
ar
X

iv
:0

80
9.

13
42

v2
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  2
1 

Ju
l 2

00
9

Non-sequential recursive pair substitutions and

numerical entropy estimates in symbolic

dynamical systems

Lucio M. Calcagnile∗, Stefano Galatolo† and Giulia Menconi‡

March 23, 2021

Abstract

We numerically test the method of non-sequential recursive pair
substitutions to estimate the entropy of an ergodic source. We com-
pare its performance with other classical methods to estimate the en-
tropy (empirical frequencies, return times, Lyapunov exponent). We
considered as a benchmark for the methods several systems with differ-
ent statistical properties: renewal processes, dynamical systems pro-
vided and not provided with a Markov partition, slow or fast decay of
correlations. Most experiments are supported by rigorous mathemat-
ical results, which are explained in the paper.

1 Introduction

We investigate a symbolic substitution method as a tool to estimate entropy
of an ergodic source. The entropy we deal with is the Shannon entropy of
finite-alphabet stationary stochastic processes, in particular those that can
be obtained as a symbolic model of a dynamical system.

Throughout the paper, we shall refer to this method as Non-Sequential
Recursive Pair Substitution (NSRPS). The idea of applying recursive pair
substitutions to symbolic sequences was first proposed by Jimenez-Montaño,
Ebeling and others (see [EJM]), but it was put into the formal context of
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probability theory and studied more deeply by Grassberger [Gr] in 2002 and
Benedetto, Caglioti, Gabrielli [BCG] in 2006.

We now briefly explain how the NSRPS method works.
Let us suppose to have a finite-state stationary source, that is a device

providing infinite sequences of symbols x0x1x2 . . . where each xi is an element
of a finite alphabet A, in such a way that the probability of receiving a given
finite string does not vary with time. Given a sequence from such a source,
the NSRPS method prescribes to individuate the pair (or one of the pairs)
of symbols of maximal frequency and to substitute all its non-overlapping
occurrences with a new symbol α /∈ A. For example, given the sequence

011010111011000111011010011 . . . ,

taken from a source µ for which µ(01) is the highest among the probabilities
of symbol pairs, we substitute the pair 01 with the new symbol 2, thus
obtaining

2122112100211212021 . . . .

In the case the pair to substitute is made up of two equal symbols, not all
the occurrences are to be substituted, but only the non-overlapping ones.
For example, given the sequence

00110100001010001000001100001 . . . ,

we substitute the pair 00, obtaining

211012210120122011221 . . . .

Starting from a source µ with alphabet A = {0, 1}, after the first substi-
tution we shall have a new source with alphabet A1 = {0, 1, 2} and a measure
µ1 on the finite strings inherited from µ. We can then go on repeating the
steps, introducing new symbols 3, 4, . . . and obtaining new sources µ2, µ3, . . ..

The main theorem about the NSRPS method (Theorem 2.4) says that
the entropy h of an ergodic source µ, which is defined by

h(µ) = lim
k→∞

−1

k

∑

length(x)=k

µ(x) log2 µ(x),

can be calculated, in the limit for the number N of substitutions which
approaches infinity, knowing only the probabilities according to µN of the
individual symbols and of the pairs in the new sources, after many substi-
tutions. We remark that the hypotheses of substituting at each step one
of the pairs with the maximum probability is a sufficient but not necessary
condition for the conclusion of the main theorem 2.4 to hold (see [BCG]).
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Numerical results about the use of this method for the estimation of
the entropy of the english language were sketched in [Gr]. Here we show
a first systematic comparation of this method with other classical ones, by
performing several experiments on artificial sequences. We will mainly use
symbolic sequences constructed by dynamical systems.

The use of symbolic models of dynamical systems as a benchmark for this
kind of study is motivated by the following two important features:

• dynamical systems can produce strings with many kinds of nontrivial
statistical features (slow decay of correlations, no Markov structure,
and so on...)

• the dynamical/geometrical properties of the system under considera-
tion often allow the entropy of the system to be estimated (sometime
rigorously calculated) by some other method (Lyapunov exponents and
geometrical properties of the invariant measure e.g.) whose results can
be compared with the estimation done by symbolic methods.

In order to judge the precision and the speed of the entropy estimating
algorithm suggested by the NSRPS method, we shall compare it with other
three much used entropy estimating methods. Two of them apply to symbolic
sequences. They are the empirical frequencies method and the return times
method. Finally, in the case of ergodic transformations, we calculate the
Lyapunov exponent which converges very fast and will be considered as a
reference value for the entropy. The use of these numerical estimators will
be supported by rigorous mathematical results, which will be explained in
the paper.

In section 2 we formally present the NSRPS method and state the main
theorem about it. In section 3 we recall some basic notions of symbolic
dynamics. In section 4 we give a review of rigorous results supporting the
estimation of entropy by the other methods we chose: empirical frequencies,
return times and Lyapunov exponent. In section 5 we discuss the details of
the implementation of the above methods and the reasons of some arbitrary
choice we could not avoid. In section 6 we present the experimental results,
with some tables and figures.

2 Non-Sequential Recursive Pair Substitutions

(NSRPS)

In this section we briefly recall from [BCG] definitions and main results on
the NSRPS method. We introduce the terms and the notations which are
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fundamental to state the main theorem 2.4. We omit all the technical details
and the proofs, which the interested reader can find in [BCG].

We recall from the introduction that the method we study is applied to
symbolic sequences which are supposed to come from a finite-state stationary
source.

Let us call our finite alphabet A and denote with A∗ = ∪∞
k=1A

k the
collection of all finite words in the alphabet A. A word w ∈ A∗ has length
|w| and, if |w| = k, it will also be indicated with wk

1 = w1 . . . wk.
Let x, y ∈ A, α /∈ A and A1 = A ∪ {α}.

Definition 2.1.

A pair substitution is a function G = Gα
xy : A∗ → A∗

1 which is defined by
recursively substituting all the non-overlapping occurrences of the pair xy.
More precisely, Gw is defined substituting in w the first occurrence from left
of xy with α and repeating this procedure to the end of the sequence.

We consider again the example sketched in the introduction and show
some general notation. Given the sequence

w = 011010111011000111011010011 ∈ {0, 1}∗,

performing the substitution 01 7→ 2 leads to

G2
01(w) = 2122112100211212021 ∈ {0, 1, 2}∗.

We indicate with E(A) the set of all the stationary ergodic measures
on AZ, the only ones we shall deal with. If µ ∈ E(A) and w ∈ A∗, we
shall use the notation µ(w) to indicate the µ-measure of the cylinder set
[w1, . . . , wk] = ∩k

i=1{Xi = wi}, where the Xi’s are the random variables
which describe the stochastic process.

The map G = Gα
xy naturally induces a map G = Gα

xy : E(A) → E(A1),
as the following theorem shows. We indicate with ♯{s ⊆ r} the number of
occurrences of a subword s in a word r.

Theorem 2.2. If µ ∈ E(A) and s ∈ A∗
1, then the limit

Gµ(s) = lim
n→∞

♯{s ⊆ G(wn
1 )}

|G(wn
1 )|

exists and is constant µ almost everywhere in w. Furthermore, the values
{Gµ(s)}s∈A∗

1
are the marginals of an ergodic measure on AZ

1 .

It is obvious that a pair substitution shortens the sequence it is applied to.
The following proposition gives an average quantification of this shortening.
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Proposition 2.3. If x 6= y then

Zµ
xy

def
= lim

n→∞

n

|G(wn
1 )|

=
1

1− µ(xy)
(µ a. e. in w). (2.1)

If x = y then

Zµ
xx

def
= lim

n→∞

n

|G(wn
1 )|

=
1

1−∑∞
k=2(−1)kµ(xk)

(µ a. e. in w), (2.2)

where xk is the string made up of k symbols x.

We now recall the definition of entropy of a process.
Given µ ∈ E(A) and n ≥ 1, the quantity

Hn(µ) = −
∑

|w|=n

µ(w) log2 µ(w)

is the n-th order entropy.
The n-th order conditional entropy is defined as

hn(µ) = Hn+1(µ)−Hn(µ).

It can be shown (see [Sh]) that the quantities hn(µ) and Hn(µ)/n converge
to the same value, which is the Shannon entropy of the process µ:

h(µ) = lim
n→∞

hn(µ) = lim
n→∞

Hn(µ)/n. (2.3)

2.1 The main theorem

Intuitively, after a pair substitution the information is more concentrated,
with respect to the original sequence.

After several substitutions, the most important blocks (the most frequent
ones) are concentrated into symbols and the value of the entropy can be
calculated by applying the standard formula with short blocks (Hk with
small k).

This can be formulated in precise terms (see [BCG], Theorem 3.2 and
Corollary 2.6) and suggests that a sequence of substitutions might asymp-
totically transfer all the information to the distribution of the pairs and
individual symbols. This is precisely the content of the main theorem.

To state it, we define the following objects:

- the alphabets AN = AN−1 ∪ {αN} where αN /∈ AN−1 and A0 = A;
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- the maps GN = GαN
xNyN

: A∗
N−1 → A∗

N , where xN , yN ∈ AN−1;

- the maps between measures GN = GαN
xNyN

;

- the measures µN = GNµN−1, with µ0 = µ;

- the quantities ZN = Z
µN−1

xNyN and ZN = ZN . . . Z1.

Theorem 2.4. [[BCG], Theorem 3.2] If

lim
N→∞

ZN = +∞

then

h(µ) = lim
N→∞

h1(µN)

ZN

. (2.4)

Theorem 2.5. If at each step N the pair xNyN is a pair with the maximum
frequency among all the pairs of symbols of AN−1, then

lim
N→∞

ZN = +∞.

Theorems 2.4 and 2.5 combined guarantee that, by performing at each
step the substitution of a pair with maximum probability, the entropy of
the original ergodic process is approximated by the 1-st order conditional
entropy, which takes into consideration only the distribution of the single
symbols and of the pairs of symbols. In this sense, through this method “the
ergodic process becomes 1-Markov in the limit”.

In practical utilizations of the above theorem we have access to the sta-
tistical properties of the source by measuring the empirical frequency of digit
sequences in the experimental data we have. Given a sequence x1x2 . . . xn,
the empirical distribution of the (overlapping) k-blocks ak1 is defined naturally
by

pk(a
k
1|xn

1 ) =
#{i ∈ [1, n− k + 1] : xi+k−1

i = ak1}
n− k + 1

(2.5)

and its empirical k-entropy is defined by

H̃k(x
n
1 ) = −

∑

|w|=k

pk(w|xn
1 ) log2 pk(w|xn

1 ).

Let us call G the substitution operation on the maximal frequency pair
(if there are more than one string of maximal frequency, the lexicographic
order is used). By ergodicity, it is possible to rephrase the above theorem
into a statement which is more similar to what can be pratically done on
long strings coming from the source:
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Corollary 2.6. If µ is ergodic, for almost each ω ∈ AN

h(µ) = lim
n→∞

lim
l→∞

H̃2(G
n(ωl

1))− H̃1(G
n(ωl

1))

Z̃n(ωl
1)

(2.6)

where Z̃n(ω
l
1) =

l

|Gn(ωl
1
)| is the shortening rate after n substitutions.

Proof. Let ω be a typical realization of the system. Since the system is er-
godic liml→∞ H̃k(G

n(ωl
1)) = Hk(µn), hence liml→∞ H̃2(G

n(ωl
1))−H̃1(G

n(ωl
1)) =

h1(µn). Moreover, in the same way, when n is fixed and l → ∞, Z̃n(ω
l
1) → Zn

and the corollary follows from the above Theorem 2.4.

3 Symbolic dynamics

In this section we briefly recall the basic notions about symbolic dynamics
and Kolmogorov-Sinai entropy. We already defined the entropy of a sym-
bolic process. Entropy may be defined also for measure-preserving trans-
formations. This will be done by associating symbolic sequences with the
orbits of the transformation. Let us more precisely recall the definition of
Kolmogorov-Sinai entropy hµ of a map T : (X,B, µ) → (X,B, µ) having an
ergodic invariant measure µ.

Let α = {A1, . . . , Ak} be a finite measurable partition of X . Let Ω
be the product space {1, 2, . . . , k}N, so that an element of Ω is a sequence
ω = (ωn)

∞
n=0, where ωn ∈ {1, 2, . . . , k} for all n.

It is possible to translate in a standard way the dynamics of (X,B, µ, T )
into the dynamics of the space Ω, which is provided with the Borel σ-algebra
B(Ω) generated by the cylinder sets and the left shift transformation σ. Let
us define a map φα : (X,B) → (Ω,B(Ω)) by

(φα(x))n = ωn if T nx ∈ Aωn
.

so that the n-th coordinate of φα(x) is the alphabet letter corresponding to
the element of the partition α which T nx belongs to.

It holds φα(Tx) = σ(φαx), ∀x ∈ X . Furthermore, the map φα is measur-
able and naturally transports the measure µ on (Ω,B(Ω)) defined by setting
for every measurable E ⊆ Ω, ν(E) = µ(φ−1

α E).
Notice that in general the map φα is not invertible, thus it does not always

give an isomorphism. However, if the partition α is generating, that is the
sets of the form Ai1∩T−1Ai2∩. . .∩T−(m−1)Aim generate the σ-algebra B, then
the map φα gives an isomorphism between (X,B, µ, T ) and (Ω,B(Ω), ν, σ).
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If α and β are two measurable partitions of (X, µ, T ), their joint partition
α ∨ β is the set {A ∩ B | A ∈ α B ∈ β}. If T is a measurable and non-
singular function and α is a partition, then T−1α is the partition defined by
the subsets {T−1A | A ∈ α}.

Given the partition α = {A1, . . . , Ak} we shall denote the Shannon en-
tropy of the partition by

H(α) = −
k

∑

i=1

µ(Ai) log2(µ(Ai)) .

The entropy of the map T with respect to the partition α is:

hµ(T, α) = lim
n→+∞

1

n
H

( n−1
∨

i=0

T−iα

)

.

The Kolmogorov-Sinai entropy of the dynamical system (X, µ, T ) is

hµ(T ) = sup
α

hµ(T, α),

where the supremum is taken over all the finite partitions.
There exist partitions whose entropy is the Kolmogorov-Sinai entropy of

the map.

Theorem 3.1 (Kolmogorov). Consider a dynamical system (X, µ, T ). If α
is a generating partition with respect to the map T , then

hµ(T ) = hµ(T, α).

The existence of a generating partition for a dynamical system is assured
by the following theorem.

Theorem 3.2 (Krieger Generator Theorem [Kr]). For an ergodic dynamical
system (X, µ, T ) on a Lebesgue space X, such that hµ(T ) < ∞, there exists
a finite generating partition α.

The identification of a generating partition is generally a challenging task.
In the following, we shall provide some examples of generating partitions in
specific cases.
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4 Estimating entropy from samples

When a process’invariant measure is explicitly known, we could in principle
estimate the entropy by applying the definition. On the other hand, when
we are not given explicit knowledge of the measure, we are often not able
to know exactly the entropy of the process and the problem of entropy esti-
mation arises. A usual approach to this problem is considering long sample
sequences, which are looked at as parts of infinite typical sequences and thus
representing the statistical features of the system. To such samples several
entropy estimating algorithms can be applied.

We shall compare the estimating algorithm suggested by the NSRPS
method with two others, which we shall call the empirical frequencies (briefly,
EF) method and the return times (briefly, RT) method. We remark that
these methods can be applied directly to the symbolic sequence without ha-
ving any other information on the source. For the ergodic transformations
of the unit interval we shall use another estimating algorithm which does
not apply to symbolic processes: the approximation of the Lyapunov expo-
nent. We remark that the estimation of entropy by this method uses some
additional information on the system (the derivative of the map, which is
calculated at each step of the dynamics, and the dimension of the invariant
measure).

Each estimation algorithm is supported by rigorous results, as it will be
shown in the following sections and will be implemented in its simplest form.

We end remarking that, while experimental examples contained in this
paper are long artificial trajectories mostly coming from dynamical systems.
When working on short sequences (for instance finite realization of some bio-
physical process or experiment), surrogate analysis and a suitable correction
of the estimator can be useful in order to take into account fluctuations of
entropy or implicit bias on the chosen estimator (see e.g. [MEPR], [BHM]).

4.1 Empirical frequencies (EF)

To estimate entropy directly by the definition, a simple procedure consists
in determining the empirical distribution pk of the overlapping k-blocks and
taking Hk(pk)

k
as an estimate for h. If k is fixed and the length of the sample

sequence n tends to infinity, then Hk(pk)
k

almost surely converges to Hk(µk)
k

,
which tends to h as k → ∞. Theorem 4.1 below guarantees that these two
limits can be performed together with k(n) ∼ log2 n.

Given the sequence x1x2 . . . xn, the empirical distribution pk(·|xn
1 ) of the

overlapping k-blocks is defined as in (2.5).
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Theorem 4.1. If µ is an ergodic measure of entropy h > 0, if k(n) → ∞ as
n → ∞ and if k(n) ≤ log2 n

h
, then

lim
n→∞

1

k(n)
Hk(n)(x

n
1 ) = h, a. s.

For the proof and further details see [Sh], Theorem II.3.5 and Remark
II.3.6. We remark that the same result holds for non-overlapping distribu-
tions. The reason why we chose to consider the overlapping one is to enrich
the statistic as much as possible, as it will be explained in section 5.

4.2 Return times (RT)

Ornstein and Weiss proved an interesting result which links entropy and the
so-called return times for ergodic processes. They showed in [OW] that the
logarithm of the waiting time until the first n terms of a sequence x occur
again in x is almost surely asymptotic to nh.

Definition 4.2. Given a sequence x taken from an ergodic process, we define
the n-th return time as

Rn(x) = min{m ≥ 1 : xm+n
m+1 = xn

1}.

Theorem 4.3. If µ is an ergodic process with entropy h, then

lim
n→∞

1

n
log2Rn(x) = h, a. s.

For the original proof see [OW], for an alternative one see [Sh], Theorem
II.5.1.

4.3 Lyapunov exponent

If we are interested in the estimation of the entropy of a one dimensional
system a powerful tool is the Lyapunov exponent.

Let us consider a map T : [0, 1] → [0, 1] having an ergodic invariant
measure µ. We define its Lyapunov exponent by

λµ =

∫ 1

0

log2 T
′dµ.

Under some assumptions (see below) this quantity is related to the fractal
dimension HD(µ) of µ and the entropy hµ of the system by the formula

10



HD(µ) = hµ

λµ
. Hence if we know HD(µ) and estimate λµ numerically, we

obtain an estimation for hµ.
Let us give a precise statement for one dimensional systems (see [LY] for

a generalization to multidimensional systems). A map T : [0, 1] → [0, 1] is
called piecewise monotonic if there is a sequence {Zi}i∈N of disjoint open
subintervals of [0, 1] such that T |Zi

is strictly monotone and continuous for
each i.

Let us consider the set EZ = ∩i∈NT
−i(∪j∈NZj), where all iterates of T

are in the open intervals. Let µ be an invariant ergodic measure such that
µ(EZ) = 1. Let us consider its Lyapunov exponent λµ and its K-S entropy
hµ. Let us denote by HD(X) the Hausdorff dimension of a subset X ⊂ [0, 1].
The Hausdorff dimension HD(µ) of a measure µ, is defined as the infimum
HD(µ) = infµ(X)=1(HD(X)) of the dimension of full measure sets.

Let us consider the p-variation of a function f :[0, 1] → R on a subinterval
[a, b] defined by:

varp[a,b](f) = sup

{ m
∑

i=1

|f(xi−1)− f(xi)|p
∣

∣

∣

∣

m ∈ N, a ≤ x0 < . . . < xm ≤ b

}

.

We say that the derivative of a piecewise monotonic map has bounded p-
variation if there is a function g such that g(x) = 0 on [0, 1] \EZ , g = T ′ on
each Zi and varp[0,1](g) < ∞.

Theorem 4.4 ([HR]). Let T be a map on [0, 1] with finitely many monotonic
pieces and a derivative of bounded p-variation for some p ≥ 0. If µ is an
ergodic invariant measure with Lyapunov exponent λµ > 0, then

HD(µ) =
hµ

λµ

.

In many of the systems we will study we have that the invariant measure
µ we are interested to consider is absolutely continuous with respect to the
Lebesgue measure with a regular (bounded variation or continuous) density,
hence HD(µ) = 1.

The Lyapunov exponent will be then numerically estimated with a Birkhoff
average along a typical orbit of the system, hence giving

hµ =

∫ 1

0

log2 T
′dµ = lim

n→∞

∑n

i=1 log2(T
′(T i(x0)))

n

for µ-a.e. x0, by the ergodic theorem. Experimental results indicate that
this limit converges very fast and gives a very good estimation for hµ.
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5 Computer simulations

Concerning the results of the computer simulations, some comments are due
on the way we implemented the entropy estimating algorithms.

• About empirical frequency estimation, in our simulations we could not
consider blocks much longer than 23 bits. This is because the algorithm
takes a time which grows exponentially in the length of the blocks
considered. The empirical distribution of blocks of various lengths was
calculated on the entire symbolic sequence.

• The return times method was performed by calculating the return times
of strings long up to log2 n, where n is the length of the symbolic
sequences. Moreover, in order to have more reliable results, for every
binary sequence we considered not only the return times of the initial
strings xk

1, but also of xk+1
2 , xk+2

3 , . . . , xk+999
1000 , and took the average

of their logarithms, hence what we measure is an average return time
indicator.

• In the implementation of the NSRPS method, at every step the substi-
tution with a new symbol of a pair with maximum probability was
performed, then we calculated the conditional entropy of order 1 and
the inverse of the mean shortening ZN estimating the entropy according
to Corollary 2.6.

The implementation of the substitutions method did not show mean-
ingful computational constraints, since performing a pair substitution
requires a very short time. Nevertheless, there is one algorithmic ques-
tion to be answered: the identification of a stop condition.

For the estimation of the entropy with NSRPS, at the moment we have
not an analogous of Theorem 4.1, hence we have to find how many
substitutions it is convenient to made on a finite sample string. We
had to understand when to stop the substitutions before the sequence
becomes too short and consequently the statistics becomes too poor.
We chose to stop when the following condition has occurred:

StopCond : the substituted pair has frequency < 0.02.

The stop condition above is somewhat artificial and has no intrinsic
relation with the symbolic process. In all the cases we studied we knew
the true entropy or estimated it quite precisely by means of the Lya-
punov exponent, so that we could understand when the approximation
through the pair substitutions method was good. In all our processes,
for which we took symbolic samples long 15 millions bits, it seems that

12



few tens of pair substitutions are enough for the estimate to become
more or less constant when considering the first three decimal digits.
Obviously, when the process is independent or 1-Markov at most one
pair substitution is needed in order to have a very precise estimate of
the entropy. On the contrary, processes which have long memory prop-
erties need many pair substitutions. The stop condition we used does
not take into account the memory properties of the process, so that
it lets the algorithm performing unnecessary pair substitutions in low-
Markov cases and stops it before useful substitutions in long-memory
processes. Although a threshold lower than 0.02 in StopCond could
improve the estimates, the goal is to find some criterion, both user-
independent and sequence-dependent, which determines for each case
the most appropriate number of substitutions to perform.

6 Experiments

We now describe the transformations of the unit interval generating the sym-
bolic sequences to which we applied the entropy estimating algorithms.

6.1 Maps

We considered a few maps of the interval, to which we applied the construc-
tion explained in section 3 to obtain symbolic sequences.

6.1.1 Piecewise expanding maps

We considered a piecewise expanding map E, defined by

Ex =







4x
3−2x

if x ∈ [0, 1
2
[

2x−1
2−x

if x ∈ [1
2
, 1]

,

which is discontinuous in 1
2
and has two surjective branches (see Figure 6.1).

It holds E ′(x) > k for all x, where k > 1 is a constant. As it is well
known (see e. g. [Vi]), a map of this kind has a unique absolutely continuous
invariant measure with dimension 1. Moreover, Theorem 4.4 applies and we
can estimate the entropy by the Lyapunov exponent. A generating partition
for E is {[0, 1

2
[, [1

2
, 1]} (see [Bu], Exercise 3.4).

We show the results of the entropy estimates in Table 6.1 and Figure 6.1.
The NSRPS method gives the best estimate. Though, the substitutions

themselves have no particular role, since the map seems to be 1-Markov (the

13



map hLyap hEF hRT hNSRPS (Nsub)

E 0.8673 0.865 0.838 0.867 (17)

Table 6.1: Entropy estimates for the piecewise expanding map E. The values
hLyap, hEF, hRT and hNSRPS are the entropy estimates as Lyapunov expo-
nent or by empirical frequencies, return times, NSRPS, respectively. Nsub is
the number of pair substitutions executed when the stop condition StopCond
occurs.

PIECEWISE EXPANDING MAP

map EF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

h

block length

RT NSRPS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

h

block length

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

h

substitution

Figure 6.1: Piecewise expanding map E and entropy estimates by means of
empirical frequencies, return times and NSRPS. The straight line corresponds
to the Lyapunov exponent value.

first value calculated with the substitutions algorithm is already very close
to the true entropy).
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6.1.2 Lorenz-like maps

Another example of map with two non-surjective branches is a Lorenz-like
map (similar maps are involved in the study of the famous Lorenz system)
defined by

Lx =







1−
(−6x+3

4

)
3

4 if x ∈ [0, 1
2
[

(

6x−3
4

)
3

4 if x ∈ [1
2
, 1]

.

The derivative of L is uniformly greater than 1 for all x ∈ [0, 1] \ {1
2
} and

L′(1
2

±)
= +∞ (see Figure 6.2).

As for the previous piecewise expanding map E, the Lorenz-like map L
has a unique absolutely continuous invariant measure with dimension 1 (see
[Vi]). Theorem 4.4 does not apply in this case because the derivative is not
bounded and hence has not p-bounded variation. However the usual relation
between entropy and Lyapunov exponent holds and can be recovered by [St].
Moreover, the natural partition {[0, 1

2
[, [1

2
, 1]} is generating (see again [Bu]).

In Table 6.2 and Figure 6.2 the results obtained for the map L are shown.

map hLyap hEF hRT hNSRPS (Nsub)

L 0.7419 0.764 0.723 0.748 (17)

Table 6.2: Entropy estimates for the Lorenz-like map L. Nsub is the number
of pair substitutions executed when the stop condition StopCond occurs.

The Lorenz-like map L appears not to be 1-Markov. In fact, from the plot
relative to NSRPS in Figure 6.2 it can be noticed that the best value is not the
first estimated, that is simply the 1-st order conditional entropy h1. Instead,
there are pair substitutions that significantly improve the approximation of
the entropy. These substitutions are those which condense more information
than others. Furthermore, this is one of the cases in which a few more pair
substitutions after condition StopCond occurs give a better estimate.

6.1.3 Logistic maps

The logistic maps are of the form

Λλx = λx(1 − x), 1 ≤ λ ≤ 4

We took λ = 4, 3.8 and 3.6 (the graph of Λ3.8 is shown in Figure 6.3
(map)). For all these three maps, the partition {[0, 1

2
[, [1

2
, 1]} is generating

(see [Bu]).
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LORENZ-LIKE MAP

map EF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

h

block length

RT NSRPS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

h

block length

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

h

substitution

Figure 6.2: Lorenz-like map L and entropy estimates by means of empirical
frequencies, return times and NSRPS. The straight line corresponds to the
Lyapunov exponent value.

For λ = 4 there is a unique invariant measure, which is ergodic and
absolutely continuous with respect to Lebesgue and whose density is ρ(x) =

1

π
√

x(1−x)
. Furthermore, the dynamical system ([0, 1],B([0, 1]), ρ(x)dx, Λ4) is

isomorphic to the shift on the Bernoulli process with alphabet {0, 1} and
parameter 1

2
. Thus, for the entropy it holds h(Λ4) = 1.

About the maps Λ3.8 and Λ3.6 we remark that the assumptions of Theorem
4.4 still hold and the dimension of the invariant measure is estimated to be
very close to 1 (see [Sp]). Hence we assume to be reasonable to estimate the
entropy by the Lyapunov exponent.

In Table 6.3 we summarize the final entropy estimates obtained with the
four methods for the three logistic maps, while in Figure 6.3 we show in
graphical form the complete results for the map Λ3.8.

For the map Λ4 the NSRPS method does not require any substitution
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map hLyap hEF hRT hNSRPS (Nsub)

Λ4 1.0000 0.997 0.959 1.000 (17)

Λ3.8 0.6234 0.652 0.610 0.628 (18)

Λ3.6 0.2646 0.348 0.314 0.269 (18)

Table 6.3: Entropy estimates for the logistic maps Λλ. Nsub is the number of
pair substitutions executed when the stop condition StopCond occurs.

LOGISTIC MAP
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Figure 6.3: Logistic map for λ = 3.8 and entropy estimates by means of
empirical frequencies, return times and NSRPS. The straight line corresponds
to the Lyapunov exponent value.

to correctly estimate the entropy up to the sixth decimal digit. This is no
surprise, since the symbolic process associated with Λ4 is independent.

Instead, for the map Λ3.8 it happens that, similarly to the NSRPS case
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of the map L (see Figure 6.2), there are pair substitutions which are more
important than others in approximating the value of the entropy, as it can
be noticed in Figure 6.3.

The entropy estimating algorithms give for the map Λ3.6 results that are
qualitatively similar to those of Λ3.8.

6.1.4 Manneville-Pomeau maps

Manneville maps exhibit dynamics with long range correlations. They are
defined by

Mzx = x+ xz (mod 1), z ∈ R
+.

Such maps have great interest in physics and possess different charac-
teristics as the exponent z varies. We focused our attention on the values
1 < z < 2, for which the maps admit a unique absolutely continuous invari-
ant probability measure (with unbounded density). For these parameters,
the system has power law decay of correlations, and the rate is slower and
slower as z approaches 2 (see [Vi], section 3 e.g.). In this case the system
has “long memory” and to estimate entropy by the empirical frequencies we
would need long blocks. For z ≥ 2 the absolutely continuous invariant mea-
sure is no longer finite. We also remark that since those maps have bounded
variation derivative, in the cases where the absolutely continuous invariant
measure is finite we can again estimate the entropy by the Lyapunov expo-
nent. We took values of z which go very close to 2: z1 =

3
2
, z2 =

7
4
, z3 =

15
8
,

z4 = 31
16
, z5 = 63

32
, z6 = 127

64
(see the plot of Mz4 in Figure 6.4). For all

1 ≤ i ≤ 6 it holds M ′
zi
(x) > 1 for all x ∈]0, 1] and M ′

zi
(0+) = 1. For these

maps the natural partitions {[0, ci[, [ci, 1]}, where ci ∈]0, 1[ is that value such
that Mzi(c

−
i ) = 1 and Mzi(c

+
i ) = 0, are obviously generating.

The presence in 0 of an indifferent fixed point is the main responsible
for the peculiar behaviour of the Manneville maps. When, starting from
a random point x0, after a certain number n of iterations the point Mn

z x0

happens to be very close to 0, the subsequent iterations remain very close to
0 for a long time. This fact translates in having many consecutive zeros in
the binary symbolic sequence associated with the orbit of x0. These strings
of zeros can be long even hundreds of thousands of bits or more. The closer
to 2 is the exponent z, the longer and more frequent these strings.

In carrying out the simulations for the Manneville maps and commenting
their results, one cannot ignore the peculiarities of these maps. It turns out
that the symbolic sequences we generated are too short to reflect the general
characteristics of the maps. If in a sequence of 15 millions bits there happen
to be groups of consecutive zeros that are hundreds of thousands of bits
long, then the results obtained from such a sequence cannot be completely
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reliable. The usual approach to this problem is considering many sequences,
generated from different initial random points, and taking the averages of
the estimates. For the map Mzi we considered 2i sequences, with 1 ≤ i ≤ 6.
Still, the values obtained from the various sequences are quite different, so
that we cannot consider completely reliable the averages as well.

Bearing in mind these considerations, we report in graphic form the re-
sults for the Manneville map Mz4 = z + z

31

16 (mod 1) (see Figure 6.4), while
the results for all the six Manneville maps considered are shown in Table 6.4.

map hLyap hEF hRT hNSRPS (Nsub)

M 3

2

0.811 0.804 0.821 0.813 (18)

M 7

4

0.519 0.522 0.558 0.511 (20)

M 15

8

0.314 0.340 0.442 0.322 (19)

M 31

16

0.228 0.244 0.444 0.226 (21)

M 63

32

0.175 0.234 0.400 0.216 (21)

M 127

64

0.168 0.214 0.358 0.196 (21)

Table 6.4: Entropy estimates for the Manneville maps Mzi. Nsub is the aver-
age number of pair substitutions executed when the stop condition StopCond
occurs.

For each Manneville map that we studied (except for M 7

4

), the entropy
estimates obtained through the NSRPS method were clearly the closest to
the true entropy (which we assumed to be equal to the average Lyapunov
exponent), although they were not as close as for the other maps or processes
(see section 6.2).

6.1.5 A skew product

We consider an example of a two dimensional system having long range
correlations which is quite different from the Manneville map. Let us consider
the following map S : [0, 1]2 → [0, 1]2 defined by

S(x, y) = (Ex, y + αφ(x) mod 1) (6.1)

where: φ(x) =

{

1 if x ≥ 1
2

0 if x < 1
2

, α is a diofantine irrational and E is the one

dimensional piecewise expanding map considered in section 6.1.1. In the
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Figure 6.4: Manneville map with z = 31
16

and entropy estimates by means of
empirical frequencies, return times and NSRPS. The straight line corresponds
to the Lyapunov exponent value.

system the x coordinate is subjected to a chaotic transformation, while the
y is rotated according to the value of x. Such systems preserve an absolutely
continuous invariant measure and are mixing. Some estimations for the decay
of correlations are given in [Dol].

We partitioned the unit square in four equal squares Q1, ..., Q4 having a
common vertex at (1

2
, 1
2
).

The entropy of S with respect to the partition {Q1, ..., Q4} is the same as
the entropy of E, indeed the rotation has zero entropy and a symbolic orbit
for the two dimensional system can be constructed by the information given
by its symbolic orbit for the one dimensional map E and the information
relative to the rotation part. Although the entropy is the same, its estimation
is much more complicated, as the experiments show.

In figure 6.5 we consider the case where α = 1+
√
5

2
is the golden ratio. The
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empirical frequencies and the substitutions seem to converge to a value which
is slightly greater than the true entropy. The return time instead seems to
better approximate the entropy in this case.

SKEW PRODUCT

EF RT
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Figure 6.5: Results for the skew product S: entropy estimates by means of
empirical frequencies, return times and NSRPS. The straight line corresponds
to the entropy value.

6.2 Renewal processes

Apart from the symbolic sequences obtained from ergodic transformations of
the unit interval, we considered sequences taken from the so-called renewal
processes.

A renewal process is a stationary process with alphabet {0, 1} for which
the distances between consecutive ones are independent and identically dis-
tributed random variables. When a symbol ‘1’ occurs, the sequence forgets
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all its past and the probability of having the next ‘1’ after j bits is pj, where
0 ≤ pj ≤ 1 and

∑∞
j=1 pj = 1.

We considered such renewal processes, with p1 = p2 = . . . = p2k = 1
2k
,

5 ≤ k ≤ 9, which we shall indicate with RP2k .
For these renewal processes, the value of their entropy can be calculated

exactly. We recall in fact that the entropy of a process is the number of bits
per symbol that are necessary to describe the process itself. The quantity
C = −∑

j pj log2 pj represents the number of bits that one needs to describe
the process of the jumps between consecutive ones. In other words, C is the
entropy of a random variable which describes the length of the jumps. If n is
large, with n jumps (nC bits) we describe a sequence long about nL symbols,
where L is the average length of the jumps. Thus,

h(RP2k)
n→∞≈ nC

nL
=

−
∑

j≥1 pj log2 pj
∑

j≥1 jpj
.

In our cases, where p1 = . . . = p2k = 1
2k

and pj = 0 for j > 2k, we have

h(RP2k) =
2k

2k + 1
.

In Table 6.5 we show the results of the entropy estimates for the renewal
processes RP2k and those of RP32 are also plotted in Figure 6.6.

map h hEF hRT hNSRPS (Nsub)

RP32 0.303030 0.320 0.272 0.303067 (11)

RP64 0.184615 0.196 0.153 0.184793 (22)

RP128 0.108527 0.115 0.110 0.108498 (25)

RP256 0.062257 0.066 0.055 0.062239 (18)

RP512 0.035088 0.037 0.039 0.035112 (16)

Table 6.5: Entropy estimates for the renewal processes RP2k . Nsub is the
number of pair substitutions executed when the stop condition StopCond oc-
curs.

For this process, the substitutions method gives an excellent approxima-
tion of the entropy already after five pair substitutions. After these substitu-
tions all the memory of the process has been transferred to the distribution
of the pairs, so that the sequence has become 1-Markov.
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Figure 6.6: Results for the renewal process RP32: entropy estimates by means
of empirical frequencies, return times and NSRPS. The straight line corre-
sponds to the entropy value.

7 Conclusions and final remarks

The performance of the three symbolic methods is summarized in Figure 7.1.
Summarizing, NSRPS results to be the method that best approximates the
entropy value. To this aim, it is a fast and light computational tool that may
be used also for systems having low entropy or long range correlations where
other statistical methods fail.

This paper shows for the first time a comparison in entropy estimation
among NSRPS and other well-known methods. The results also open some
further questions about NSRPS:

• how to prove an analogous of Theorem 4.1 for NSRPS giving a sufficient
number of substitutions in function of the length of the string?
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and the renewal
process RP32: symbol empty � refers to the NSRPS value under StopCond
condition; full � refers to the EF value and ◦ refers to the RT method.
Straight lines show the entropy values (for the maps they are the estimated
Lyapunov exponents).

• are there other meaningful substitution methods (different from the
recipe given in Theorem 2.5) that may be proved to be (at least) suffi-
cient for Theorem 2.4 to hold?

• can the joint use of NSRPS and Lyapunov exponent (which are both
fast converging and fastly computable) together with Theorem 4.4 give
a particularly good method to numerically estimate the Hausdorff di-
mension of an attractor?

• concerning the applications of NSRPS to non-artificial processes, such
as literary texts, biological sequences (DNA, proteins) and time series
in general, what interesting features of the driving dynamics may be
extracted?

• NSRPS method might be the core of some data compression algorithm
(see [LaMo]). This should pave the way to some investigations towards
its compression capabilities in comparison with other well-known algo-
rithms. We remark that data compression procedures have also been
successfully used as entropy estimators (see e.g. [BBGMV] and [GKB]).
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