Skip to main content
Log in

A Predator–Prey Model with a Holling Type I Functional Response Including a Predator Mutual Interference

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The most widely used functional response in describing predator–prey relationships is the Holling type II functional response, where per capita predation is a smooth, increasing, and saturating function of prey density. Beddington and DeAngelis modified the Holling type II response to include interference of predators that increases with predator density. Here we introduce a predator-interference term into a Holling type I functional response. We explain the ecological rationale for the response and note that the phase plane configuration of the predator and prey isoclines differs greatly from that of the Beddington–DeAngelis response; for example, in having three possible interior equilibria rather than one. In fact, this new functional response seems to be quite unique. We used analytical and numerical methods to show that the resulting system shows a much richer dynamical behavior than the Beddington–DeAngelis response, or other typically used functional responses. For example, cyclic-fold, saddle-fold, homoclinic saddle connection, and multiple crossing bifurcations can all occur. We then use a smooth approximation to the Holling type I functional response with predator mutual interference to show that these dynamical properties do not result from the lack of smoothness, but rather from subtle differences in the functional responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arditi, R., Ginzburg, L.R.: Coupling in predator–prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326 (1989)

    Article  Google Scholar 

  • Bazykin, A.D.: Nonlinear Dynamics of Interacting Populations. World Scientific, Singapore (1998)

    Book  Google Scholar 

  • Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975)

    Article  Google Scholar 

  • Cantrell, R.S., Cosner, C.: On the dynamics of predator–prey models with the Beddington–DeAngelis functional response. J. Math. Anal. Appl. 257, 206–222 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Cantrell, R.S., Cosner, C., Ruan, S.: Intraspecific interference and consumer–resource dynamics. Discrete Contin. Dyn. Syst., Ser. B 4(3), 527–546 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, W., Wang, M.: Qualitative analysis of predator–prey models with Beddington–DeAngelis functional response and diffusion. Math. Comput. Model. 42, 31–44 (2005)

    Article  MATH  Google Scholar 

  • Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)

    MATH  Google Scholar 

  • Cui, J., Takeuchi, Y.: Permanence, extinction, and periodic solution of predator–prey system with Beddington–DeAngelis functional response. J. Math. Anal. Appl. 317, 464–474 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • DeAngelis, D.L., Goldstein, R.A., O’Neill, R.V.: A model for trophic interactions. Ecology 56, 881–892 (1975)

    Article  Google Scholar 

  • Dimitrov, D.T., Kojouharov, H.V.: Complete mathematical analysis of predator–prey models with linear prey growth and Beddington–DeAngelis functional response. Appl. Math. Comput. 162, 523–538 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Doedel, E., Champneys, A.R., Fairgrieve, T., Kuznetsov, Y., Oldeman, B., Paffenroth, R., Sandstede, B., Xang, X., Zhang, C.: Auto-07p: Continuation and bifurcation software for ordinary differential equations. Tech. rep., Concordia University (2006)

  • Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  • Gutierrez, A.P.: Applied Population Ecology: A Supply-Demand Approach. Wiley, New York (1996)

    Google Scholar 

  • Holling, C.S.: The components of predation as revealed by a study of small mammal predation of the European pine sawfly. Can. Entomol. 91, 293–320 (1959a)

    Article  Google Scholar 

  • Holling, C.S.: Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398 (1959b)

    Article  Google Scholar 

  • Hwang, T.W.: Global analysis of the predator–prey system with Beddington–DeAngelis functional response. J. Math. Anal. Appl. 281, 395–401 (2003)

    MathSciNet  MATH  Google Scholar 

  • Hwang, T.W.: Uniqueness of limit cycles of the predator–prey system with Beddington–DeAngelis functional response. J. Math. Anal. Appl. 290, 113–122 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Leine, R.I.: Bifurcations of equilibria in non-smooth continuous systems. Physica D 223, 121–137 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  • Leine, R.I., van Campen, D.H.: Bifurcation phenomena in non-smooth dynamical systems. Eur. J. Mech. A, Solids 25, 595–616 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, S., Beretta, E.: A stage-structured predator–prey model of Beddington–DeAngelis type. SIAM J. Appl. Math. 66(4), 1101–1129 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Lotka, A.J.: Elements of Physical Biology. Williams & Wilkins, Baltimore (1925)

    MATH  Google Scholar 

  • Murdoch, W.W., Briggs, C.J., Nisbet, R.M.: Consumer–Resource Dynamics. Princeton University Press, Princeton (2003)

    Google Scholar 

  • Negi, K., Gakkhar, S.: Dynamics in a Beddington–DeAngelis prey–predator system with impulsive haresting. Ecol. Model. 206, 421–430 (2007)

    Article  Google Scholar 

  • Rosenzweig, M.L.: Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971)

    Article  Google Scholar 

  • Rosenzweig, M.L., MacArthur, R.H.: Graphical representation and stability conditions of predator–prey interactions. Am. Nat. 97, 209–223 (1963)

    Article  Google Scholar 

  • Seo, G., Kot, M.: A comparison of two predator–prey models with Holling’s type I functional response. Math. Biosci. 212, 161–179 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Turchin, P.: Complex Population Dynamics: A Theoretical/Empirical Synthesis. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  • van Voorn, G.A.K., Stiefs, D., Gross, T., Kooi, B., Feudel, U., Kooijman, S.: Stabilization due to predator interference: comparison of different analysis approaches. Math. Biosci. Eng. 5(3), 567–583 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Volterra, V.: Fluctuation in the abundance of a species considered mathematically. Nature 118, 558–560 (1926)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunog Seo.

Additional information

Communicated by P. Newton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, G., DeAngelis, D.L. A Predator–Prey Model with a Holling Type I Functional Response Including a Predator Mutual Interference. J Nonlinear Sci 21, 811–833 (2011). https://doi.org/10.1007/s00332-011-9101-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-011-9101-6

Keywords

Mathematics Subject Classification (2000)

Navigation