Skip to main content
Log in

Exponentially Small Splitting for the Pendulum: A Classical Problem Revisited

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we study the classical problem of the exponentially small splitting of separatrices of the rapidly forced pendulum. Firstly, we give an asymptotic formula for the distance between the perturbed invariant manifolds in the so-called singular case and we compare it with the prediction of Melnikov theory. Secondly, we give exponentially small upper bounds in some cases in which the perturbation is bigger than in the singular case and we give some heuristic ideas how to obtain an asymptotic formula for these cases. Finally, we study how the splitting of separatrices behaves when the parameters are close to a codimension-2 bifurcation point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1992). Reprint of the 1972 edition

    Google Scholar 

  • Angenent, S.: A variational interpretation of Mel’nikov’s function and exponentially small separatrix splitting. In: Symplectic Geometry. London Math. Soc. Lecture Note Ser., vol. 192, pp. 5–35. Cambridge Univ. Press, Cambridge (1993)

    Google Scholar 

  • Baldomá, I.: The inner equation for one and a half degrees of freedom rapidly forced Hamiltonian systems. Nonlinearity 19(6), 1415–1445 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Baldomá, I., Fontich, E.: Exponentially small splitting of invariant manifolds of parabolic points. Mem. Am. Math. Soc. 167(792), x+83 (2004)

  • Baldomá, I., Fontich, E.: Exponentially small splitting of separatrices in a weakly hyperbolic case. J. Differ. Equ. 210(1), 106–134 (2005)

    Article  MATH  Google Scholar 

  • Baldomá, I., Seara, T.M.: Breakdown of heteroclinic orbits for some analytic unfoldings of the Hopf-zero singularity. J. Nonlinear Sci. 16(6), 543–582 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Baldomá, I., Seara, T.M.: The inner equation for generic analytic unfoldings of the Hopf-zero singularity. Discrete Contin. Dyn. Syst. Ser. B 10(2–3), 323–347 (2008)

    MATH  MathSciNet  Google Scholar 

  • Balser, W.: From Divergent Power Series to Analytic Functions. Lecture Notes in Mathematics, vol. 1582. Springer, Berlin (1994). Theory and application of multisummable power series

    MATH  Google Scholar 

  • Benseny, A., Olivé, C.: High precision angles between invariant manifolds for rapidly forced Hamiltonian systems. In: Proceedings Equadiff91, pp. 315–319 (1993)

  • Bonet, C., Sauzin, D., Seara, T., València, M.: Adiabatic invariant of the harmonic oscillator, complex matching and resurgence. SIAM J. Math. Anal. 29(6), 1335–1360 (1998) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  • Candelpergher, B., Nosmas, J.-C., Pham, F.: Approche de la résurgence. Actualités Mathématiques [Current Mathematical Topics]. Hermann, Paris (1993)

    Google Scholar 

  • Chierchia, L., Gallavotti, G.: Drift and diffusion in phase space. Ann. Inst. H. Poincaré Phys. Théor. 60(1), 144 (1994)

    MathSciNet  Google Scholar 

  • Delshams, A., Gutiérrez, P.: Splitting potential and the Poincaré–Melnikov method for whiskered tori in Hamiltonian systems. J. Nonlinear Sci. 10(4), 433–476 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Delshams, A., Ramírez-Ros, R.: Melnikov potential for exact symplectic maps. Commun. Math. Phys. 190(1), 213–245 (1997)

    Article  MATH  Google Scholar 

  • Delshams, A., Ramírez-Ros, R.: Exponentially small splitting of separatrices for perturbed integrable standard-like maps. J. Nonlinear Sci. 8(3), 317–352 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Delshams, A., Seara, T.M.: An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum. Commun. Math. Phys. 150(3), 433–463 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Delshams, A., Seara, T.M.: Splitting of separatrices in Hamiltonian systems with one and a half degrees of freedom. Math. Phys. Electron. J., 3, Paper 4, 40 pp. (electronic) (1997)

  • Delshams, A., Gelfreich, V., Jorba, À., Seara, T.M.: Exponentially small splitting of separatrices under fast quasiperiodic forcing. Commun. Math. Phys. 189(1), 35–71 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Delshams, A., Gutiérrez, P., Seara, T.M.: Exponentially small splitting for whiskered tori in Hamiltonian systems: flow-box coordinates and upper bounds. Discrete Contin. Dyn. Syst. 11(4), 785–826 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Écalle, J.: Les fonctions résurgentes. Tome I. Publications Mathématiques d’Orsay 81 [Mathematical Publications of Orsay 81], vol. 5. Université de Paris-Sud Département de Mathématique, Orsay (1981a). Les algèbres de fonctions résurgentes. [The algebras of resurgent functions], With an English foreword

    Google Scholar 

  • Écalle, J.: Les fonctions résurgentes. Tome II. Publications Mathématiques d’Orsay 81 [Mathematical Publications of Orsay 81], vol. 6. Université de Paris-Sud Département de Mathématique, Orsay (1981b). Les fonctions résurgentes appliquées à l’itération. [Resurgent functions applied to iteration]

    Google Scholar 

  • Eliasson, L.H.: Biasymptotic solutions of perturbed integrable Hamiltonian systems. Bol. Soc. Brasil. Mat. (N.S.) 25(1), 57–76 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • Ellison, J.A., Kummer, M., Sáenz, A.W.: Transcendentally small transversality in the rapidly forced pendulum. J. Dyn. Differ. Equ. 5(2), 241–277 (1993)

    Article  MATH  Google Scholar 

  • Fiedler, B., Scheurle, J.: Discretization of homoclinic orbits, rapid forcing and “invisible” chaos. Mem. Am. Math. Soc. 119(570), viii+79 (1996)

  • Fontich, E.: Exponentially small upper bounds for the splitting of separatrices for high frequency periodic perturbations. Nonlinear Anal. 20(6), 733–744 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Fontich, E.: Rapidly forced planar vector fields and splitting of separatrices. J. Differ. Equ. 119(2), 310–335 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Fontich, E., Simó, C.: The splitting of separatrices for analytic diffeomorphisms. Ergod. Theory Dyn. Syst. 10(2), 295–318 (1990)

    MATH  Google Scholar 

  • Gallavotti, G.: Twistless KAM tori, quasi flat homoclinic intersections, and other cancellations in the perturbation series of certain completely integrable Hamiltonian systems. A review. Rev. Math. Phys. 6(3), 343–411 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • Gallavotti, G., Gentile, G., Mastropietro, V.: Separatrix splitting for systems with three time scales. Commun. Math. Phys. 202(1), 197–236 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Gelfreich, V.G.: Separatrices splitting for the rapidly forced pendulum. In: Seminar on Dynamical Systems, St. Petersburg, 1991. Progr. Nonlinear Differential Equations Appl., vol. 12, pp. 47–67. Birkhäuser, Basel (1994)

    Google Scholar 

  • Gelfreich, V.G.: Melnikov method and exponentially small splitting of separatrices. Physica D 101(3–4), 227–248 (1997a)

    Article  MATH  MathSciNet  Google Scholar 

  • Gelfreich, V.G.: Reference systems for splittings of separatrices. Nonlinearity 10(1), 175–193 (1997b)

    Article  MATH  MathSciNet  Google Scholar 

  • Gelfreich, V.G.: A proof of the exponentially small transversality of the separatrices for the standard map. Commun. Math. Phys. 201(1), 155–216 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Gelfreich, V.G.: Separatrix splitting for a high-frequency perturbation of the pendulum. Russ. J. Math. Phys. 7(1), 48–71 (2000)

    MATH  MathSciNet  Google Scholar 

  • Gelfreich, V.G., Naudot, V.: Width of homoclinic zone in the parameter space for quadratic maps. Exp. Math. 18(4), 409–427 (2009)

    MATH  MathSciNet  Google Scholar 

  • Gelfreich, V., Sauzin, D.: Borel summation and splitting of separatrices for the Hénon map. Ann. Inst. Fourier (Grenoble) 51(2), 513–567 (2001)

    MATH  MathSciNet  Google Scholar 

  • Gelfreich, V.G., Lazutkin, V.F., Tabanov, M.B.: Exponentially small splittings in Hamiltonian systems. Chaos 1(2), 137–142 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  • Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin (1983)

    MATH  Google Scholar 

  • Holmes, P.J., Marsden, J.E.: A partial differential equation with infinitely many periodic orbits: chaotic oscillations of a forced beam. Arch. Ration. Mech. Anal. 76(2), 135–165 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  • Holmes, P.J., Marsden, J.E.: Melnikov’s method and Arnol’d diffusion for perturbations of integrable Hamiltonian systems. J. Math. Phys. 23(4), 669–675 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  • Holmes, P.J., Marsden, J.E.: Horseshoes and Arnol’d diffusion for Hamiltonian systems on Lie groups. Indiana Univ. Math. J. 32(2), 273–309 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  • Holmes, P.J., Marsden, J.E., Scheurle, J.: Exponentially small splittings of separatrices with applications to KAM theory and degenerate bifurcations. In: Hamiltonian Dynamical Systems. Contemp. Math., vol. 81 (1988)

  • Lazutkin, V.F.: Splitting of separatrices for the Chirikov standard map. VINITI 6372/82, 1984. Preprint (Russian)

  • Lazutkin, V.F.: Splitting of separatrices for the Chirikov standard map. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 300 (Teor. Predst. Din. Sist. Spets. Vyp. 8), 25–55, 285 (2003)

  • Lochak, P., Marco, J.-P., Sauzin, D.: On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems. Mem. Am. Math. Soc. 163(775), viii+145 (2003)

  • Lombardi, E.: Oscillatory Integrals and Phenomena Beyond All Algebraic Orders. Lecture Notes in Mathematics, vol. 1741. Springer, Berlin (2000). With applications to homoclinic orbits in reversible systems

    MATH  Google Scholar 

  • Melnikov, V.K.: On the stability of the center for time periodic perturbations. Trans. Mosc. Math. Soc. 12, 1–57 (1963)

    Google Scholar 

  • Neĭshtadt, A.I.: The separation of motions in systems with rapidly rotating phase. Prikl. Mat. Meh. 48(2), 197–204 (1984)

    Google Scholar 

  • Olivé, C.: Càlcul de l’escissió de separatrius usant tècniques de matching complex i ressurgència aplicades a l’equació de Hamilton–Jacobi. http://www.tdx.cat/TDX-0917107-125950 (2006)

  • Olivé, C., Sauzin, D., Seara, T.M.: Resurgence in a Hamilton–Jacobi equation. In: Proceedings of the International Conference in Honor of Frédéric Pham (Nice, 2002), vol. 53(4), pp. 1185–1235 (2003)

  • Poincaré, H.: Sur le problème des trois corps et les équations de la dynamique. Acta Math. 13, 1–270 (1890)

    Google Scholar 

  • Poincaré, H.: Les méthodes nouvelles de la mécanique céleste, vols. 1, 2, 3. Gauthier-Villars, Paris (1892–1899)

    Google Scholar 

  • Sanders, J.A.: Melnikov’s method and averaging. Celest. Mech. 28(1–2), 171–181 (1982)

    MATH  Google Scholar 

  • Sauzin, D.: Résurgence paramétrique et exponentielle petitesse de l’écart des séparatrices du pendule rapidement forcé. Ann. Inst. Fourier 45(2), 453–511 (1995)

    MATH  MathSciNet  Google Scholar 

  • Sauzin, D.: A new method for measuring the splitting of invariant manifolds. Ann. Sci. Éc. Norm. Super. (4) 34 (2001)

  • Scheurle, J.: Chaos in a Rapidly Forced Pendulum Equation. Contemp. Math., vol. 97. Am. Math. Soc., Providence (1989)

    Google Scholar 

  • Scheurle, J., Marsden, J.E., Holmes, P.J.: Exponentially small estimates for separatrix splittings. In: Asymptotics Beyond All Orders, La Jolla, CA, 1991. NATO Adv. Sci. Inst. Ser. B, Phys., vol. 284, pp. 187–195. Plenum, New York (1991)

    Google Scholar 

  • Seara, T.M., Villanueva, J.: Asymptotic behaviour of the domain of analyticity of invariant curves of the standard map. Nonlinearity 13(5), 1699–1744 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Simó, C.: Averaging under fast quasiperiodic forcing. In: Hamiltonian Mechanics, Toruń, 1993. NATO Adv. Sci. Inst. Ser. B, Phys., vol. 331, pp. 13–34. Plenum, New York (1994)

    Google Scholar 

  • Smale, S.: Diffeomorphisms with many periodic points. In: Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pp. 63–80. Princeton Univ. Press, Princeton (1965)

    Google Scholar 

  • Treschev, D.: Hyperbolic tori and asymptotic surfaces in Hamiltonian systems. Russ. J. Math. Phys. 2(1), 93–110 (1994)

    MathSciNet  Google Scholar 

  • Treschev, D.: Separatrix splitting for a pendulum with rapidly oscillating suspension point. Russ. J. Math. Phys. 5(1), 63–98 (1997)

    MATH  MathSciNet  Google Scholar 

  • Treschev, D.: Width of stochastic layers in near-integrable two-dimensional symplectic maps. Physica D 116(1–2), 21–43 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tere M. Seara.

Additional information

Communicated by J. Marsden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guardia, M., Olivé, C. & Seara, T.M. Exponentially Small Splitting for the Pendulum: A Classical Problem Revisited. J Nonlinear Sci 20, 595–685 (2010). https://doi.org/10.1007/s00332-010-9068-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-010-9068-8

Keywords

Mathematics Subject Classification (2000)

Navigation