 ||û||0,K′(ν||û||1,K′)2.

(59)
Collecting (57), (58) and (59) the first result of Lemma E.1 is proved. Notice

that by choosing K ′′ > K ′, then for ν small enough e
− 1

K′ν
ν3K′3 ≤ e−

1
K′′ν . Since K ′

is chosen arbitrarily larger than K1, we can assert that u being given, there is
C(K ′) such that∣∣∣(LK′ û3

)
(ν) − (LK′ û)3 (ν)

∣∣∣ ≤ C(K ′)e−
1

K′ν , K ′ > K1.

Proof of Lemma E.2. By integrating by parts, we obtain

(LK′Kû)(ν) = −e−
1

K′ν
[
(Kû) + ν(Kû)′ + ν2(Kû)′′ + ν3(Kû)′′′

] |1/K′ +

+ν4(LK′ û)(ν).

Hence∣∣(LK′Kû)(ν) − ν4(LK′ û)(ν)
∣∣ ≤ e−

1
K′ν ||û||0,K′

{
ν3

K ′ +
ν2

2K ′2 +
ν

6K ′3 +
1

24K ′4

}
which proves Lemma E.2.
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de L’IHÉS, 96:199–275, 2003.
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