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Abstract We consider a general family of regularized Navier–Stokes and Magneto-
hydrodynamics (MHD) models on n-dimensional smooth compact Riemannian man-
ifolds with or without boundary, with n ≥ 2. This family captures most of the specific
regularized models that have been proposed and analyzed in the literature, including
the Navier–Stokes equations, the Navier–Stokes-α model, the Leray-α model, the
modified Leray-α model, the simplified Bardina model, the Navier–Stokes–Voight
model, the Navier–Stokes-α-like models, and certain MHD models, in addition to
representing a larger 3-parameter family of models not previously analyzed. This
family of models has become particularly important in the development of mathe-
matical and computational models of turbulence. We give a unified analysis of the
entire three-parameter family of models using only abstract mapping properties of
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the principal dissipation and smoothing operators, and then use assumptions about
the specific form of the parameterizations, leading to specific models, only when
necessary to obtain the sharpest results. We first establish existence and regularity
results, and under appropriate assumptions show uniqueness and stability. We then
establish some results for singular perturbations, which as special cases include the
inviscid limit of viscous models and the α → 0 limit in α models. Next, we show
existence of a global attractor for the general model, and then give estimates for the
dimension of the global attractor and the number of degrees of freedom in terms
of a generalized Grashof number. We then establish some results on determining
operators for the two distinct subfamilies of dissipative and non-dissipative mod-
els. We finish by deriving some new length-scale estimates in terms of the Reynolds
number, which allows for recasting the Grashof number-based results into analogous
statements involving the Reynolds number. In addition to recovering most of the ex-
isting results on existence, regularity, uniqueness, stability, attractor existence, and
dimension, and determining operators for the well-known specific members of this
family of regularized Navier–Stokes and MHD models, the framework we develop
also makes possible a number of new results for all models in the general family,
including some new results for several of the well-studied models. Analyzing the
more abstract generalized model allows for a simpler analysis that helps bring out
the core common structure of the various regularized Navier–Stokes and magneto-
hydrodynamics models, and also helps clarify the common features of many of the
existing and new results. To make the paper reasonably self-contained, we include
supporting material on spaces involving time, Sobolev spaces, and Grönwall-type
inequalities.

Keywords Navier–Stokes equations · Euler equations · Regularized
Navier–Stokes · Navier–Stokes-α · Leray-α · Modified-Leray-α · Simplified
Bardina · Navier–Stokes–Voight · Magnetohydrodynamics · MHD
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1 Introduction

The mathematical theory for global existence and regularity of solutions to the
three-dimensional Navier–Stokes equations (3D NSE) is considered one of the most
challenging unsolved mathematical problems of our time (Devlin 2002). It is also
well known that direct numerical simulation of NSE for many physical applications
with high Reynolds number flows is intractable even using state-of-the-art numer-
ical methods on the most advanced supercomputers available. Over the last three
decades, researchers have developed turbulence models as an attempt to side-step
this simulation barrier; the aim of turbulence models is to capture the large, energetic
eddies without having to compute the smallest dynamically relevant eddies, by in-
stead modeling the effects of small eddies in terms of the large scales in both NSE
and magnetohydrodynamics (MHD) flows.
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In 1998, the globally well-posed 3D Navier–Stokes-α (NS-α) equations (also
known as the viscous Camassa–Holm equations and Lagrangian averaged Navier–
Stokes-α model) was proposed as a subgrid scale turbulence model (Chen et
al. 1998, 1999a, 1999b; Foias et al. 2001, 2002; Holm et al. 1998; Marsden
and Shkoller 2001; Mohseni et al. 2003) (see also Zhou and Fan 2009c for n-
dimensional viscous Camassa–Holm equations in the whole space). The inviscid and
unforced version of 3D NS-α was introduced in Holm et al. (1998) based on Hamil-
ton’s variational principle subject to the incompressibility constraint divu = 0 (see
also Marsden and Shkoller 2003). By adding the correct viscous term and the forc-
ing f in an ad hoc fashion, the authors in Chen et al. (1998, 1999a, 1999b) and
Foias et al. (2002) obtain the NS-α system. In Chen et al. (1998, 1999a, 1999b), it
was found that the analytical steady state solutions for the 3D NS-α model com-
pared well with averaged experimental data from turbulent flows in channels and
pipes for a wide range of large Reynolds numbers. It was this fact which led
Chen et al. (1998, 1999a, 1999b) to suggest that the NS-α model be used as a
closure model for the Reynolds-averaged equations. Since then, it has been found
that there is in fact a whole family of globally well-posed ‘α’-models which yield
similarly successful comparisons with empirical data; among these are the Clark-α
model (Cao et al. 2005), the Leray-α model (Cheskidov et al. 2005), the modified
Leray-α model (Ilyin et al. 2006), and the simplified Bardina model (Cao et al. 2006;
Layton and Lewandowski 2006).

In addition to the early success of the α-models mentioned above, the validity of
the original α-model (namely, the NS-α model) as a subgrid scale turbulence model
was also tested numerically in Chen et al. (1999c); Mohseni et al. (2003). In the nu-
merical simulation of the 3D NS-α model, Chen et al. (1999c); Geurts and Holm
(1999, 2003); Mohseni et al. (2003) showed that the large scales of motion bigger
than α (the length scale associated with the width of the filter which regularizes the
velocity field) in a turbulent flow are captured (see also Lunasin et al. 2007, 2008
for the 2D case and Cao and Titi 2009 for the rate of convergence of the 2D α-
models to NSE). For scales of motion smaller than the length scale α, the energy
spectra decays faster in comparison to that of NSE. This numerical observation has
been justified analytically in Foias et al. (2001). In direct numerical simulation, the
fast decay of the energy spectra for scales of motion smaller than the supplied fil-
ter length represents reduced grid requirements in simulating a flow. The numeri-
cal study of Chen et al. (1999c) gives the same results. The same results hold as
well in the study of the Leray-α model in Cheskidov et al. (2005); Geurts and Holm
(1999).

The NS-α turbulence model has also been implemented in a primitive equation
ocean model (see Hecht et al. 2008a, 2008b; Petersen et al. 2008). Their simulations
with the NS-α in an idealized channel domain was shown to produce statistics which
resembles doubling of resolution. For other applications of α regularization tech-
niques, see Bardos et al. (2008) for application to the quasi-geostrophic equations,
Khouider and Titi (2008) for application to Birkhoff–Rott approximation dynamics
of vortex sheets of the 2D Euler equations, and Linshiz and Titi (2007); Mininni et al.
(2005a, 2005b) for applications to incompressible magnetohydrodynamics equations.
In Cao et al. (2008), an α-regularized nonlinear Schrödinger equation was proposed
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for the purpose of a numerical regularization that is hoped to shed some light on the
profile of the blow-up solutions to the nonlinear Schrödinger equations. Also, in Bhat
et al. (2005), the authors extend the derivation of the inviscid version of NS-α (called
Euler-α, also known as Lagrangian averaged Euler-α) to barotropic compressible
flows.

Perhaps the newest addition to the family of α turbulence model is the Navier–
Stokes–Voight (NSV) equations proposed in Cao et al. (2006), which turn out to
also model the dynamics of Kelvin–Voight viscoelastic incompressible fluids as in-
troduced in Oskolkov (1973, 1980). The statistical properties of 3D NSV have been
studied in Levant et al. (2009). The long-term asymptotic behavior of solutions is
studied in Kalantarov et al. (2009); Kalantarov and Titi (2009). In Ebrahimi et al.
(2007), the NSV was used in the context of image inpainting. The numerical study of
NSV in Ebrahimi et al. (2007) suggests that the NSV, in comparison with NSE, can
provide a more efficient numerical process when automating the inpainting procedure
for certain classes of images. It is worthwhile to note that the inviscid NSV coincide
with the inviscid simplified Bardina model which is shown in Cao et al. (2006) to
be globally well-posed. This new regularization technique for Euler equations pre-
vents the risk of damping too much energy in the small scales which could lead to
unrealistic numerical results.

As a representative of the more general model considered in this paper (described
in detail in Sect. 2), we consider first the following somewhat simpler constrained
initial value problem on an 3-dimensional flat torus T

3:

∂tu + Au + (Mu · ∇)(Nu) + χ∇(Mu)T · (Nu) + ∇p = f (x),

∇ · u = 0, (1.1)

u(0) = u0,

where A, M , and N are bounded linear operators having certain mapping proper-
ties, and where χ is either 1 or 0. As in prior work on regularized models of the
Navier–Stokes, and Euler equations, we employ a single real parameter θ to control
the strength of the dissipation operator A. We then introduce two parameters which
control the degree of smoothing in the operators M and N , namely θ1 and θ2, re-
spectively, when χ = 0, and θ2 and θ1, respectively, when χ = 1. Some examples of
operators A, M , and N which satisfy the mapping assumptions we will need in this
paper are

A = (−Δ)θ , M = (
I − α2Δ

)−θ1, N = (
I − α2Δ

)−θ2, (1.2)

for fixed positive real number α and for specific choices of the real parameters θ , θ1,
and θ2. However, we emphasize that the abstract mapping assumptions we employ
are more general, and as a result do not require any specific form of the parameteri-
zations of A, M , and N ; this abstraction allows (1.1) to recover most of the existing
regularization models that have been previously studied, as well as to represent a
much larger three-parameter family of models that have not been explicitly studied in
detail. As a result, the system in (1.1) includes the Navier–Stokes equations and the
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Table 1 Some special cases of the model (1.1) with α > 0, and with S = (I − αΔ)−1 and Sθ2 =
[I + (−αΔ)θ2 ]−1

Model NSE Leray-α ML-α SBM NSV NS-α NS-α-like

A −νΔ −νΔ −νΔ −νΔ −νΔS −νΔ ν(−Δ)θ

M I S I S S S Sθ2

N I I S S S I I

χ 0 0 0 0 0 1 1

various previously studied α turbulence models as special cases, namely, the Navier–
Stokes-α model (Chen et al. 1998, 1999a, 1999b; Foias et al. 2001, 2002; Holm et al.
1998; Mohseni et al. 2003), Leray-α model (Cheskidov et al. 2005), modified Leray-
α model (ML-α) (Ilyin et al. 2006), simplified Bardina model (SBM) (Cao et al.
2006), Navier–Stokes–Voight (NSV) model (Kalantarov et al. 2009; Kalantarov and
Titi 2009; Oskolkov 1973, 1980), and the Navier–Stokes-α-like (NS-α-like) mod-
els (Olson and Titi 2007). For clarity, some of the specific well-known regularization
models recovered by (1.1) for particular choices of the operators A, M , N , and χ are
listed in Table 1.

Our main goal in this paper is to develop well-posedness and long-time dynamics
results for the entire three-parameter family of models, and then subsequently recover
the existing results of this type for the specific regularization models that have been
previously studied. Along these lines, we first establish a number of results for the
entire three-parameter family, including results on existence, regularity, uniqueness,
stability, linear, and nonlinear perturbations (with the inviscid and α → 0 limits as
special cases), existence and finite dimensionality of global attractors, and bounds on
the number of determining degrees of freedom. Elaborating on the latter a bit more,
for θ > 0, we derived a lower bound for the number of degrees of freedom m given by
m ≥ Gn/θ , where G is the Grashof number and n is the spatial dimension. A lower
bound for the nondissipative case is also established. These results give necessary
and/or sufficient conditions on the ranges of the three parameters for dissipation and
smoothing in order to obtain each result, and we indicate where appropriate which
particular regularization models are covered in the allowable parameter ranges for
each result. In the final section of the paper, we develop some tools for relating the
Grashof number-based results to analogous statements involving the Reynolds num-
ber. Analyzing a generalized model based on abstract mapping properties of the prin-
cipal operators A, M , and N allows for a simpler analysis that helps bring out the
core common structure of the various regularized NSE (as well as regularized mag-
netohydrodynamics) models, and also helps clarify the common features of many of
the existing and new results.

In Olson and Titi (2007), a two-parameter family of models was studied, corre-
sponding to a subset of those studied here, which we will call here the NS-α-like
models. In order to describe this subset of models, let θ and θ2 be two nonnegative
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parameters, and consider the following system on T
3:

∂tu + (−Δ)θu + (Mu · ∇)u + ∇(Mu)T · u + ∇p = f,

∇ · u = 0,

∇ · (Mu) = 0,

u(0) = u0,

(1.3)

where M = (I + (−α2Δ)θ2)−1. This family of NS-α-like model equations interpo-
lates between incompressible hyper-dissipative equations and the NS-α models when
varying the two nonnegative parameters θ and θ2. This is a special case of (1.1) with
θ1 = 0 and χ = 1, with the degree of dissipation controlled by the parameter θ and
the degree of nonlinearity controlled by only one parameter θ2. In this particular case,
the NSE are obtained when θ = 1 and θ2 = 0, while the NS-α model is obtained when
θ = θ2 = 1. In Olson and Titi (2007), sufficient conditions on the relationship between
θ and θ2 are established to guarantee global well-posedness and global regularity of
solutions. Our results here can be viewed as generalizing the global well-posedness
and regularity results in Olson and Titi (2007) (see also Zhou and Fan 2009c) to a
larger three-parameter family using a more abstract framework that does not impose
a specific form for the parameterizations, and then also establishing a number of addi-
tional new results for the larger three-parameter family, including results on stability,
linear and nonlinear perturbations, existence and dimension of global attractors, and
on determining operator bounds.

As a subset of the results mentioned above, we list some of the new results that
we have obtained for the family of α models as a special case of the more gen-
eralized equation (1.1). As far as we know, these results have not been previously
established in the literature. The global existence and uniqueness of solutions for the
inviscid α subgrid scale turbulence models has been established only for the SBM
(Cao et al. 2006). Here, as a consequence of a more general result, we have estab-
lished the global existence of a weak solution to the inviscid Leray-α-model of tur-
bulence. In Foias et al. (2002), the convergence of weak solutions of the NS-α to a
weak solution of the NSE as the parameter α → 0 was established. Here, we have
established this convergence result as well for the NS-α-like equations. In addition,
we have established for the NS-α-like equations, the existence and finite dimension-
ality of its global attractor, and determining operator bounds. In the case of Leray-α,
ML-α, and SBM, the results on determining operator bounds also appear to be new.

It is important to note that the general framework here allows for the development
of results for certain (regularized or un-regularized) magnetohydrodynamics (MHD)
models. The basic MHD system has the form

∂tu − νΔu + (u · ∇)u − (h · ∇)h = ∇π − 1

2
∇|h|2,

∂th − ηΔh + (u · ∇)h − (h · ∇)u = 0, (1.4)

∇ · h = ∇ · u = 0,

where the unknowns are the velocity field u, the magnetic field h, and the pressure
π , and where ν > 0 and η > 0 denote the constant kinematic viscosity and constant
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magnetic diffusivity, respectively. Our global well-posedness results include, for ex-
ample, a particular regularized MHD model

∂tu − νΔu + (Mu · ∇)u − (Mh · ∇)h = ∇π − 1

2
∇|h|2,

(1.5)
∂th − ηΔh + (Mu · ∇)h − (Mh · ∇)u = 0,

supplemented with several divergence-free and boundary conditions, where M =
(I − α2Δ)−1. Note that the system (1.5) is different from the 3D Leray-α-MHD
models proposed in Linshiz and Titi (2007), where global well-posedness result is
still open as in the case of the original MHD equations. It is also different in nature
from the MHD models proposed in Zhou and Fan (2009a), Zhou and Fan (2009b).
For the 3D Leray-α-MHD model proposed in Linshiz and Titi (2007) the magnetic
field h is not regularized. Another regularized model whose global well-posedness re-
sult is covered here is the following modified version of the MHD-α model proposed
in Linshiz and Titi (2007):

∂tu − νΔu + (Mu · ∇)u + ∇(Mu)T · u − (Mh · ∇)h = ∇π − 1

2
∇|h|2,

(1.6)
∂th − ηΔh + (Mu · ∇)h − (Mh · ∇)u = 0,

supplemented with several divergence-free and boundary conditions. Again, the
above system is different from the original version of the MHD-α system proposed in
Linshiz and Titi (2007), which does not have a regularization on the magnetic field h.
For the original MHD-α system, global well-posedness is established in Linshiz and
Titi (2007). Here, we would like to stress that our current framework is best suited
to MHD models where the velocity field u and the magnetic field h are treated on an
equal footing as far as the regularization is concerned, so we cannot obtain sharpest
results in our framework for the systems like the ones proposed in Linshiz and Titi
(2007). However, our framework requires only minor modification to include these
models; the function spaces become product spaces, and the principal dissipation and
smoothing operators become block operators on these product spaces, typically with
block diagonal form. It is worthwhile to note here that filtering the magnetic field, as
is done in Mininni et al. (2005a, 2005b), can be interpreted as introducing hypervis-
cosity for the filtered magnetic field. This observation was first introduced in Linshiz
and Titi (2007), and smoothing the magnetic field was thought to yield unnecessary
extra dissipation added to the system.

Since the α models of turbulence were intended as a basis for regularizing numer-
ical schemes for simulating turbulence, it is important to verify whether the ad hoc
smoothed equations inherit some of the original properties of the 3D MHD equations.
In particular, one would like to see if the ideal (ν = η = 0) quadratic invariants of the
smoothed MHD system can be identified with the ideal invariants of the original 3D
MHD system under suitable boundary conditions. There are three ideal quadratic in-
variants in 3D MHD (e.g., under rectangular periodic boundary conditions or in the
whole space), namely, the energy E = 1

2

∫
Ω

|u(x)|2 + |h(x)|2 dx, the cross helicity
hc = 1

2

∫
Ω

u(x) · h(x)dx, and the magnetic helicity hM = 1
2

∫
Ω

a(x) · h(x)dx, where
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a(x) is the vector potential so that h(x) = ∇ × a(x). In the case of the 3D MHD-α
equations in Linshiz and Titi (2007), the three corresponding ideal invariants are the
energy Eα = 1

2

∫
Ω

u(x) · Mu(x) + |h(x)|2 dx (which reduce, as α → 0, to the con-
served energy of the 3D MHD equations), the cross helicity hα

c = 1
2

∫
Ω

u(x) ·h(x)dx,
and the magnetic helicity hα

M = 1
2

∫
Ω

a(x) · h(x)dx. For our system in (1.5), the cor-
responding ideal invariants are the energy Eα = 1

2

∫
Ω

|u(x)|2 + |h(x)|2 dx, and the
cross helicity hα

c = 1
2

∫
Ω

u(x) · h(x)dx. Currently, we are unable to identify a con-
served quantity in the ideal version of (1.5) which correspond to the magnetic helicity
in the 3D MHD system. Similar problems arise in the 3D MHD-Leray-α equations
introduced in Linshiz and Titi (2007). When both the magnetic field and the veloc-
ity field are filtered as it is done in Mininni et al. (2005a), the corresponding ideal
quadratic invariants are Eα = 1

2

∫
Ω

u(x) ·Mu(x)+h(x) ·Mh(x)dx, the cross helicity
hα

c = 1
2

∫
Ω

u(x) ·Mh(x)dx, and the magnetic helicity hα
M = 1

2

∫
Ω

Ma(x) ·Mh(x)dx.
The remainder of the paper is structured as follows. In Sect. 2, we establish our

notation and give some basic preliminary results for the operators appearing in the
general regularized model. In Sect. 3, we build some well-posedness results for the
general model; in particular, we establish existence results (Sect. 3.1), regularity re-
sults (Sect. 3.3), and uniqueness and stability results (Sect. 3.2). In Sect. 4, we es-
tablish some results for singular perturbations, which as special cases include the
inviscid limit of viscous models and the α → 0 limit in α models; this involves
a separate analysis of the linear (Sect. 4.1) and nonlinear (Sect. 4.2) terms. These
well-posedness and perturbation results are based on energy methods. In Sect. 5, we
show existence of a global attractor for the general model by dissipation arguments
(Sect. 5.1), and then by employing the classical approach from Temam (1988), give
estimates for the dimension of the global attractor (Sect. 5.2). In Sect. 6, we establish
some results on determining operators for the two distinct subfamilies of dissipative
(Sect. 6.1) and nondissipative (Sect. 6.2) models, with the help of certain general-
izations of the techniques used, e.g., in Foias et al. (1983); Jones and Titi (1993);
Holst and Titi (1997); Kalantarov and Titi (2009). Since the results in Sect. 6 are
(naturally) given in terms of the generalized Grashof number, we finish in Sect. 7
by developing some new results on length-scale estimates in terms of the Reynolds
number, which allows for relating the Grashof number-based results in the paper to
analogous statements involving the Reynolds number.

To make the paper reasonably self-contained, in Appendix A we develop some
supporting material on Grönwall-type inequalities (Appendix A.1), spaces involving
time (Appendix A.2), and Sobolev spaces (Appendix A.3).

2 Notation and Preliminary Material

Let Ω be an n-dimensional smooth compact manifold with or without boundary and
equipped with a volume form, and let E → Ω be a vector bundle over Ω equipped
with a Riemannian metric. With C∞(E) denoting the space of smooth sections of E,
let V ⊆ C∞(E) be a linear subspace, let A : V → V be a linear operator, and let B :
V × V → V be a bilinear map. At this point, V is conceived to be an arbitrary linear
subspace of C∞(E); however, later on we will impose restrictions on V implicitly
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through various conditions on certain operators such as A. Assuming that the initial
data u0 ∈ V , and forcing term f ∈ C∞(0, T ; V ) with T > 0, consider the following
equation:

∂tu + Au + B(u,u) = f,

u(0) = u0,
(2.1)

on the time interval [0, T ]. Bearing in mind the model (1.1), we are mainly interested
in bilinear maps of the form

B(v,w) = B̄(Mv,Nw), (2.2)

where M and N are linear operators in V that are in some sense regularizing and are
relatively flexible, and B̄ is a bilinear map fixing the underlying nonlinear structure
of the equation. In the following, let P : C∞(E) → V be the L2-orthogonal projector
onto V .

Example 2.1

(a) When Ω is a closed Riemannian manifold, and E = T Ω the tangent bundle, an
example of V is Vper ⊆ {u ∈ C∞(T Ω) : divu = 0}, a subspace of the divergence-
free functions. The space of divergence free periodic functions with vanishing
mean on a torus T

n is a special case of this example. In this case, one typically
has A = (−Δ)θ , M = (I − α2Δ)−θ1 , and N = (I − α2Δ)−θ2 .

(b) When Ω is a compact Riemannian manifold with boundary, and again E = T Ω

the tangent bundle, a typical example of V is Vhom = {u ∈ C∞
0 (T Ω) : divu = 0}

the space of compactly supported divergence-free functions. In this case, we keep
the operators A = (−PΔ)θ , M = (I − α2PΔ)−θ1 , and N = (I − α2PΔ)−θ2 , in
mind as the operators that one would typically consider.

(c) In either of the above two examples, one can consider as V the product spaces
Vper × Vper and Vhom × Vhom, which are encountered, e.g., in magnetohydrody-
namics models, cf. Example 2.2 below. For the operators A, M , and N , we would
have the corresponding block operators on the product space V for the above two
examples, acting diagonally.

Example 2.2

(a) In (a) or (b) of the Example 2.1 above, the bilinear map B̄ can be taken to be

B̄1(v,w) = P
[
(v · ∇)w

]
, (2.3)

which corresponds to the models with χ = 0 as discussed in Sect. 1.
(b) Again in (a) or (b) of Example 2.1 above, B̄ can be taken to be

B̄2(v,w) = P
[
(w · ∇)v + (∇wT

)
v
]
, (2.4)

which corresponds to the models with χ = 1 as discussed in Sect. 1.
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(c) An example of B that cannot be written in the form (2.2) is the bilinear map for
the Clark-α model, which is

Bc(v,w) = B̄1(Nv,w) + B̄1(w,Nv) − B̄1(Nv,Nw) − αB̄1
(∇jNv,∇jNw

)
,

where N = (I − α2PΔ)−1, and where the Einstein summation convention is
assumed. Note that for this bilinear map, one only has 〈Bc(v, v),Nv〉 = 0 for
any v ∈ Vper or v ∈ Vhom, in contrast to the examples B̄1 and B̄2 which are well
known to have stronger antisymmetry properties, cf. Proposition 2.5(a).

(d) The MHD system (1.4) has the bilinear map

B̄3(v,w) = (
B̄1(v1,w1) − B̄1(v2,w2), B̄1(v1,w2) − B̄1(v2,w1)

)
, (2.5)

where v = (v1, v2) and w = (w1,w2) are elements of either Vper × Vper or Vhom ×
Vhom. The bilinear map for (1.5) is a special case of B3(v,w) = B̄3(Mv,Nw),
with M and N having the form M = diag(M1,M1) and N = I . Another special
case of B3 is the bilinear form for the Leray-α-MHD model proposed in Linshiz
and Titi (2007), where M and N have the form M = diag(M1, I ) and N = I .

(e) The MHD-α model (1.6) has the bilinear map of the form

B̄4(v,w) = (
B̄2(v1,w1) − B̄1(v2,w2), B̄1(v1,w2) − B̄1(v2,w1)

)
. (2.6)

The bilinear map for (1.6) is a special case of B4(v,w) = B̄4(Mv,Nw), with
M and N having the form M = diag(M1,M1) and N = I . Another special case
of B4 is the bilinear form for the MHD-α model proposed in Linshiz and Titi
(2007), where M and N have the form M = diag(M1, I ) and N = I .

(f) More generally, one can consider the bilinear maps of the form

B̄5(v,w) = B̄i,j,k(v,w) = (
B̄i(v1,w1) − B̄j (v2,w2), B̄k(v1,w2) − B̄j (v2,w1)

)
,

where i, j, k ∈ {1,2}. This class includes the above examples (d) and (e).

To refer to the above examples later on, let us introduce the shorthand notation:

Bi(v,w) = B̄i(Mv,Nw), i = 1, . . . ,5. (2.7)

As usual, we will study (2.1) by extending it to function spaces that have weaker
differentiability properties. To this end, we interpret (2.1) in distribution sense, and
need to continuously extend A and B to appropriate smoothness spaces. Namely, we
employ the spaces V s = closHs V , which will informally be called Sobolev spaces in
the following. The pair of spaces V s and V −s are equipped with the duality pairing
〈·, ·〉, that is, the continuous extension of the L2-inner product on V 0. Moreover, we
assume that there is a self-adjoint positive operator Λ such that Λs : V s → V 0 is
an isometry for any s ∈ R. For arbitrary real s, assume that A, M , and N can be
continuously extended so that

A : V s → V s−2θ , M : V s → V s+2θ1 , and N : V s → V s+2θ2, (2.8)
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are bounded operators. We will assume θ ≥ 0; however, there will not be any
a priori sign restriction on θ1 and θ2. We remark that s in (2.8) is assumed to be
arbitrary for the purposes of the discussion in this section, and that it is of course
sufficient to assume (2.8) for a limited range of s for most of the results in this pa-
per.

Remark 2.3 Note that in this framework the best value for θ1 is θ1 = 0 for both the
Leray-α-MHD model and the MHD-α model as proposed in Linshiz and Titi (2007),
since those models have M = (M1, I ), cf. Example 2.2(d) and (e). It is possible to
refine our analysis by considering spaces such as V s × V r instead of V s × V s .

We assume that A and N are both self-adjoint, and coercive in the sense that for
β ∈ R,

〈
Av,Λ2βv

〉 ≥ cA‖v‖2
θ+β − CA‖v‖2

β, v ∈ V θ+β, (2.9)

with cA = cA(β) > 0, and CA = CA(β) ≥ 0, and that

〈Nv,v〉 ≥ cN‖v‖2−θ2
, v ∈ V −θ2, (2.10)

with cN > 0. We also assume that (2.9) is valid for β = −θ2 with Λ2β replaced
by N . Note that if θ = 0, (2.9) is strictly speaking not coercivity and follows from
the boundedness of A, and note also that (2.10) implies the invertibility of N . For
clarity, we list in Table 2 the corresponding values of the parameters and bilinear
maps discussed above for special cases listed in Table 1.

We denote the trilinear form b(u, v,w) = 〈B(u, v),w〉, and similarly the forms b̄,
bi , and b̄i , i = 1, . . . ,5, following Example 2.2 and (2.7). We consider the following
weak formulation of (2.1): Find u ∈ L1

loc(0, T ;V s) for some s such that

∫ T

0

(−〈
u(t), ẇ(t)

〉 + 〈
Au(t),w(t)

〉 + b
(
u(t), u(t),w(t)

) − 〈
f (t),w(t)

〉)
dt = 0,

u(0) = u0,

(2.11)

for any w ∈ C∞
0 (0, T ; V ). Here, the dot over a variable denotes the time derivative.

Table 2 Values of the parameters θ, θ1 and θ2, and the particular form of the bilinear map B for some
special cases of the model (2.1). (The bilinear maps B1 and B2 are as in (2.3)–(2.4), (2.7).) Each of the
NSE models has a corresponding MHD analogue

Model NSE Leray-α ML-α SBM NSV NS-α NS-α-like

θ 1 1 1 1 0 1 θ

θ1 0 1 0 1 1 0 0

θ2 0 0 1 1 1 1 θ2

B B1 B1 B1 B1 B1 B2 B2
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The left-hand side of the first equation in (2.11) is well defined if u ∈ L2(0, T ;V s),
f ∈ L1(0, T ;V s′

), and b : V s ×V s ×V γ → R is bounded for some s, s′, γ ∈ R. The
second equation makes sense if u ∈ C(0, ε;V s̄) for some ε > 0 and s̄ ∈ R. However,
the following lemma shows that the latter condition is implied by the first equation.

Lemma 2.4 Let X ⊂ L2(0, T ;V s) be the set of functions that satisfy the first equa-
tion in (2.11). Let f ∈ L1(0, T ;V s−2θ ), and let b : V s × V s × V 2θ−s → R be
bounded. Then we have X ⊂ C(0, T ;V s−2θ ).

Proof If u ∈ X , we have u̇ ∈ L1(0, T ;V s−2θ ); and so Temam (1977, Lemma 3.1.1)
implies that u ∈ C(0, T ;V s−2θ ). �

In concluding the preliminary material in this section, we state the following result
on the trilinear forms b̄i , i = 1, . . . ,5, which are the main concrete examples for the
trilinear form b̄. Recall that b(u, v,w) = b̄(Mu,Nv,w).

Proposition 2.5

(a) The trilinear forms b̄i , i = 1, . . . ,5, are antisymmetric in their second and third
variables:

b̄i (w, v, v) = 0, w, v ∈ V , i = 1, . . . ,5, (2.12)

where V is one of the appropriate spaces in Example 2.1.
(b) The trilinear form b̄1 : V σ1 × V σ2 × V σ3 → R is bounded provided that

σ1 + σ2 + σ3 >
n + 2

2
, (2.13)

and that for some k ∈ {0,1},
σ2 + σ3 ≥ 1, σ1 + σ3 ≥ k, σ1 + σ2 ≥ 1 − k. (2.14)

If the above three conditions are satisfied, and if σi is a nonpositive integer for
some i ∈ {1,2,3}, then the inequality in (2.13) can be replaced by the nonstrict
version of the inequality. The nonstrict inequality is also allowed if for some
k ∈ {0,1},

σ1 ≥ 0, σ2 ≥ k, σ3 ≥ 1 − k. (2.15)

(c) The trilinear form b̄2 : V σ1 × V σ2 × V σ3 → R is bounded provided that (2.13)
holds and in addition that

σ2 + σ3 ≥ 0, σ1 + σ3 ≥ 1, σ1 + σ2 ≥ 1. (2.16)

If the above three conditions are satisfied, and if σi is a nonpositive integer for
some i ∈ {1,2,3}, then the inequality in (2.13) can be replaced by the nonstrict
version of the inequality. The nonstrict inequality is also allowed if

σ1 ≥ 1, σ2 ≥ 0, σ3 ≥ 0. (2.17)
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(d) The trilinear form b̄3 : V σ1 × V σ2 × V σ3 → R is bounded under the same condi-
tions on σ1, σ2, and σ3 that are given in (b).

(e) The trilinear forms b̄4, b̄5 : V σ1 × V σ2 × V σ3 → R are bounded provided that
(2.13) holds and in addition that

σ2 + σ3 ≥ 1, σ1 + σ3 ≥ 1, σ1 + σ2 ≥ 1. (2.18)

If the above three conditions are satisfied, and if σi is a non-positive integer for
some i ∈ {1,2,3}, then the inequality in (2.13) can be replaced by the nonstrict
version of the inequality. The nonstrict inequality is also allowed if for some
k ∈ {0,1},

σ1 ≥ 1, σ2 ≥ k, σ3 ≥ 1 − k. (2.19)

Proof The antisymmetricity of b̄1, and b̄2 is well known, and the boundedness of B1
is immediate from Lemma A.3. The antisymmetricity of b̄5 (which a fortiori implies
that of b̄3 and b̄4) can be seen from

b̄5(w,v, v) = b̄i (w1, v1, v1) − b̄j (w2, v2, v1) + b̄k(w1, v2, v2) − b̄j (w2, v1, v2),

where i, j, k ∈ {1,2}. Part (b) is proven by applying Lemma A.3 to each of the fol-
lowing two representations:

b̄1(u, v,w) = 〈
ui∇iv

k,wk

〉 = 〈
uivk,∇iwk

〉
.

Part (c) is proven by applying Lemma A.3 to

b̄2(u, v,w) = 〈
vi∇iu

k + ui∇kvi,wk

〉 = 〈
vi∇iu

k + ∇k
(
uivi

) − vi∇kui,wk

〉

= 〈
vi∇iu

k − vi∇kui,wk

〉
.

To complete the proof, (d) and (e) follow from parts (b) and (c). �

3 Well-posedness Results

Similar to the Leray theory of NSE, we begin the development of a solution theory for
the general 3-parameter family of regularized Navier–Stokes and MHD models with
clear energy estimates that will be used to establish existence and regularity results,
and under appropriate assumptions show uniqueness and stability. To reinforce which
existing results we recover in this general unified analysis, we give the corresponding
simplified results that have been established previously in the literature for the special
cases listed in Table 1, at the end of the proof of every theorem.

3.1 Existence

In this subsection, we establish sufficient conditions for the existence of weak so-
lutions to the problem (2.11). By a weak solution, we mean a solution satisfying
u ∈ L2(0, T ;V θ−θ2) and u̇ ∈ L1(0, T ;V γ ) for some γ ∈ R.
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Theorem 3.1

(a) Let the following conditions hold.
(i) b : V σ1 × V σ2 × V γ → R is bounded for some σi ∈ [−θ2, θ − θ2], i = 1,2,

and γ ∈ [θ + θ2,∞) ∩ (θ2,∞).
(ii) b(v, v,Nv) = 0 for any v ∈ V θ−θ2 .

(iii) b : V σ̄1 × V σ̄2 × V γ̄ → R is bounded for some σ̄i < θ − θ2, i = 1,2, and
γ̄ ≥ γ .

(iv) u0 ∈ V −θ2 , and f ∈ L2(0, T ;V −θ−θ2), T > 0.
Then there exists a solution u ∈ L∞(0, T ;V −θ2)∩L2(0, T ;V θ−θ2) to (2.11) sat-
isfying

u̇ ∈ Lp
(
0, T ;V −γ

)
, p =

{
min{2, 2θ

σ1+σ2+2θ2
}, if θ > 0,

2, if θ = 0.

(b) With some β ≥ −θ2, let the following conditions hold.
(i) b : V β × V β × V θ−β → R is bounded.

(ii) u0 ∈ V β , and f ∈ L2(0, T ;V −θ+β), T > 0.
(iii) b : V σ × V σ × V γ → R is bounded for some σ < θ + β , and γ ≥ θ − β .

Then there exist T ∗(u0) = T ∗(‖u0‖β) > 0 and a local solution u ∈ L∞(0, T ∗;V β)∩
L2(0, T ∗;V θ+β) to (2.11).

Remark 3.2

(a) Let θ + θ1 > 1
2 . Then from Proposition 2.5, the trilinear forms b1 and b3 fulfill

the hypotheses of (a) for −γ ≤ θ − θ2 − 1 with −γ < min{2θ + 2θ1 − n+2
2 , θ −

θ2 + 2θ1, θ + θ2 − 1}. Note that in particular this gives the global existence of a
weak solution for the inviscid Leray-α model. As far as we know, this result has
not been reported previously.

(b) Let θ + 2θ1 ≥ k, θ + 2θ2 ≥ 1, β > n+2
2 − θ − 2(θ1 + θ2), and β ≥ 1−k

2 − θ1 − θ2,
for some k ∈ {0,1}. Then the trilinear forms b1 and b3 satisfy the hypothesis
of (b).

Remark 3.3

(a) Let θ + θ1 > 1
2 . Then the trilinear form b2 fulfills the hypotheses of (a) for −γ ≤

θ − θ2 − 1 with −γ < min{2θ + 2θ1 − n+2
2 , θ − θ2 + 2θ1 − 1, θ + θ2}.

(b) The trilinear form b2 satisfies the hypothesis of (b) for β > n+2
2 − θ − 2(θ1 + θ2)

with β ≥ 1
2 − θ1 − θ2 provided θ + 2θ1 ≥ 1 and θ + 2θ2 ≥ 0.

Remark 3.4

(a) Let θ + θ1 > 1
2 . Then the trilinear forms b4 and b5 fulfill the hypotheses of (a) for

−γ ≤ θ − θ2 − 1 with −γ < min{2θ + 2θ1 − n+2
2 , θ − θ2 + 2θ1 − 1, θ + θ2 − 1}.

(b) Let θ + 2θ1 ≥ 1, θ + 2θ2 ≥ 1, β > n+2
2 − θ − 2(θ1 + θ2), and β ≥ 1

2 − θ1 − θ2.
Then the trilinear forms b1 and b3 satisfy the hypothesis of (b).
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Proof of Theorem 3.1 Let {Vm : m ∈ N} ⊂ V θ−θ2 be a sequence of finite dimensional
subspaces of V θ−θ2 such that

(1) Vm ⊂ Vm+1 for all m ∈ N.
(2)

⋃
m∈N

Vm is dense in V θ−θ2 .
(3) For m ∈ N, with Wm = NVm ⊂ V θ+θ2 , the projector Pm : V θ−θ2 → Vm defined

by

〈Pmv,wm〉 = 〈v,wm〉, wm ∈ Wm, v ∈ V,

is uniformly bounded as a map V −γ → V −γ .
Such a sequence can be constructed, e.g., by using the eigenfunctions of the isom-

etry Λ1+θ : V 1+θ−θ2 → V −θ2 .
Consider the problem of finding um ∈ C1(0, T ;Vm) such that for all wm ∈ Wm

〈u̇m,wm〉 + 〈Aum,wm〉 + b(um,um,wm) = 〈f,wm〉,
〈um(0),wm〉 = 〈u0,wm〉. (3.1)

Upon choosing a basis for Vm, the above becomes an initial value problem for a
system of ODE’s, and moreover since N is invertible by (2.10), the standard ODE
theory gives a unique local-in-time solution. Furthermore, this solution is global if its
norm is finite at any finite time instance.

The second equality in (3.1) gives

cN

∥∥um(0)
∥∥2

−θ2
≤ 〈

um(0),Num(0)
〉 = 〈

u(0),Num(0)
〉 ≤ ∥∥u(0)

∥∥−θ2

∥∥Num(0)
∥∥

θ2
,

so that
∥∥um(0)

∥∥−θ2
≤ ‖N‖−θ2;θ2

cN

∥∥u(0)
∥∥−θ2

. (3.2)

Now in the first equality of (3.1), taking wm = Num, and using the condition (ii) on
b, we get

d

dt
〈um,Num〉 + 2〈Aum,Num〉 = 2〈fm,Num〉

≤ ε−1‖f ‖2−θ−θ2
+ ε‖N‖2

−θ2;θ2
‖um‖2

θ−θ2
, (3.3)

for any ε > 0. Since by choosing ε > 0 small enough we can ensure

−2〈Aum,Num〉 + ε‖N‖2
−θ2;θ2

‖um‖2
θ−θ2

� ‖um‖2−θ2
,

by Grönwall’s inequality we have

∥∥um(t)
∥∥2

−θ2
�

(∥∥um(0)
∥∥2

−θ2
+

∫ t

0
‖f ‖2−θ−θ2

)
eCt , (3.4)

for some C ∈ R. For any fixed T > 0, this gives um ∈ L∞(0, T ;V −θ2) with uniformly
(in m) bounded norm. Moreover, integrating (3.3), and taking into account (3.4), we
infer

∫ t

0
〈Aum,Num〉 ≤ ψ(t), t ∈ [0,∞), (3.5)
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where ψ : [0,∞) → (0,∞) is a continuous function. If θ > 0, by the coerciveness
of A, the above bound implies um ∈ L2(0, T ;V θ−θ2) with uniformly bounded norm.
So in any case, um is uniformly bounded in L∞(0, T ;V −θ2) ∩ L2(0, T ;V θ−θ2), and
passing to a subsequence, there exists u ∈ L∞(0, T ;V −θ2) ∩ L2(0, T ;V θ−θ2) such
that

um → u weak-star in L∞(
0, T ;V −θ2

)
,

um → u weakly in L2
(
0, T ;V θ−θ2

)
.

(3.6)

For passing to the limit m → ∞ in (3.1), we shall need a strong convergence result,
which is obtained by a compactness argument. We proceed by deriving a bound on
u̇m ≡ dum

dt
. Note that (3.1) can be written as

u̇m + PmAum + PmB(um,um) = Pmf,

um(0) = Pmu(0).
(3.7)

Therefore,

‖u̇m‖−γ ≤ C‖um‖θ−θ2 + ∥∥PmB(um,um)
∥∥−γ

+ ‖Pmf ‖−γ =: I1 + I2 + I3. (3.8)

By the boundedness of B , we have

I2 � ‖um‖σ1‖um‖σ2 . (3.9)

If θ = 0, then the norms in the right-hand side are the V −θ2 -norm which is uniformly
bounded. If θ > 0, since

‖um‖σi
≤ ‖um‖1−λi−θ2

‖um‖λi

θ−θ2
, λi = σi + θ2

θ
, i = 1,2, (3.10)

by the uniform boundedness of um in L∞(V −θ2) we have

I2 � ‖um‖2−λ1−λ2−θ2
‖um‖λ1+λ2

θ−θ2
� ‖um‖λ1+λ2

θ−θ2
. (3.11)

Hence, with λ := λ1 + λ2 = σ1+σ2+2θ2
θ

if θ > 0, and with λ = 1 if θ = 0, we get

‖u̇m‖p

Lp(V −γ )
� ‖um‖p

Lp(V θ−θ2 )
+ ‖um‖p

Lpλ(V θ−θ2 )
+ ‖f ‖p

Lp(V −θ−θ2 )
. (3.12)

The first term on the right-hand side is bounded uniformly when p ≤ 2. The sec-
ond term is bounded if pλ ≤ 2, that is p ≤ 2/λ. We conclude that u̇m is uniformly
bounded in Lp(0, T ;V −θ−θ2), with p = min{2,2/λ}.

By employing Theorem A.2, we can now improve (3.6) as follows. There exists
u ∈ C(0, T ;V −θ−θ2) ∩ L∞(0, T ;V −θ2) ∩ L2(0, T ;V θ−θ2) such that

um → u weak-star in L∞(
0, T ;V −θ2

)
,

um → u weakly in L2(0, T ;V θ−θ2
)
, (3.13)

um → u strongly in L2(0, T ;V s
)

for any s < θ − θ2.
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Now we will show that this limit u indeed satisfies (2.11). To this end, let w ∈
C∞(0, T ; V ) be an arbitrary function with w(T ) = 0, and let wm ∈ C1(0, T ;Wm)

be such that wm(T ) = 0 and wm → w in C1(0, T ;V −γ̄ ). We have

−
∫ T

0

〈
um(t), ẇm(t)

〉
dt +

∫ T

0

〈
Aum(t),wm(t)

〉
dt +

∫ T

0
b
(
um(t), um(t),wm(t)

)
dt

= 〈
um(0),wm(0)

〉 +
∫ T

0

〈
f (t),wm(t)

〉
dt. (3.14)

We would like to show that each term in the above equation converges to the corre-
sponding term in

−
∫ T

0

〈
u(t), ẇ(t)

〉
dt +

∫ T

0

〈
Au(t),w(t)

〉
dt +

∫ T

0
b
(
u(t), u(t),w(t)

)
dt

= 〈
u0,w(0)

〉 +
∫ T

0

〈
f (t),w(t)

〉
dt, (3.15)

which would imply that u satisfies (2.11). Here, we show this only for the nonlinear
term. We have

∫ T

0

∣∣b
(
um(t), um(t),wm(t)

) − b
(
u(t), u(t),w(t)

)∣∣dt ≤ Im + IIm + IIIm, (3.16)

where the terms Im, IIm, and IIIm are defined below. Firstly, it holds that

Im =
∫ T

0

∣∣b
(
um(t), um(t),wm(t) − w(t)

)∣∣dt

�
∫ T

0

∥∥um(t)
∥∥

σ̄1

∥∥um(t)
∥∥

σ̄2

∥∥wm(t) − w(t)
∥∥

γ̄
dt

≤ ‖um‖L2(V σ̄1 )‖um‖L2(V σ̄2 )‖wm − w‖C(V γ̄ ), (3.17)

thus, we get limm→∞ Im = 0 since a fortiori σ̄i ≤ θ − θ2, i = 1,2. For IIm we have

IIm =
∫ T

0

∣∣b
(
um(t) − u(t), um(t),w(t)

)∣∣dt

�
∫ T

0

∥∥um(t) − u(t)
∥∥

σ1

∥∥um(t)
∥∥

σ2

∥∥w(t)
∥∥

θ+θ2
dt

≤ ‖um − u‖L2(V σ̄1 )‖um‖L2(V σ̄2 )‖w‖C(V γ̄ ), (3.18)

so limm→∞ IIm = 0 since σ̄1 < θ − θ2 and σ̄2 ≤ θ − θ2. Similarly, we have

IIIm =
∫ T

0

∣∣b
(
u(t), um(t) − u(t),w(t)

)∣∣dt

� ‖u‖L2(V σ̄1 )‖um − u‖L2(V σ̄2 )‖w‖C(V γ̄ ), (3.19)

so limm→∞ IIIm = 0 since σ̄1 ≤ θ − θ2 and σ̄2 < θ − θ2.
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For the proof of (b), we choose the nested subspaces {Vm : m ∈ N} ⊂ V θ+β and
Wm = Λ2βVm ⊂ V θ−β , in (3.1). Then substituting wm = Λ2βum(0) in the second
equality in (3.1) gives

∥∥um(0)
∥∥

β
� ‖u0‖β.

Now in the first equality of (3.1), taking wm = Λ2βum, and using the boundedness of
b, we get

d

dt
‖um‖2

β � ‖f ‖2
β−θ + ‖um‖2

β + ‖um‖4
β,

and thus
∥∥um(t)

∥∥
β

�
(
T ∗ − t

)−1/4
,

for some T ∗ > 0. The rest of the proof proceeds similarly to that of (a). �

For clarity, the corresponding conditions and results of Theorem 3.1 above are
listed in Table 3 below for the special standard model cases of the general three-
parameter regularized model listed in Table 1. For the NS-α-like case in the table,
the allowed values for β are β > 5

2 − θ − 2θ2 with β ≥ 1
2 − θ2 provided θ ≥ 1 and

θ + 2θ2 ≥ 0.

3.2 Uniqueness and Stability

Now we shall provide sufficient conditions for uniqueness and continuous depen-
dence of on initial data for weak solutions of the general three-parameter family of
regularized models.

Theorem 3.5 Let β ≥ −θ2, and let u1, u2 ∈ L∞(0, T ;V β)∩L2(0, T ;V β+θ ) be two
solutions of (2.11) with initial conditions u1(0), u2(0) ∈ V β , respectively.

(a) Let b : V σ1 ×V θ−θ2 ×V σ2 → R be bounded for some σ1 ≤ θ −θ2 and σ2 ≤ θ +θ2

with σ1 + σ2 ≤ θ . Moreover, let b(v,w,Nw) = 0 for any v ∈ V σ1 and w ∈ V σ2 .

Table 3 Existence results for some special cases of the model (1.1). The table gives values of (a, b)

and (γ,p) for our recovered existence results for the standard models, giving existence of a solution
u ∈ L∞(V a) ∩ L2(V b), with u̇ ∈ Lp(V −γ ). (In the NSV case, ε > 0, and in the NS-α-like case, γ ≥
max{−θ2 − 1/2, θ2 + 1/2, n/2}.) The last row indicates the local existence of solutions u ∈ L∞(V β) ∩
L2(V β+θ ). The result for each NSE model has a corresponding MHD analogue

Model NSE Leray-α ML-α SBM NSV NS-α NS-α-like

Existence

a, b 0, 1 0, 1 −1, 0 −1, 0 −1, −1 −1, 0 −θ2, −θ − θ2

γ , p 1, 4
3 1, 2 2, 2 2, 2 1 + ε, 2 2, 2 γ , 2

Local β > 3
2 β ≥ 0 β > − 1

2 β ≥ −1 β ≥ −1 β > − 1
2 β
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Then we have
∥∥u1(t) − u2(t)

∥∥−θ2
≤ φ(t)

∥∥u1(0) − u2(0)
∥∥−θ2

, t ∈ [0, T ], (3.20)

where φ ∈ C([0, T ]) and φ(0) = 1.
(b) Let b : V β × V β × V θ−β → R be bounded. Then we have

∥∥u1(t) − u2(t)
∥∥

β
≤ φ(t)

∥∥u1(0) − u2(0)
∥∥

β
, t ∈ [0, T ], (3.21)

where φ ∈ C([0, T ]) and φ(0) = 1.

Remark 3.6 The trilinear forms b1 and b3 satisfy the hypotheses of (a) provided
θ + θ1 ≥ 1−k

2 , θ + 2θ1 ≥ k, θ + θ2 ≥ 1
2 , 2θ + 2θ1 + θ2 > n+2

2 , and 3θ + 2θ1 + 2θ2 ≥
2 − k, for some k ∈ {0,1}. The forms b1 and b3 satisfy the hypothesis of (b) for β >
n+2

2 −2(θ1 +θ2)−θ with β ≥ 1−k
2 − (θ1 +θ2) provided 2θ2 +θ ≥ 1 and 2θ1 +θ ≥ k,

for some k ∈ {0,1}.
Remark 3.7 The trilinear form b2 satisfies the hypotheses of (a) for θ + 2θ1 ≥ 1, θ +
θ1 ≥ 1

2 , θ + θ2 ≥ 0, 2θ + 2θ1 + θ2 > n+2
2 , and 3θ + 2θ1 + 2θ2 ≥ 1. The trilinear form

b2 satisfies the hypothesis of (b) for β > n+2
2 −2(θ1 + θ2)− θ with β ≥ 1

2 − (θ1 + θ2)

provided 2θ2 + θ ≥ 0 and 2θ1 + θ ≥ 1.

Remark 3.8 The trilinear forms b4 and b5 satisfy the hypotheses of (a) provided
θ + θ1 ≥ 1

2 , θ + 2θ1 ≥ 1, θ + θ2 ≥ 1
2 , 2θ + 2θ1 + θ2 > n+2

2 , and 3θ + 2θ1 + 2θ2 ≥ 2.
The forms b4 and b5 satisfy the hypothesis of (b) for β > n+2

2 − 2(θ1 + θ2) − θ with
β ≥ 1

2 − (θ1 + θ2) provided 2θ2 + θ ≥ 1 and 2θ1 + θ ≥ 1.

Proof of Theorem 3.5 Let v = u1 − u2. Then subtracting the equations for u1 and u2
we have

〈v̇,w〉 + 〈Av,w〉 + b(v,u1,w) + b(u2, v,w) = 0. (3.22)

Taking w = Nv, we infer

d

dt
‖v‖2−θ2

+ c‖v‖2
θ−θ2

≤ C‖v‖σ1‖u1‖θ−θ2‖v‖σ2−2θ2

≤ C‖v‖2−λ1−λ2−θ2
‖v‖λ1+λ2

θ−θ2
‖u1‖θ−θ2,

where λ1 = σ1+θ2
θ

and λ2 = σ2−θ2
θ

. By applying Young’s inequality, we get

d

dt
‖v‖2−θ2

≤ C‖v‖2−θ2
‖u1‖2

θ−θ2
.

Now Grönwall’s inequality gives

∥∥v(t)
∥∥2

−θ2
≤ ∥∥v(0)

∥∥2
−θ2

exp
∫ t

0
C‖u1‖2

θ−θ2
. (3.23)

The part (b) is proven similarly, taking, e.g. w = (I − Δ)βv. �
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Table 4 Uniqueness results for some special cases of the model (1.1). The table gives values of β for
our recovered uniqueness results for the standard models, where u0 ∈ V β and where u ∈ L∞(V β) ∩
L2(V β+θ ). (In the NS-α-like case, the requirement on β is that β > max{−θ2,1/2 − θ2,5/2 − θ − 2θ2}.)
The result for each NSE model has a corresponding MHD analogue

Model NSE Leray-α ML-α SBM NSV NS-α NS-α-like

Uniqueness β > 3
2 β ≥ 0 β > − 1

2 β ≥ −1 β ≥ −1 β > − 1
2 β

or β = −1 or β = −1

To clarify these results in the case of specific models, the corresponding conditions
and results of Theorem 3.5 above are listed in the Table 4 for the special case models
listed in Table 1.

3.3 Regularity

In this subsection, we develop a regularity result on weak solutions for the general
family of regularized models.

Theorem 3.9 Let u ∈ L2(0, T ;V θ−θ2) be a solution to (2.11), and with some β >

−θ2, let the following conditions hold:

(i) b : V α × V α × V θ−β → R is bounded, where α = min{β, θ − θ2}.
(ii) b(v,w,Nw) = 0 for any v,w ∈ V .

(iii) u(0) ∈ V β , and f ∈ L2(0, T ;V β−θ ).

Then we have

u ∈ L∞(
0, T ;V β

) ∩ L2(0, T ;V β+θ
)
. (3.24)

Remark 3.10 Let 4θ +4θ1 +2θ2 > n+2, 2θ +2θ1 ≥ 1−k, θ +2θ2 ≥ 1, 3θ +4θ1 ≥ 1,
θ + 2θ1 ≥ �, and 3θ + 2θ1 + 2θ2 ≥ 2 − �, for some k, � ∈ {0,1}. Let

β ∈
(

n + 2

2
− 2(θ1 + θ2) − θ,3θ + 2θ1 − n + 2

2

)

∩
[

1 − �

2
− θ1 − θ2,min{2θ + θ2 − 1,2θ − θ2 + 2θ1 − k}

]
.

Then the trilinear forms b1 and b3 satisfy the hypotheses of the above theorem.

Remark 3.11 Let 4θ + 4θ1 + 2θ2 > n + 2, θ + 2θ2 ≥ 0, and θ + 2θ1 ≥ 1. Let

β ∈
(

n + 2

2
− 2(θ1 + θ2) − θ,3θ + 2θ1 − n + 2

2

)

∩
[

1

2
− θ1 − θ2,min{2θ + θ2,2θ − θ2 + 2θ1 − 1}

]
.

Then the trilinear form b2 satisfies the hypotheses of the above theorem.
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Table 5 Regularity results for some special cases of the model (1.1). The table gives values of β for
our recovered local and global regularity results for the standard models, where u0 ∈ V β and where u ∈
L∞(V β) ∩ L2(V β+θ ). (In the NS-α-like case, see the text for the allowed values of β .) Again, the result
for each NSE model has a corresponding MHD analogue

Model NSE Leray-α ML-α SBM NSV NS-α NS-α-like

Regularity β ≤ 1 β ≤ 1
2 β ≤ 2 β ≤ − 1

2 β ≤ 0 β

Remark 3.12 Let 4θ + 4θ1 + 2θ2 > n + 2, θ + 2θ2 ≥ 1, and θ + 2θ1 ≥ 1. Let

β ∈
(

n + 2

2
− 2(θ1 + θ2) − θ,3θ + 2θ1 − n + 2

2

)

∩
[

1

2
− θ1 − θ2,min{2θ + θ2 − 1,2θ − θ2 + 2θ1 − 1}

]
.

Then the trilinear forms b4 and b5 satisfy the hypotheses of the above theorem.

Proof of Theorem 3.9 By Theorems 3.1(b) and 3.5(a), there is s > 0 depending on
‖u(0)‖β such that u ∈ L∞(0, s;V β) ∩ L2(0, s;V β+θ ). With I = [0, s), we have

〈
u̇,Λ2βu

〉 + 〈
Au,Λ2βu

〉 + b
(
u,u,Λ2βu

) = 〈
f,Λ2βu

〉
, a.e. in I. (3.25)

By employing the boundedness of b and the coercivity of A, we infer

d

dt
‖u‖2

β � ‖f ‖2
β−θ + ‖u‖2

θ−θ2
‖u‖2

β, a.e. in I,

and using Grönwall’s inequality, we conclude

∥∥u(t)
∥∥2

β
�

∫ t

0
‖f ‖2

β−θ + ∥∥u(0)
∥∥2

β
exp

∫ t

0
C‖u‖2

θ−θ2
, a.e. in I, (3.26)

where the integral in the exponent is uniformly bounded since u ∈ L2(0, T ;V θ−θ2).
Therefore we have u ∈ L∞(0, T ;V β), which transfers to u ∈ L2(0, T ;V θ+β) by the
coercivity of A. �

Again for clarity, the corresponding conditions and results of Theorem 3.9 above
are listed in Table 5 for the special case models listed in Table 1. For the NS-α-like
case in the table, the allowed values for β are β ≤ 2θ − θ2 − 1 with β < 3θ − 5

2 ,
provided that θ ≥ 1

2 and 4θ + 2θ2 > 5.

4 Singular Perturbations

In this section, we will consider the situation where the operators A and B in the gen-
eral three-parameter family of regularized models represented by problem (2.1) have
values from a convergent (in a certain sense) sequence, and study the limiting behav-
ior of the corresponding sequence of solutions. As special cases, we have inviscid
limits in viscous equations and α → 0 limits in the α-models.



544 J Nonlinear Sci (2010) 20: 523–567

4.1 Perturbations to the Linear Part

Consider the problem

u̇ + Au + B(u,u) = f, (4.1)

and its perturbation

u̇i + Aiui + B(ui, ui) = f (i ∈ N), (4.2)

where A, B , and N (that will appear below) satisfy the assumptions stated in Sect. 2,
and for i ∈ N, Ai : V s → V s−2ε is a bounded linear operator satisfying

‖Aiv‖2−ε−θ2
+ ‖v‖2

θ−θ2
� 〈Aiv,Nv〉 + ‖v‖2−θ2

, v ∈ V ε−θ2 . (4.3)

Assuming that both problems (4.1) and (4.2) have the same initial condition u0, and
that Ai → A in some topology, we are concerned with the behavior of ui as i → ∞.
We will also assume that ε ≥ θ .

Theorem 4.1 Assume the above setting, and in addition let the following conditions
hold.

(i) b : V σ1 ×V σ2 ×V γ → R is bounded for some σj ∈ [−θ2, θ − θ2], j = 1,2, and
γ ∈ [ε + θ2,∞) ∩ (θ2,∞).

(ii) b(v, v,Nv) = 0 for any v ∈ V .
(iii) b : V σ̄1 ×V σ̄2 ×V γ̄ → R is bounded for some σ̄j < θ −θ2, j = 1,2, and γ̄ ≥ γ .
(iv) u0 ∈ V −θ2 , and f ∈ L2(0, T ;V −θ−θ2), T > 0.
(v) Ai converge weakly to A as i → ∞.

Then there exists a solution u ∈ L∞(0, T ;V −θ2)∩L2(0, T ;V θ−θ2) to (4.1) such that
up to a subsequence,

ui → u weak-star in L∞(
0, T ;V −θ2

)
,

ui → u weakly in L2(0, T ;V θ−θ2
)
, (4.4)

ui → u strongly in L2(0, T ;V s
)

for any s < θ − θ2,

as i → ∞.

Proof Firstly, from Theorem 3.1, we know that for i ∈ N there exists a solution ui ∈
L∞(0, T ;V −θ2)∩L2(0, T ;V ε−θ2) to (4.2). Duality pairing (4.2) with Nui and using
elementary inequalities, we have

d

dt
〈ui,Nui〉 + 2〈Aiui,Nui〉 = 2〈f,Nui〉 � ε−1‖f ‖2−θ−θ2

+ ε‖ui‖2
θ−θ2

. (4.5)

Choosing ε > 0 small enough, then using (4.3), by Grönwall’s inequality we have

∥∥ui(t)
∥∥2

−θ2
� eCt . (4.6)
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Moreover, integrating (4.5), and taking into account (4.6) and (4.3), we infer

‖Aiui‖2
L2(0,t;V −ε−θ2 )

+ ‖ui‖2
L2(0,t;V θ−θ2 )

≤ ψ(t), t ∈ [0,∞), (4.7)

where ψ : [0,∞) → (0,∞) is a continuous function. For any fixed T > 0, this gives
ui ∈ L∞(0, T ;V −θ2) ∩ L2(0, T ;V θ−θ2) with uniformly (in i) bounded norms. On
the other hand, we have

‖u̇i‖−γ ≤ ‖Aiui‖−γ + ∥∥B(ui, ui)
∥∥−γ

+ ‖f ‖−γ . (4.8)

By estimating the second term in the right-hand side as in the proof of Theo-
rem 3.1, and taking into account (4.7), we conclude that u̇i is uniformly bounded
in L2(0, T ;V −γ ). By employing Theorem A.2, and passing to a subsequence, we in-
fer the existence of u satisfying (4.4). Now taking into account the weak convergence
of Ai to A, the rest of the proof proceeds similarly to that of Theorem 3.1. �

For example, setting ε = 1, with θ = 0 and θ2 = 1, and checking all the require-
ments (i)–(v) of Theorem 4.1, the viscous solutions to the SBM converge to the in-
viscid solution as the viscosity tends to zero. Recall that the global existence of weak
solution to the inviscid SBM (first established in Cao et al. 2006) is also established
in Theorem 3.1. Similarly, setting ε = 0, with θ = 0 and θ2 = 1, the viscous solu-
tions to the Leray-α model converge to the inviscid solution as the viscosity tends to
zero. This result gives another proof of the global existence of a weak solution for the
inviscid Leray-α model.

On the other hand, the convergence of viscous solutions of ML-α and NS-α to
its inviscid solutions, respectively, are not covered here since both models fail con-
dition (i) of Theorem 4.1. Notice that the global existence of weak solution to the
inviscid ML-α and NS-α are not established in Theorem 3.1. Besides the inviscid
SBM, there are no global well-posedness results reported previously in the literature
for the other inviscid α-models.

4.2 Perturbations Involving the Nonlinear Part

For i ∈ N, let Ai : V s → V s−2ε and Ni : V s → V s+2ε2 be bounded linear operators,
satisfying

‖v‖2
θ+θ2

�
〈
AiN

−1
i v, v

〉 + ‖v‖2
θ2

, v ∈ V θ+θ2 , (4.9)

and

‖v‖2
θ2

�
〈
N−1

i v, v
〉
, v ∈ V θ2, (4.10)

where we also assumed that Ni is invertible. In this subsection, we continue with
perturbations of (4.1) of the form

u̇i + Aiui + Bi(ui, ui) = f (i ∈ N), (4.11)

where Bi is some bilinear map. Again assuming that both problems (4.1) and (4.11)
have the same initial condition u0, and that Ai → A and Bi → B in some topology,
we are concerned with the behavior of ui as i → ∞. For reference, define the trilinear
form bi(u, v,w) = 〈Bi(u, v),w〉.
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Theorem 4.2 Assume the above setting, and in addition let the following conditions
hold:

(i) bi : V σ ×V σ ×V γ → R is uniformly bounded for some σ ∈ [−θ2, θ +θ2 −2ε2),
and γ ∈ [θ + ε2,∞) ∩ (ε2,∞).

(ii) bi(v, v,Niv) = 0 for any v ∈ V .
(iii) u0 ∈ V −θ2 , and f ∈ L2(0, T ;V −θ−θ2), T > 0.
(iv) Ai : V θ−θ2 → V −γ is uniformly bounded and converges weakly to A.
(v) N−1

i : V s+2θ2 → V s+2θ2−2ε2 is uniformly bounded.
(vi) N−1

i N : V θ−θ2 → V θ+θ2−2ε2 converges strongly to the identity map.
(vii) For any v ∈ V θ−θ2 , Bi(v, v) converges weakly to B(v, v).

Then there exists a solution u ∈ L∞(0, T ;V −θ2)∩L2(0, T ;V θ−θ2) to (4.1) such that
up to a subsequence, yi = N−1Niui satisfies

yi → u weak-star in L∞(
0, T ;V −θ2

)
,

yi → u weakly in L2(0, T ;V θ−θ2
)
, (4.12)

yi → u strongly in L2(0, T ;V s
)

for any s < θ − θ2,

as i → ∞.

Proof Firstly, by Theorem 3.1, we know that for i ∈ N there exists a solution
ui ∈ L∞(0, T ;V −ε2)∩L2(0, T ;V ε−ε2) to (4.11). Pairing (4.11) with vi := Niui and
using elementary inequalities, we have

d

dt

〈
N−1

i vi , vi

〉 + 2
〈
AiN

−1
i vi , vi

〉 = 2〈f, vi〉 � ε−1‖f ‖2
θ−θ2

+ ε‖vi‖2
θ+θ2

. (4.13)

Choosing ε < 0 small enough, then using (4.9), by Grönwall’s inequality and (4.10)
we have

∥∥vi(t)
∥∥2

θ2
� eCt . (4.14)

Moreover, integrating (4.13), and taking into account (4.14) and (4.9), we infer that
for any fixed T > 0, vi ∈ L∞(0, T ;V θ2) ∩ L2(0, T ;V θ+θ2) with uniformly (in i)
bounded norms. On the other hand, we have

‖u̇i‖−γ ≤ ‖Aiui‖−γ + ∥∥Bi(ui, ui)
∥∥−γ

+ ‖f ‖−γ . (4.15)

By estimating the right-hand side as in the proof of Theorem 3.1, we conclude that
u̇i is uniformly bounded in L2(0, T ;V −γ ), thus v̇i = Niu̇i is uniformly bounded in
the same space. By employing Theorem A.2, and passing to a subsequence, we infer
the existence of v ∈ L∞(0, T ;V θ2) ∩ L2(0, T ;V θ+θ2) satisfying

vi → v weak-star in L∞(
0, T ;V θ2

)
,

vi → v weakly in L2(0, T ;V θ+θ2
)
, (4.16)

vi → v strongly in L2(0, T ;V s
)

for any s < θ + θ2,

as i → ∞. Define u = N−1v and yi = N−1vi , and note that these satisfy (4.12).
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Now we will show that this limit u indeed satisfies (4.1). Let w ∈ C∞(0, T ; V ) be
an arbitrary function with w(0) = w(T ) = 0. We have

−
∫ T

0

〈
ui(t), ẇ(t)

〉
dt +

∫ T

0

〈
Aiui(t),w(t)

〉
dt +

∫ T

0
bi

(
ui(t), ui(t),w(t)

)
dt

=
∫ T

0

〈
f (t),w(t)

〉
dt.

We claim that each term in the above equation converges to the corresponding term
in

−
∫ T

0

〈
u(t), ẇ(t)

〉
dt +

∫ T

0

〈
Au(t),w(t)

〉
dt +

∫ T

0
b
(
u(t), u(t),w(t)

)
dt

=
∫ T

0

〈
f (t),w(t)

〉
dt.

For the first term, we have

ui − u = N−1
i Nyi − u = N−1

i N(yi − u) + (
N−1

i N − I
)
u,

and taking into account that N−1
i : V s+2θ2 → V s+2θ2−2ε2 is uniformly bounded, and

that N−1
i N : V θ−θ2 → V θ+θ2−2ε2 converges to the identity map in the strong operator

topology, we infer ui → u in L2(0, T ;V s+2θ2−2ε2) for any s < θ −θ2. For the second
term, writing

Aiui − Au = Ai(ui − u) + (Ai − A)u,

and taking into account the uniform boundedness of Ai , and the weak convergence
Ai → A, prove the claim. Finally, for the third term, we have

Bi(ui, ui) − B(u,u) = Bi(ui, ui − u) + Bi(ui − u,u) + Bi(u,u) − B(u,u),

and using the uniform boundedness of Bi and the convergence of Bi to B , we com-
plete the proof. �

For example, setting ε = ε2 = 1, with θ = 1 and θ2 = 0, and checking all the re-
quirements (i)–(vii) of Theorem 4.2, the weak solutions to the NS-α model converge
to a weak solution of the NSE as the parameter α → 0. This result was previously
reported in Foias et al. (2002).

5 Global Attractors

In this section, we establish the existence of a global attractor for the general three-
parameter family of regularized models, and give general requirements for estimating
its dimension. The dimension of the global attractor gives us some measure of the
level of complexity of the dynamics of a given flow.
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5.1 Existence of a Global Attractor

The following theorem establishes the existence of an absorbing ball in V −θ2 . More-
over, with additional conditions, it shows not only the existence of an absorbing ball
in a higher smoothness space V β , but also that any solution with initial condition in
V −θ2 acquires additional smoothness in an infinitesimal time, in particular implying
that the absorbing ball in V −θ2 is compact.

Theorem 5.1

(a) Let u ∈ L∞
loc(0,∞;V −θ2)∩L2

loc(0,∞;V θ−θ2) be a solution to (2.11) with u(0) ∈
V −θ2 . In addition, let the following conditions hold.
(i) 〈Av,Nv〉 ≥ c‖v‖2

θ−θ2
for any v ∈ V θ−θ2 , with a constant c > 0.

(ii) supt≥0 ‖f ‖2
L2(t,t+T ;V −θ−θ2 )

≤ K , where T > 0 and K ≥ 0 are constants.

Then for some constant k > 0 and for any T ′ ≥ 0, we have

∥∥u(t)
∥∥2

−θ2
+ ‖u‖2

L2(t,t+T ′;V θ−θ2 )
� e−kt

∥∥u(0)
∥∥2

−θ2
+ K, t ≥ 0, (5.1)

where the implicit constant may depend on T ′.
(b) In addition to the above hypotheses in (a), for some β ∈ [−θ2, θ − θ2] let the

following conditions be satisfied.
(iii) b : V β × V β × V θ−β → R is bounded.
(iv) 〈Av, (I − Δ)βv〉 ≥ c‖v‖2

β+θ for v ∈ V β+θ .

(v) supt≥0 ‖f ‖2
L2(t,t+T ;V β−θ )

≤ K .

(vi) u̇ ∈ L2
loc(0,∞;V β−θ ).

Then for any t0 > 0 we have

∥∥u(t)
∥∥2

β
�

(
e−kt

∥∥u(0)
∥∥2

−θ2
+ K

)
exp

(
e−kt

∥∥u(0)
∥∥2

−θ2
+ K

)
, t ≥ t0, (5.2)

where the implicit constant may depend on t0.

Remark 5.2 The trilinear forms b1 and b3 satisfy condition (iii) provided 2θ > n+2
2 −

2θ1 − θ2, 2θ + 2θ1 ≥ 1 − k, 2θ2 + θ ≥ 1 and 2θ1 + θ ≥ k, for some k ∈ {0,1}.
The trilinear form b2 satisfies condition (iii) provided 2θ > n+2

2 − 2θ1 − θ2, 2θ +
2θ1 ≥ 1, 2θ2 + θ ≥ 0 and 2θ1 + θ ≥ 1.

The trilinear forms b4 and b5 satisfy condition (iii) provided 2θ > n+2
2 − 2θ1 − θ2,

2θ + 2θ1 ≥ 1, 2θ2 + θ ≥ 1 and 2θ1 + θ ≥ 1.

Remark 5.3 All the special cases listed in Table 1 (except NSE) satisfy condition (iii).
In the case of NS-α-like model, condition (iii) is satisfied provided θ ≥ 1 and θ2 >
n+2

2 − 2.

Proof of Theorem 5.1 We have

d

dt
〈u,Nu〉 + 2〈Au,Nu〉 = 2〈f,Nu〉 ≤ ε−1‖f ‖2−θ−θ2

+ ε‖N‖2
−θ2;θ2

‖u‖2
θ−θ2

,
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for any ε > 0. By using (i) and by choosing ε > 0 sufficiently small, we get

d

dt
‖u‖2−θ2

+ c‖u‖2
θ−θ2

� ‖f ‖2−θ−θ2
, (5.3)

and since V θ−θ2 ↪→ V −θ2 we have

d

dt
‖u‖2−θ2

+ k‖u‖2−θ2
� ‖f ‖2−θ−θ2

, (5.4)

with some constant k > 0. This gives

∥∥u(t)
∥∥2

−θ2
� e−kt

∥∥u(0)
∥∥2

−θ2
+

∫ t

0
e−k(t−τ)

∥∥f (τ)
∥∥2

−θ−θ2
dτ

� e−kt
∥∥u(0)

∥∥2
−θ2

+ K, (5.5)

and by integrating (5.3) and using (5.5), we have

∫ t+T ′

t

‖u‖2
θ−θ2

�
∥∥u(t)

∥∥2
−θ2

+
∫ t+T ′

t

‖f ‖2−θ−θ2
� e−kt

∥∥u(0)
∥∥2

−θ2
+ K, (5.6)

proving (a).
Now we shall prove (b). As in the proof of Theorem 3.9, we get u ∈ L2(0, T ;

V β+θ ). Taking w = Λ2βu in (2.11), and using (iv) and the boundedness of b, we
have

d

dt
‖u‖2

β + k′‖u‖2
β � ‖f ‖2

β−θ + ‖u‖2
θ−θ2

‖u‖2
β, (5.7)

with some constant k′ > 0, implying

∥∥u(t)
∥∥2

β
� e−k(t−s) exp

(‖u‖2
L2(s,t;V θ−θ2 )

)∥∥u(s)
∥∥2

β

+
∫ t

s

e−k(t−τ) exp
(‖u‖2

L2(τ,t;V θ−θ2 )

)∥∥f (τ)
∥
∥2

β−θ
dτ. (5.8)

Integrating this over s ∈ [t − t0, t], we have

t0
∥
∥u(t)

∥
∥2

β
� exp

(‖u‖2
L2(t−t0,t;V θ−θ2 )

)∫ t

t−t0

∥
∥u(s)

∥
∥2

β
ds

+ t0 exp
(‖u‖2

L2(t−t0,t;V θ−θ2 )

)∫ t

t−t0

∥∥f (τ)
∥∥2

β−θ
dτ

�
(
e−kt

∥∥u(0)
∥∥2

−θ2
+ K + K

)
exp

(
e−kt

∥∥u(0)
∥∥2

−θ2
+ K

)
,

where we have used (5.6) and (v). This completes the proof. �



550 J Nonlinear Sci (2010) 20: 523–567

For example, in the case of ML-α model, conditions (i)–(vi) of Theorem 5.1 are
satisfied with β = 0.

In this next corollary, we combine the results in Theorems 3.1, 3.5, and 5.1 to
show the existence of a global attractor.

Corollary 5.4 Let the following conditions hold.

(i) b : V σ1 × V θ−θ2 × V σ2 → R is bounded for some σ1 ≤ θ − θ2 and σ2 ≤ θ + θ2
with σ1 + σ2 ≤ θ .

(ii) b(w,v,Nv) = 0 for any v,w ∈ V θ−θ2 .
(iii) b : V σ̄1 ×V σ̄2 ×V γ̄ → R is bounded for some σ̄i < θ − θ2, i = 1,2, and γ̄ ∈ R.

In addition, assume that the hypotheses (i) and (iii)–(v) of Theorem 5.1 are satisfied.
Then there exists a compact attractor A � V −θ2 for (2.11) which attracts the bounded
sets of V −θ2 . Moreover, A is connected and it is the maximal bounded attractor
in V −θ2 .

Proof We recall that by Theorem 3.1, there exists a solution u ∈ L∞
loc(0,∞;V −θ2) ∩

L2
loc(0,∞;V θ−θ2) to (2.11) with any given initial data u(0) ∈ V −θ2 . By Theorem

3.5 this solution is unique and depends continuously on the initial data, so we have
a continuous semigroup S(t) : V −θ2 → V −θ2 , t ≥ 0. Now, by Theorem 5.1 there is
a ball B in V θ−θ2 which is absorbing in V −θ2 , meaning that for any bounded set
U ⊂ V −θ2 there exists t1 such that S(t)U ⊂ B for all t ≥ t1. Therefore, for any
bounded set U ⊂ V −θ2, there exists t0 such that

⋃
t≥t0

S(t)U is relatively com-
pact in V −θ2 . Finally, applying Temam (1988, Theorem I.1.1) we have that the set
A = ⋂

s≥0
⋃

t≥s S(t)B is a compact attractor for S, and the rest of the result is im-
mediate. �

All the special cases listed in Table 1 (except NSE) satisfy the conditions of Corol-
lary 5.4. Again, in the case of NS-α-like model, the conditions of the corollary are
satisfied provided θ ≥ 1 and θ2 > n+2

2 − 2.

5.2 Estimates on the Dimension of the Global Attractor

Next, we give a result which can be used to develop estimates on the dimension of the
global attractor. To obtain bounds on the dimension of global attractors, we require
conditions that will guarantee that any m-dimensional volume element in the phase
space shrinks as the flow evolves. The general notion is that if this is the case, then the
attractor can have no m-dimensional subsets, and hence its dimension must be less
than or equal to m. If one can find such an m < ∞, then we say that the asymptotic
dynamics is determined by finite number of degrees of freedom.

Theorem 5.5 Let θ > 0. Let (2.11) admit the semigroup S(t) : V −θ2 → V −θ2 , t ≥ 0,
and let X ⊂ V θ−θ2 be a bounded set such that S(t)X = X for t ≥ 0. Let the following
conditions hold:

(i) b : V σ1 × V θ−θ2 × V σ2 → R is bounded for some σ1 ≤ θ − θ2 and σ2 ≤ θ + θ2
with σ1 + σ2 < 2θ .
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(ii) b(w,v,Nv) = 0 for any v,w ∈ V θ−θ2 .
(iii) For some β ≥ −θ2 and p ∈ [1,∞],

ε := sup
u0∈X

lim sup
t→∞

1

t

∫ t

0

∥∥S(τ)u0
∥∥p

β
dτ < ∞. (5.9)

(iv) For some m ∈ N, α ∈ [0,1), q ∈ [1,p], and C > 0, and for any collection {φi ∈
V θ−θ2}mi=1 satisfying 〈φi,Nφk〉 = δik , i, k = 1, . . . ,m,

m∑

i=1

b
(
φi, S(t)u0,Nφi

) ≤ α

m∑

i=1

〈Aφi,Nφi〉 + C
∥∥S(t)u0

∥∥q

β
, u0 ∈ X, t ≥ 0.

(5.10)
(v) For any collection {φi} as above,

(1 − α)

m∑

i=1

〈Aφi,Nφi〉 > Cε q/p. (5.11)

Then we have dH (X) ≤ m.

Proof Given u0 ∈ X, the linearization of (2.11) around the solution u(t) = S(t)u0,
t ≥ 0, is

U̇ + AU + B(u,U) + B(U,u) = 0, U(0) = U0 ∈ V −θ2 .

There exists a unique solution to the above equation, and we will denote U(t) =
L(t, u0)U0. One can show that for any fixed t ≥ 0, L(t, ·) : V −θ2 → V −θ2 is uni-
formly bounded on X, i.e.,

sup
u0∈X

∥∥L(t, u0)
∥∥−θ2;−θ2

< ∞.

Moreover, one can prove that for any fixed t ≥ 0,

sup
(ξ,η)∈Dε

‖S(t)η − S(t)ξ − L(t, ξ)(η − ξ)‖−θ2

‖η − ξ‖−θ2

→ 0 as ε → 0,

where Dε = {(ξ, η) : ξ, η ∈ X, ‖ξ − η‖−θ2 ≤ ε}. Introducing the notation

T (t, u0)U = AU + B(u,U) + B(U,u),

where u(t) = S(t)u0 is understood, we have

m∑

i=1

〈
T (t, u0)φi,Nφi

〉 =
m∑

i=1

〈Aφi,Nφi〉 +
m∑

i=1

b(φi, u,Nφi)

≥ (1 − α)

m∑

i=1

〈Aφi,Nφi〉 − C‖u‖q
β,
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implying that

inf
u0∈X

lim inf
t→∞

1

t

m∑

i=1

〈
T (t, u0)φi,Nφi

〉 ≥ (1 − α)

m∑

i=1

〈Aφi,Nφi〉

− C sup
u0∈X

(
lim sup
t→∞

1

t
‖u‖p

β

) q
p

> 0.

Now we apply Temam (1988, Theorem V.3.3) (see also p. 291 therein) to complete
the proof. �

Remark 5.6 Theorem 5.5 can be used to recover estimates on the dimension of the
global attractor for the generalized model, through the application of techniques pre-
viously used in the literature for the special cases listed in Table 1; this is a somewhat
long calculation that we do not include here.

6 Determining Operators

The notion of determining modes for the Navier–Stokes and MHD equations was
first introduced in Foias and Prodi (1967) as an attempt to identify and estimate the
number of degrees of freedom in turbulent flows (cf. Constantin et al. 1985 for a thor-
ough discussion of the role of determining sets in turbulence theory). This concept
later led to the notion of Inertial Manifolds (Foias et al. 1988). An estimate of the
number of determining modes was given in Foias et al. (1983); Jones and Titi (1993);
the concepts of determining nodes and determining volumes were introduced and es-
timated in Foias and Temam (1983, 1984, 1991); Jones and Titi (1992a, 1993). See
also Jones and Titi (1992b); Cockburn et al. (1995, 1997). In Holst and Titi (1996,
1997), a more general concept known as a determining operator was introduced, and
the special case of determining functionals was explicitly given.

Following Holst and Titi (1996, 1997); Holst (1995), we now define more pre-
cisely the concepts of determining operators and determining functionals for weak
solutions of (2.11). In the following two definitions, we consider an operator Rm :
V θ−θ2 → Hm, where Hm ⊂ Hα is a finite dimensional subspace with some α ≤ −θ2.

Definition 6.1 Let f,g ∈ L2(0,∞;V −θ−θ2) be any two forcing functions satisfying

lim
t→∞

∥∥f (t) − g(t)
∥∥−θ−θ2

= 0, (6.1)

and let u,v ∈ L2(0,∞;V θ−θ2) be corresponding solutions to (2.11). Then Rm is
called an asymptotic determining operator for weak solutions of (2.11) if

lim
t→∞

∥∥Rm

[
u(t) − v(t)

]∥∥−θ2
= 0, (6.2)

implies that

lim
t→∞

∥∥u(t) − v(t)
∥∥−θ2

= 0. (6.3)
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Definition 6.2 With K ⊂ V θ−θ2 , let u(t), v(t) ∈ K , t ∈ R, be solutions to (2.11).
Then Rm is called a determining operator on the set K for weak solutions of (2.11)
if

Rmu(t) = Rmv(t), t ∈ R, (6.4)

implies that u = v.

Given a basis {φi}mi=1 for the finite-dimensional space Hm, and a set of bounded
linear functionals {li}mi=1 ⊂ V θ2−θ , we can construct the operator

Rmu =
m∑

i=1

li (u)φi . (6.5)

The assumption (6.2) is then implied by

lim
t→∞

∣∣li
(
u(t) − v(t)

)∣∣ = 0, i = 1, . . . ,m (6.6)

so that we can ask equivalently whether the set {li}mi=1 forms a set of determining
functionals. The analysis of whether Rm or {li}mi=1 are determining can be reduced to
an analysis of the approximation properties of Rm. Note that in this construction, the
basis {φi}mi=1 need not span a subspace of the solution space V −θ2 or even of H−θ2 ,
so that the functions φi need not be divergence-free or be in H−θ2 , for example.
Note that Definitions 6.1 and 6.2 encompasses each of the notions of determining
modes, nodes, volumes, and functionals, by making particular choices for the sets of
functions {φi}mi=1 and {li}mi=1.

Here, we extend the results of Holst and Titi (1996, 1997); Holst (1995) to the
generalized Navier–Stokes model (2.1). In particular, we will show that if {Hm ⊂
Hα : m ∈ N} is a family of finite dimensional subspaces, and if a family of operators
Rm : V θ−θ2 → Hm, m ∈ N, satisfies an approximation inequality of the form

‖u − Rmu‖α ≤ ξ(m)‖u‖θ−θ2 , (6.7)

for a function ξ : (0,∞) → (0,∞) with limm→∞ ξ(m) = 0, then the operator Rm is
a determining operator in the sense of Definitions 6.1 and 6.2, provided m is large
enough.

If Hm both contains all polynomials of degree less than �θ − θ2�, and is spanned
by compactly supported functions such that the diameter of the supports is uniformly
proportional to m−1/n, we typically have ξ(m) ∼ m−(θ−θ2−α)/n, provided that Rm

realizes a near-best approximation of any u ∈ V θ−θ2 from the subspaces Hm in
the Hα-norm. In particular, standard finite element and wavelet subspaces of suf-
ficiently high polynomial degree satisfy these conditions. Then Rm may be chosen
to be interpolation or quasi-interpolation operators, cf. Holst (1995); Holst and Titi
(1997). For example, the piecewise constants with local averaging and piecewise lin-
ears with, e.g., the Scott–Zhang quasi-interpolators as in Holst (1995); Holst and
Titi (1997) correspond to the determining volumes and determining nodes, respec-
tively.
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Determining modes can be understood as follows. Let Λ : V θ−θ2 → V α be a
boundedly invertible operator with the eigenvalues 0 < λ1 ≤ λ2 ≤ · · · , such that
λj → ∞ as j → ∞. Let {wj } ⊂ V θ−θ2 be the corresponding set of eigenfunctions,
orthonormal in V α . Then with Hm := span{w1, . . . ,wm} and Rm the V α-orthogonal
projector onto Hm, it is easy to see that ‖u − Rmu‖α � λ−1

m ‖u‖θ−θ2 for any u ∈
V θ−θ2 , meaning that ξ(m) ∼ λ−1

m in this case. In particular, when Λ is a power of the
Stokes operator, i.e., when Λ = (−PΔ)(θ−θ2−α)/2, we have λm ∼ m(θ−θ2−α)/n, and
so ξ(m) ∼ m−(θ−θ2−α)/n, which coincides with the behavior of ξ for the case in the
previous paragraph.

Bounds on the number of determining degrees of freedom are usually phrased in
terms of a generalized Grashof number, which can be defined in the current context
as

G = lim sup
t→∞

∥∥f (t)
∥∥

V −θ−θ2 . (6.8)

The definition in (6.8) generalizes the definition of Grashof number in the literature.
For example, if the forcing term in NSE is given by f̃ with dimensions mass × length
× time−2, then the nondimensional forcing f that appears in (2.1) can be defined in
terms of f̃ by

f = L2

ρν2
f̃ , (6.9)

where ρ is the density of dimensions mass per unit n-volume, ν is the kinematic
viscosity with dimensions length2 × time−1 and L is the system size. In this case,
one can see that given a time independent forcing for NSE, the Grashof number is
defined as

G = L2−n/2

ρν2
‖f̃ ‖−1. (6.10)

It is known that if G is small enough, then the NSE possess a unique, globally stable,
steady state solution (Temam 1977). As the Grashof number increases, the steady
state goes through a sequence of bifurcations leading to a more complex dynamics of
the flow. Hence, it is natural to use the Grashof number G to estimate the number of
degrees of freedom of the solutions of the NSE as well as other turbulence models.

6.1 Dissipative Systems

In this subsection, we consider equations with θ > 0. Note that Theorem 5.1 provides
with examples where the conditions (iii) of the following theorem is satisfied (with
β = θ − θ2 and p = 2).

Theorem 6.3

(a) Let θ > 0, and let u,v ∈ L∞(0,∞;V −θ2) ∩ L2(0,∞;V θ−θ2) be two weak so-
lutions of (2.1) with the forcing functions f,g ∈ L2(0,∞;V −θ−θ2), respectively.
Let Rm : V θ−θ2 → Hm ⊂ H−θ2 , m ∈ N, be a family of operators satisfying the
approximation property (6.7) with α = −θ2. In addition, with β ≥ θ − θ2, let the
following conditions be fulfilled.



J Nonlinear Sci (2010) 20: 523–567 555

(i) b : V σ1 × V β × V σ2 → R is bounded for some σ1 ≤ θ − θ2 and σ2 ≤ θ + θ2
with σ1 + σ2 < θ .

(ii) b(w, z,Nz) = 0 for all w ∈ V σ1 and z ∈ V β .
(iii) ε := infT >0 lim supt→∞ 1

T

∫ t+T

t
‖u(τ)‖p

β dτ < ∞ with p = θ
θ−σ1−σ2

.
(iv) limt→∞ ‖f (t) − g(t)‖−θ−θ2 = 0.
(v) limt→∞ ‖Rm[u(t) − v(t)]‖−θ2 = 0 for some m satisfying

ξ(m)−2 >
4CA

cA

+ 4(p − 1)‖b‖2

p2c2
A

ε.

Then we have

lim
t→∞

∥∥u(t) − v(t)
∥∥−θ2

= 0.

(b) Assume all of the above hypotheses with the time interval [0,∞) replaced by R,
and the conditions (iii)–(v) are replaced by that f = g, ε := supt∈R ‖u(τ)‖p

β <

∞ with p as above, and that Rmu(t) = Rmv(t) for all t ∈ R with m as above.
Then we have u = v.

Proof Let w = u − v. Subtracting (2.1) for u and v yields

dw

dt
+ Aw + B(u,u) − B(v, v) = f − g. (6.11)

Pairing this with Nw, and by using condition (ii), we get

1

2

d

dt
〈w,Nw〉 + 〈Aw,Nw〉 = 〈f − g,Nw〉 − b(w,u,Nw). (6.12)

Using Young’s inequality, one can estimate the right-hand side of (6.12) as follows:

d

dt
‖w‖2

N + 2〈Aw,Nw〉 ≤ 1

δ
‖f − g‖2−θ−θ2

+ δ‖N‖2
−θ2;θ2

‖w‖2
θ−θ2

+ ‖b‖‖w‖σ1‖u‖β‖w‖σ2−2θ2 , (6.13)

where we denote ‖w‖2
N := 〈w,Nw〉. We estimate the last term as follows:

‖w‖σ1‖u‖β‖w‖σ2−2θ2 ≤ ‖w‖2−λ1−λ2−θ2
‖w‖λ1+λ2

θ−θ2
‖u‖β, (6.14)

where λ1 = σ1+θ2
θ

and λ2 = σ2−θ2
θ

. Using Young’s inequality, we get

‖w‖σ‖u‖β‖w‖σ2−2θ2 ≤ ε

q
‖w‖(λ1+λ2)q

θ−θ2
+ 1

pε
‖w‖(2−λ1−λ2)p

−θ2
‖u‖p

β .

Note that (λ1 + λ2)q = (2 − λ1 − λ2)p = 2. Let us now choose δ = cA

2‖N‖2−θ2;θ2

and

ε = qcA

2‖b‖ , then it follows, taking into account the coercivity of A that

d

dt
‖w‖2

N + cA‖w‖2−θ−θ2
− 2CA‖w‖2−θ2

≤ 1

δ
‖f − g‖2−θ−θ2

+ ‖b‖
pε

‖w‖2−θ2
‖u‖p

β .
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To bound the second term on the left from below, we employ the approximation
assumption on Rm, which yields

d

dt
‖w‖2

N +
(

cA

2
ξ(m)−2 − 2CA − ‖b‖

pε
‖u‖p

β

)
‖w‖2−θ2

≤ 1

δ
‖f − g‖2−θ−θ2

+ ξ(m)−2‖Rmw‖2−θ2
. (6.15)

This is of the form
d

dt
‖w‖2−θ2

+ x‖w‖2−θ2
≤ y,

with obvious definition of x and y.
Lemma A.1 can now be applied. Recall both ‖f − g‖−θ−θ2 → 0 and

‖Rmw‖−θ2 → 0 as t → ∞ by assumptions (iv) and (v). So taking into account (iii),
we have

lim
t→∞

∫ t+T

t

y+(τ )dτ = 0, lim sup
t→∞

∫ t+T

t

x−(τ )dτ < ∞.

It remains to verify that for some T > 0,

lim inf
t→∞

∫ t+T

t

x(τ )dτ > 0.

This means we must verify the following inequality for some T > 0:

ξ(m)−2 >
4CA

cA

+ 2‖b‖
pεcA

lim sup
t→∞

1

T

∫ t+T

t

‖u‖p
β dτ. (6.16)

Therefore, if

ξ(m)−2 >
4CA

cA

+ 2‖b‖
pεcA

ε, (6.17)

implying that (6.16) holds for some T > 0, then by Lemma A.1, it follows that

lim
t→∞

∥∥u(t) − v(t)
∥∥−θ2

= lim
t→∞

∥∥w(t)
∥∥−θ2

= 0.

This completes the proof of (a).
For (b), the right-hand side of (6.15) vanishes, implying

d

dt
‖w‖2−θ2

+ k‖w‖2−θ2
≤ 0,

with some k > 0. The Grönwall inequality gives

∥∥w(t)
∥∥2

−θ2
≤ ek(s−t)

∥∥w(s)
∥∥2

−θ2
,

for any t ≥ s, and now sending s → −∞ we get the conclusion w(t) = 0. �
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Remark 6.4 The trilinear forms b1 and b3 satisfy the hypothesis of (a) provided 3θ
2 +

2θ1 + θ2 > n+2
2 , θ + θ2 ≥ 1

2 , θ
2 + 2θ1 > k, and θ + θ1 ≥ 1−k

2 , for some k ∈ {0,1}.
The trilinear form b2 satisfies the hypothesis of (a) provided 3θ

2 +2θ1 +2θ2 > n+2
2 ,

θ + θ2 ≥ 0, θ
2 + 2θ1 > 1, and θ + θ1 ≥ 1

2 .
The trilinear forms b4 and b5 satisfy the hypothesis of (a) provided 3θ

2 +2θ1 +θ2 >
n+2

2 , θ + θ2 ≥ 1
2 , θ

2 + 2θ1 > 1, and θ + θ1 ≥ 1
2 .

Remark 6.5 From (5.1), we have ε � ‖f ‖2
V −θ−θ2

� G2 with β = 0 and p = 2. Then

condition (v) of Theorem 6.3 is equivalent to the condition ξ(m)−2 ≥ cG2. Assuming
that ξ(m) � m−(θ−θ2−α)/n, and putting α = −θ2, we have ξ(m) � m−θ/n. Hence,
m � Gn/θ .

6.2 Nondissipative Systems

In this subsection, we consider nondissipative systems, which are represented in our
generalized model when θ = 0.

Theorem 6.6

(a) Let u,v ∈ L∞(0,∞;V −θ2) be two solutions of (2.11) with the forcing functions
f,g ∈ L2(0,∞;V −θ2), respectively, and with θ = 0 and

〈Av,Nv〉 ≥ cA‖v‖2−θ2
, v ∈ V −θ2 .

For some α ≤ −θ2, let Rm : V −θ2 → Hm ⊂ Hα , m ∈ N, be a family of operators
satisfying the approximation property (6.7). In addition, with β ≥ −θ2, let the
following conditions be fulfilled:

(i) b : V α × V β × V θ2 → R is bounded.
(ii) b(w, z,Nz) = 0 for all w ∈ V α and z ∈ V β .

(iii) ε := lim supt→∞ ‖u(t)‖β < ∞.
(iv) limt→∞ ‖f (t) − g(t)‖−θ2 = 0.
(v) limt→∞ ‖Rm[u(t) − v(t)]‖α = 0 for some m satisfying ξ(m) < cA‖b‖ε .

Then we have

lim
t→∞

∥∥u(t) − v(t)
∥∥−θ2

= 0.

(b) Assume all of the above hypotheses with the time interval [0,∞) replaced by R,
and the conditions (iii)–(v) are replaced by that f = g, ε := supt∈R ‖u(τ)‖β <

∞, and that Rmu(t) = Rmv(t) for all t ∈ R with m as above. Then we have
u = v.

Proof We start as in the proof of Theorem 6.3, but instead of (6.13) we get the fol-
lowing:

d

dt
‖w‖2

N + 2〈Aw,Nw〉 ≤ 1

δ
‖f − g‖2−θ2

+ δ‖N‖2
−θ2;θ2

‖w‖2−θ2
+ ‖b‖‖w‖α‖u‖β‖w‖−θ2 .
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Let us now choose δ = cA

‖N‖2−θ2;θ2

, then it follows, taking into account the coercivity

of A that

d

dt
‖w‖2

N + cA‖w‖2−θ2
≤ 1

δ
‖f − g‖2−θ2

+ ‖b‖‖w‖α‖u‖β‖w‖−θ2 .

To bound the last term from above, we employ the approximation assumption on Rm,
which yields

d

dt
‖w‖2

N + (
cA − ξ(m)‖b‖‖u‖β

)‖w‖2−θ2

≤ 1

δ
‖f − g‖2−θ2

+ ‖Rmw‖α‖b‖‖u‖β‖w‖−θ2 . (6.18)

This is of the form

d

dt
‖w‖2−θ2

+ x‖w‖2−θ2
≤ y + y‖w‖−θ2,

and an application of Lemma A.1 completes the proof of (a). Part (b) is proven fol-
lowing the same argument as in the proof of Theorem 6.3(b). �

Remark 6.7 Note that in the case of the NSV we need − 3
2 ≤ α ≤ −1 in order to

satisfy Theorem 6.6(i) and the condition α ≤ −1. Choosing α = − 3
2 we get m � G6.

This is consistent with the calculations in Kalantarov and Titi (2009).

Remark 6.8 The trilinear forms b1 and b3 satisfy the hypothesis (i) of Theorem 6.6
provided β + 2θ1 + 2θ2 > n+2

2 , β + 3θ2 ≥ 1, 2θ1 > k, and 2θ1 + β + θ2 ≥ 1 − k, for
some k ∈ {0,1}. Also, we need that α > n+2

2 − 2θ1 − β − 3θ2, α ≥ k − 2θ1 − θ2, and
α ≥ 1 − k − 2θ1 − β − 2θ2, for some k ∈ {0,1}.

Remark 6.9 The trilinear form b2 satisfies the hypothesis (i) of Theorem 6.6 provided
β + 2θ1 + 2θ2 > n+2

2 , β + 3θ2 ≥ 0, 2θ1 > 1, and 2θ1 + β + θ2 ≥ 1. Also, we need
that α > n+2

2 − 2θ1 − β − 3θ2, α ≥ 1 − 2θ1 − θ2, and α ≥ 1 − 2θ1 − β − 2θ2.

Remark 6.10 The trilinear forms b4 and b5 satisfy the hypothesis (i) of Theorem 6.6
provided β + 2θ1 + 2θ2 > n+2

2 , β + 3θ2 ≥ 1, 2θ1 > 1, and 2θ1 +β + θ2 ≥ 1. Also, we
need that α > n+2

2 − 2θ1 − β − 3θ2, α ≥ 1 − 2θ1 − θ2, and α ≥ 1 − 2θ1 − β − 2θ2.

Remark 6.11 From (5.1) ε � ‖f ‖V −θ2 � G. Then condition (v) of Theorem 6.3 is
equivalent to the condition ξ(m)−1 ≤ cG. Assuming that ξ(m) � m−(θ−θ2−α)/n, and
putting θ = 0, we have ξ(m) � m(θ2+α)/n. Hence, m � G−n/(θ2+α), where α ≤ −θ2.

7 Length-scale Estimates in Terms of the Reynolds Number

In the previous section, we established estimates on the number of degrees of free-
dom in terms of the generalized Grashof number G, a dimensionless parameter which
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measures the relative magnitude of forcing to the viscosity ν. A complementary
scheme was introduced by Doering and Foias (2002), to recast all the estimates in
terms of the Reynolds number Re. The Reynolds number measures the effect of non-
linearity in the fluid response, and in the current setting it allows us to measure the
effects of modifying the nonlinearity. It is important to recognize that in the engineer-
ing and physics communities, the Reynolds number is used more frequently than the
Grashof number, as is viewed as more directly physically meaningful. Therefore, in
this section, we will derive a lower bound on the Kolmogorov dissipation length-scale
in terms of the Reynolds number, which will help provide some tools for relating the
Grashof number-based results of the previous section (and elsewhere in the literature)
to analogous statements involving the Reynolds number.

To set some notation, we briefly review the ideas discussed in Doering and Foias
(2002); Gibbon and Holm (2006) and then apply the analogous procedure to our
more general problem. Given the velocity field ũ for the Navier–Stokes equations
taken on an n-dimensional periodic domain [0,L]n with divergence free condition,
the Reynolds number Re of the flow is defined as

Re = Ul

ν
, where U2 = L−n‖ũ‖2

0, (7.1)

where the overline denotes the long-time average

g = lim sup
t→∞

1

t

∫ t

0
g(τ)dτ, (7.2)

and l is characterized by the following “narrow-band type” assumption on f

∥∥∇rf
∥∥

0 � l−r‖f ‖0. (7.3)

Recall the standard definition of Grashof number in n dimensions in terms of the
“root mean square” of the force

G = l3frms

ν2
, where frms = L−n/2‖f ‖0. (7.4)

Doering and Foias (2002) showed recently that in the limit G → ∞, the solutions of
the n-dimensional Navier–Stokes equations satisfy

G � Re2 + Re. (7.5)

The above estimate gives a way to transform any estimate given in terms of G into
an analogous estimate given in terms of Re. However, as the following example from
Gibbon and Holm (2006, 2008) shows, this procedure does not always give sharp es-
timates. Consider the problem of bounding the Kolmogorov dissipation length-scale
for the Navier–Stokes equations from below. The Kolmogorov dissipation length-
scale in terms of the energy dissipation rate ε is given by

ld = (
ν3/ε

)1/4
, where ε = νL−n‖∇ũ‖2

0 � G2. (7.6)
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Then, using (7.5) we have the following bound

l · l−1
d � Re. (7.7)

In the three-dimensional case, one can obtain an estimate for the number of degrees
of freedom in turbulent flows by dividing a typical length-scale of the flow by ld and
taking the third power. Thus, (7.7) gives an upper bound of Re3 to the number of
degrees of freedom in turbulent flows which is not sharp compared to the generally
accepted Re9/4. The authors of Doering and Foias (2002); Gibbon and Holm (2006)
obtained the bound of Re9/4 by time-averaging the Leray’s energy inequality and
using (7.5).

In comparing estimates for the Navier–Stokes equations given in terms of the
Reynolds number (and other quantities) to similar estimates for regularized equa-
tions, there is a basic issue of identifying precisely what the Reynolds number is for
the regularized equations. Here, we will extend the approach followed in Gibbon and
Holm (2006, 2008), a nd identify the Navier–Stokes velocity field as ũ = Nu (or
ũ = Mu if M is more smoothing than N ), where u is the regularized velocity field,
and define the Reynolds number and the energy dissipation rate ε in terms of ũ. We
have then

‖ũ‖0 = ‖Nu‖0 � ‖u‖−2θ2, or ‖ũ‖0 = ‖Mu‖0 � ‖u‖−2θ1,

and similarly, ‖∇ũ‖0 � ‖u‖1−2θ2 or ‖∇ũ‖0 � ‖u‖1−2θ1 . In other words, the approach
of Gibbon and Holm (2006, 2008) naturally extends to our more general setting here,
giving definitions of Re and ε that satisfy

Re2
� U2

� ‖u‖2
−2θ̌

, and ε � ‖u‖2
1−2θ̌

, with θ̌ = max{θ1, θ2}.

The constants in the definitions are irrelevant as far as the asymptotic behavior of
the bounds are concerned. In the following theorem, we derive a bound on a mean
square Sobolev norm of u in terms of a similar norm with a lower Sobolev order.
This will make possible the corollary following the theorem, which gives length-
scale estimates in terms of the Reynolds number for the general setting in this paper.
This makes it possible to relate the bounds of Sect. 6 giving in terms of the Grashof
number to analogous bounds given in terms of the Reynolds number.

Theorem 7.1 Let u ∈ L∞(0,∞;V −θ2) ∩ L2
loc(0,∞;V θ−θ2) be a solution to (2.1),

and let α < β ≤ θ − θ2. Let the following conditions hold:

(i) b : V α × V α × V γ → R is bounded for some γ .
(ii) b(v, v,Nv) = 0 for v ∈ V θ−θ2 .

(iii) 〈Av,Nv〉 ≥ c‖v‖2
θ−θ2

for any v ∈ V θ−θ2 , with a constant c > 0.
(iv) The forcing term f is independent of t , and satisfies

‖f ‖s ≤ C(s)‖f ‖0,

for any s, with constants C(s) depending on s.
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Then we have

‖u‖2
β � ‖u‖2

α + (‖u‖2
α

)1+ β−α
2(θ−θ2−α) .

Proof Pairing (2.1) with Nu, and by using (ii), we get

〈Au,Nu〉 = 〈f,Nu〉 − 1

2

d

dt
〈u,Nu〉.

Then integrating in time gives

∫ t

0
‖u‖2

θ−θ2
�

∫ t

0
‖u‖α‖f ‖−2θ2−α + ‖u‖2

L∞(0,t;V −θ2 )
. (7.8)

In terms of long time averages, from the above one can derive

‖u‖2
θ−θ2

� ‖f ‖−2θ2−α

√
‖u‖2

α � ‖f ‖0U,

where U2 = ‖u‖2
α , and we have used (iv) in the last step.

Now we will bound ‖f ‖0 in terms of u. To this end, let us pair (2.1) with f , and
write

〈f,f 〉 = 〈Au,f 〉 + b(u,u,f ) + d

dt
〈u,f 〉.

Recalling that f is independent of t , and integrating in t , we have

t‖f ‖2
0 �

∫ t

0
‖u‖α‖f ‖2θ−α +

∫ t

0
‖u‖2

α‖f ‖γ + ‖u‖L∞(0,t;V −θ2 )‖f ‖θ2, (7.9)

which implies

‖f ‖0 � U + U2.

Now plugging (7.9) into (7.8), we have

∫ t

0
‖u‖2

θ−θ2
�

∫ t

0
‖u‖α · 1

t

(∫ t

0
‖u‖α +

∫ t

0
‖u‖2

α + O(1)

)
+ O(1), (7.10)

giving

‖u‖2
θ−θ2

� U2 + U3.

Finally, we write the interpolation inequality

‖u‖β ≤ ‖u‖1−λ
α ‖u‖λ

θ−θ2
, with λ = β − α

θ − θ2 − α
,

and calculate its long time average to establish the proof. �

Now we apply the above result to the situation where α = −2θ1 and β = 1 − 2θ1,
and the trilinear form b is given by b1 with θ1 = θ2.
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Corollary 7.2 Let the conditions (ii), (iii), and (iv) of the previous theorem be satis-
fied, and let b = b1 with θ1 = θ2. Then we have

ε � U2 + U
2+ 1

θ+θ1 , where ε = ‖u‖2
1−2θ1

, and U2 = ‖u‖2−2θ1
.

In terms of the Kolmogorov length-scale and the Reynolds number, this is

l−1
d � Re

1
4 (2+ 1

θ+θ1
) + Re

1
2 .

Remark 7.3

(a) For the simplified Bardina model, our result is consistent with that of (Gibbon
and Holm 2008), where the authors derive

l−1
d � Re5/8.

(b) For the hyper-viscous Navier–Stokes equation and the Navier–Stokes–Voight
model, we have the estimates

l−1
d � Re9/4, and l−1

d � Re3/4,

respectively, that appear to be new.

8 Summary

In this article, we considered a general three-parameter family of regularized Navier–
Stokes and MHD models on n-dimensional smooth compact Riemannian manifolds,
with n ≥ 2; this family captures most of the specific regularized models that have
been proposed and analyzed in the literature. Well-studied members of this fam-
ily include the Navier–Stokes equations, the Navier–Stokes-α model, the Leray-α
model, the Modified Leray-α model, the Simplified Bardina model, the Navier–
Stokes–Voight model, the Navier–Stokes-α-like models, and several MHD models;
the general model also captures a number of additional models that have not been
specifically identified or analyzed in the literature. We gave a unified analysis of this
entire family of models using essentially only abstract mapping properties of the
principal dissipation and smoothing operators, and then used assumptions about the
specific form of the parameterizations, leading to specific models, only when neces-
sary to obtain the sharpest results. In Sect. 2, we established our notation and gave
some basic preliminary results for the operators appearing in the general regularized
model. In Sect. 3, we built some well-posedness results for the general model; this
included existence results (Sect. 3.1), regularity results (Sect. 3.3), and uniqueness
and stability results (Sect. 3.2). In Sect. 4, we established some results for singular
perturbations, which as special cases include the inviscid limit of viscous models and
the α → 0 limit in α models; this involved a separate analysis of the linear (Sect. 4.1)
and nonlinear (Sect. 4.2) terms. In Sect. 5, we showed existence of a global attractor
for the general model (Sect. 5.1), and then gave estimates for the dimension of the
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global attractor (Sect. 5.2). In Sect. 6, we established some results on determining
operators for the two distinct subfamilies of dissipative (Sect. 6.1) and nondissipative
(Sect. 6.2) models. In Sect. 7, we established length-scale estimates for the general-
ized model; this makes it possible to recast our estimates for the number of freedom
of turbulent flows given in Sect. 6 in terms of the Reynolds number.

To make the paper reasonably self-contained, in Appendix A, we also included
some supporting material on Grönwall-type inequalities (Appendix A.1), spaces in-
volving time (Appendix A.2), and Sobolev spaces (Appendix A.3). In addition to es-
tablishing a number of technical results for all models in this general three-parameter
family, the framework we developed can recover most of the existing existence, regu-
larity, uniqueness, stability, attractor existence and dimension, and determining oper-
ator results for the well-known specific members of this family of regularized Navier–
Stokes and MHD models. Analyzing the more abstract generalized model allows for
a simpler analysis that helps bring out the common structure of the various models,
and also helps clarify the core common features of many of the new and existing
results. More general MHD models can be analyzed using the framework with only
minor modifications as outlined in the text.

In ongoing work, we are extending the unified analysis presented here to establish
partial regularity results for the three-parameter generalized model, in the spirit of
Caffarelli et al. (1982). In Katz and Pavlović (2002), it was found that for the hyper-
dissipative model, there exists a solution for which the Hausdorff dimension of the
singular set at the first time of blow-up is at most 5 − 4θ . We would like to extend
this result for our generalized equation to see the interplay between the nonlinearity,
which is controlled by two parameters θ1 and θ2 and the dissipative term, which is
controlled by the parameter θ in the model equations.

In Guermond and Prudhomme (2005), the notion of suitable weak solutions for
NSE was defined. The definition introduces two parameters: a discretization scale h

and a large eddy scale ε. We also plan to extend this unified analysis to find the in-
terplay between the nonlinear term and dissipative term that will satisfy the proposed
list of mathematical criteria when establishing a reasonable definition of large eddy
simulation (LES) models. In Guermond and Prudhomme (2005), the authors men-
tioned some technical or fundamental difficulties when establishing the convergence
of the discrete approximations of the NS-α model to suitable weak solutions of the
NSE. We would like to use the unified analysis to see under what conditions we can
recover the relationship between the regularizing and discretization parameters that
will allow the model equation to be a suitable approximation to NSE.
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Appendix A: Some Key Technical Tools and Some Supporting Results

A.1 A Grönwall Type Inequality

The following is a slight generalization of the Grönwall-type inequality appeared in
Foias et al. (1983) and Jones and Titi (1992a).

Lemma A.1 Let T > 0 be fixed, and let x, y, and z be locally integrable and real-
valued functions on (0,∞), satisfying

lim inf
t→∞

∫ t+T

t

x(τ )dτ > 0, lim sup
t→∞

∫ t+T

t

x−(τ )dτ < ∞,

lim
t→∞

∫ t+T

t

y+(τ )dτ = 0,

where x− = max{−x,0} and y+ = max{y,0}. If ξ is an absolutely continuous non-
negative function on (0,∞), and ξ satisfies the following differential inequality:

ξ ′ + xξ ≤ y + yξp, a.e. on (0,∞),

for some constant p ∈ (0,1], then limt→∞ ξ(t) = 0.

A.2 Spaces Involving Time

Let us recall the following well known result. A proof can be found in Temam (1977).

Theorem A.2 Let X ↪→ Y ↪→ Z be reflexive Banach spaces, with X ↪→ Y compact.
Let p,q > 1 be constants, and define

Y = Y (0, T ;p,q;X,Z) =
{
v ∈ Lp(0, T ;X) : dv

dt
∈ Lq(0, T ;Z)

}
.

Then we have Y ↪→ C(0, T ;Z) and the embedding Y ↪→ Lp(0, T ;Y) is compact.

A.3 Multiplication in Sobolev Spaces

With s ∈ R, let Hs be the standard Sobolev space on an n-dimensional compact Rie-
mannian manifold M . We state here a well- known result on pointwise multiplication
of functions in Sobolev spaces.

Lemma A.3 Let s, s1, and s2 be real numbers satisfying

s1 + s2 ≥ 0, si ≥ s, and s1 + s2 − s >
n

2
,

where the strictness of the last two inequalities can be interchanged if s ∈ N0. Then
the pointwise multiplication of functions extends uniquely to a continuous bilinear
map

Hs1 ⊗ Hs2 → Hs.
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Proof A proof is given in Zolesio (1977) (see also Maxwell 2004) for the case s ≥ 0,
and by using a duality argument one can easily extend the proof to negative values
of s. �
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