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Abstract— The theory of consensus dynamics is widely em- graph with no globally reachable node. These models are

ployed to study various linear behaviors in networked control  complicated, and are difficult to implement on an engineered
systems. Moreover, nonlinear phenomena have been observed multi-agent network

in animal groups, power networks and in other networked ; o . .
systems. This inspires the development in this paper of two In this paper, we propose distributed algorithms to achieve

novel approaches to define distributed nonlinear dynamical nonlinear behaviors in a networked system. We define two
interactions. The resulting dynamical systems are akin to frameworks, namely, the absolute nonlinear flow, and the
hlg(;jer-or%er noEllneir COHS?F‘SUSd systgms,l. Over connﬁpl)tgad disagreement nonlinear flow to define nonlinear dynamics
undirected graphs, the resulting dynamical systems exhibit 5" myiti-agent network. We apply these frameworks to
various interesting behaviors that we rigorously characterize. . . . L r X
characterize a pitchfork bifurcation in a multi-agent nestkv

|. INTRODUCTION For a graph with a single node, the proposed dynamics

duce to scalar nonlinear dynamics. In essence, the prdpos

fish. flocks of birds. and herds of wildebeests. is a widel ynamics are extensions of the scalar nonlinear dynamics to

studied phenomenon. It has been proposed that the decisi r}rqmeered n.1ult|-agent systems. The major contributidns o

making in such groups is distributed rather than centrahea °% work are:

individual in such a group decides how to behave based1) We propose generalized frameworks to describe dis-

on local information. In particular, some adjacency-based  tributed nonlinear dynamics in a multi-agent network.

averaging models have been proposed to model the observe@) For each framework, we generically define the set of

behavior in such systems. These adjacency-based averaging final possible equilibrium configurations.

algorithms are called consensus algorithms, and have beer8) We define the distributed pitchfork bifurcation dynam-

widely studied in various engineering applications. ics for networked systems using these frameworks.
Of particular interest are recent results in ecology [4] 4) We present some general tools to study stability of

which show that, for small difference in the preferences  these dynamics, and utilize them to study stability of

of the individuals, the decision making in animal groups is the pitchfork bifurcation dynamics.

well modeled using consensus dynamics, but for significant 5) We present a comprehensive treatment of these dynam-

differences in the preferences of individuals, the denisio ics for lower order networks.

dynamics bifurcate away from consensus. This provides The remainder of the paper is organized as following.

motivation for coming up with dynamics which mimic suchin the Section I, we elucidate some basics of dynamical

nonlinear behaviors in engineered multi-agent systems. systems and graph theory, which is followed by the develop-
Recently, dynamical systems theory has been extensivatyent of frameworks to define nonlinear dynamics on graphs

applied to networked systems. In particular, the consensiss Section 1ll. We use these frameworks to study pitchfork

problem has been studied in various fields, e.g., netwokkfurcation dynamics on graphs in Section IV. We further

synchronization [15], flocking [18], rendezvous [10], sens explain the results through some examples in Section V.

fusion [16], formation control [5], etc; a detailed destigp  Finally, our conclusions are in Section VI.

is presented in [12], [6]. Some nonlinear phenomena have

been studied in certain classes of networks. Certain nealin II. PRELIMINARIES

protocols to achieve consensus have been studied [1]. The ) .

bifurcation problem has been studied in neural network®- Pitchfork bifurcation

a Hopf-like bifurcation has been observed in a two cell The equation

autonomous system [20], and pitchfork and Hopf bifurca-

tions have been studied in artificial neural networks [14], &=~z — a3, v,z € R, 1)

[19]. Some static bifurcations have been studied in load flow

dynamics of power networks [9]. A version of bifurcations inis defined as the normal form for the supercritical pitchfork

consensus networks has been studied in the opinion dynamigrcation [17]. The dynamics of (1) are as follows:

literature [11]. The models in opinion dynamics problems 1) For~ < 0, there exists a stable equilibrium point at
can be interpreted as consensus dynamics on a time varying  z = 0, and no other equilibrium point.

2) For~ = 0, there exists a critically stable equilibrium

Collective behavior in animal groups, such as schools g
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B. Laplacian Matrix of a graph The vectorL(G)z is called thedisagreement vectoilt has
Given a digraphg = (V, &), whereV = {vy,...,v,} is Deen shown in [13] that the solutions to the Laplacian

the set of nodes and is the set of edges, theaplacian flow converge to dia@R™) for fixed as well as switching
matrix £(G) € R"*" has entries: topologies.
Lo l1l. DISTRIBUTED NONLINEAR DYNAMICS IN NETWORKS
-1, if (27]) €g,

Lo=dd ifi—i Before we define distributed nonlinear dynamics in net-
L ' = works, we introduce the following notation. We denote the
0,  otherwise set of connected undirected graphs witthodes by

whered; is the out-degree of nodg i.e., number of edges T, = {G | £(G) = £(G)T, and rankL(G)) =n — 1}.
emanating from node [3]. The set of nodeg € V, such

that (i, j) € &, is referred to as thadjacencyof the node;, A. Absolute nonlinear flow ) )
and is denotedd;(i). We call a flow absolute nonlinear flowif each node

Properties of Laplacian Matrix: transmits a value which is a function of only its own label.

1) The Laplacian matrix is symmetric if and onlydfis Forag € I'», onR™, such a flow is given by
undirected. &= L(G)f(x),

2) A symmetric Laplacian matrix is positive semidefinite

3) For a graphg with n nodes and at least one globally
reachable node, the rank of the Laplacian matrix is

‘where f : R™ — R” is a smooth function. In components,
.the absolute nonlinear flow is given by

n—1. gi= Y (filw) = fi(x), Vie{l,... n}
4) The kernel of the Laplacian matrix for a graghof jeadi(i)
order n with at least one globally reachable node isthe set of equilibrium points of the absolute nonlinear flow
diagR"), i.e. {(x1,....0n) ER" |21 = - = 20). i
C. Center manifold theorem {2" | f(z7) € diagR"™)}.

For (z1,22) € R™ x R"2, consider the following system The salient feature of the absolute nonlinear flow formafati
is that the set of equilibrium points is an invariant over the

21 = Arz1 + g1(21, 22), @) setT’,,. Moreover, the sum of the states is an invariant over
= Aoz + ga(21, 22), any trajectory of the system, which follows from the factttha
Z’L 1 i‘l - O

where all eigenvalues afl; € R™*™, and Ay € R"2*"2 _
have zero and negative real parts, respectively. The fumsti B. Disagreement nonlinear flow
g1 : R x R" — R™ andgs : R™ x R"2 — R" satisfy We call a flowdisagreement nonlinear floi each node

the conditions transmits a value which is determined only by corresponding
dg; , entry in the disagreement vector. Fogac I',,, onRR", such
9i(0,0) =0, 27(0,0)=0, ¥ie{l,2}. () aflow is given by
For the system in equation (2), for small, there exists [7] &= f(L(G)x),
an invariant center manifold : R — R"2 satisfying the where f : R* — R” is some smooth function. In compo-
conditions nents, the disagreement nonlinear flow is given by
oh
h(0)=0, —(0)=0, and
(©) 821() xZ:fZ< Z (:ci—xj)>, Vie{l,...,n}.
h icadii

Aoh(z1)+g2(z1, (1)) = 5~ (21)[Arz1 + g1 (21, h(z0))]. e _ _ _

0z A particular case of the disagreement nonlinear flow is

The center manifold theorem [7] states that the dynamisghen eachy; is a polynomial. In this scenario, the disagree-
on the center manifold determine the overall asymptotigient nonlinear flow is given by

gyramics o @) peata o) = (10 16, e OWIal i~ 1, 0D() ..+ (D))
whereD(x) = diag (£(G)x). In components, this becomes
21 :AlZl +91(21;h(2’1))' (4) i :a0+a1I(l‘i)+.--+am<I($i)>m, Vi e {17“.7n}7

D. Laplacian flow whereZ(x;) = Y cagis (i — 7;). Let ther < m real roots
Let G be a undirected connected graph of orderThe of the equation

Laplacian flowon R"™ is defined by G4zt an =0
0 1 “ e m ==

& =—L(G)z. be z;,i € {1,...,7}. The set of equilibrium points of the
In components, the Laplacian flow is given by disagreement nonlinear flow with polynomial nonlineargy i
Ty = Z (xj — ), i€{l,...,n}. {z" eR" | L(G)z" € {z1,..., 2 }"}.

jeadi(i) Here, the equilibrium points depend on the graph topology.



IV. DISTRIBUTED BIFURCATIONS IN NETWORKS Proof: We start by determining the equilibrium points
We study a particular class of distributed nonlinear dyfor equation (5), which are given by

namics wheref; : R — R, for eachi € {1,...,n}, is . 3

fi(z) = yz — 23, wherey € R is some constant. We refer e — diag(z)"1, € ker(£(G)),

to such nonlinearity as pitchfork nonlinearity — yr; — 2t =a, Vic{l,...,n}, anda €R. (9)

A. Absolute nonlinear flow with pitchfork nonlinearity We observe that equation (9) is a cubic equation and hence,

Given a connected undirected graghe T',,, andy € R, has at least one real rogt (say). The other roots of the
the absolute nonlinear flow with pitchfork nonlinearity is equation (9) can be determined in termsfpfand are given

b
& = 7L(G)z — £(G)diag(x)*1,. G ; .
In components, this becomes T =0+ \/7—?’ vie{l,....n}. (10)
#i=v Y (wi—z)— Y («f—23),  (6) We observe that the roots given in equation (10) are complex
jeadj(i) j€adj(i) if v < 0. Hence, fory < 0, the equilibrium points are given

by the seté.. It follows from equation (10) that foty > 0,

forallie{1,...,n}. i WS ‘
ied nt & is the set of equilibrium points.

For a given graplyy € T',,, and a full rank diagonal matrix

T € R"*", let us define theeneralized Laplacian floway To .establish the second statement, we consider a Lyapunov
function V(z) = 27 £(G)z. We observe that, foy < 0, the
& =—L(G)Tx. (7)  Lie derivative of this Lyapunov function along the absolute

Lemma 1 (Generalized Laplacian Flowfor the gener- nonlinear flow with pitchfork nonlinearity is given by

alized Laplacian flow, the following statements hold:

V(z) =2v2TL(G)x — 227 £(G)diagz)?1,, <0,
1) The equilibrium points are given by (@) ne L(G)e — 227 L(G)diag(z) -

£=1{ar 11, RY. which establishes the stat_JiIity_ o_f each point_ in the S@t
{a [ €R} The proof of convergence is similar to Exercise 1.25 in [3].
2) The solutions converge to the geif and only if T > To establish the third statement, we linearize the absolute
0 nonlinear flow with pitchfork nonlinearity about an equilib

Proof: The proof is similar to Exercise 1.25 in [3], with rium point z* to get
a Lyapunov function/ (z) = 27 YL(G)Yz. For the brevity,
we omit the details. ] i = L(G)(yI — 3diag(z*)?)z =: L(G) Y,
Before we analyze the absolute nonlinear flow with pitch-
fork nonlinearity, we introduce some useful notation. Give where T is a diagonal matrix. From Lemma 1, it follows

v € R, define fo, f+ : [ — /47/3,1/47/3] — R by that each equilibrium point* € &, is locally stable if and
only if T is negative definite, which concludes the pro®.
B 3 Remark 1:Let = be the set ofi-dimensional vectors with
=, and =—= £\ /y— =02 e e S
fo(B) =6 1=(8) 2 7 4ﬁ entries in{—, 0, +}, whose cardinality i8"™. Therefore{ €

Theorem 1 (Abs. nonlin. flow with pitchfork nonlinearity)= is ann-dimensional multi-index with indices in alphabet
For the absolute nonlinear flow with pitchfork nonlinearity {— 0, +}. For any§ € =, define fe : [—/47/3, \/47/3] —

the following statements hold: R™ by
1) Equilibrium points: fe(B) = (f& B), ..., fe. (5)) €R".
For v < 0, the set of equilibrium points is
&. = diag(R"). ®) The set&, can be interpreted as the union of three curves in

the following way
For v > 0, the set of equilibrium points is

& = Uges fe([=v47/3, V4v/3)).
E = {{f-(8), fo(B), [+ (B)}"

B € [—\/3v/3,/37/3]} (Here we letg(A) denote the image of a function: A —

R.) O
where {f_(8), fo(B), f+(B)}" is the set of  Remark 2:The results in Theorem 1 hold for any directed
n-tuples which have each entry in the sefgraph with at least one globally reachable node. O
{f=(B), fo(B), f+(B)}- Conjecture 1 (Completenessiven ay € R, the union

2) Consensus: of the basin of attractions of all the stable equilibriumrisi
For v < 0, each trajectory converges to some point irbf the absolute nonlinear flow with pitchfork nonlinearity i
th_e Setﬁ_’c- R™\ Z, whereZ is a measure zero set. g

3) Bifurcation: Conjecture 2 (Switching topology)fhe results in Theo-

For~ >0, each e_quili2brium point* € &, is locally  rem 1 hold for a network with switching topology, €
stable if and only if3z;~ > ~ for eachi € {1,....n}. p keN. O



B. Disagreement nonlinear flow with pitchfork nonlinearity Equilibrium points:

Given a connected undirected graghe T',,, and~y € R, 1) For~ <0, the set of equilibrium points is

itse disagreement nonlinear flow with pitchfork nonlinearit 7. = diagR™).
i = L(G)x — (diag L(G)x))>1,. (11) 2) For~ > 0, the set of equilibrium points is
In components, the above dynamics, € {1,...,n}, are Fp = {Pfly |y € {0, -7, \Fy}nfl x R,
given by -
3 and » "y € {0,—/7, ﬁ}}.
aéi =7 Z ((El — x]—) — Z (xZ — ij) . (12) =1
jeadj(i) jeadj(i) Consensus:

Before we analyze the disagreement nonlinear flow with ~ For v < 0, each trajectory converges to some point in
pitchfork nonlinearity, we introduce the following notai. the setr..
We partition the Laplacian matrix in the following way: Bifurcation:

L., L 1) For v > 0, and n even, the set of locally stable
L£(G) = [ Lt:* LZ: ] : (13) equilibrium points is

where L, € R(=Dx(=), F={Pylye -7, v} xR,

We also construct a transformation matfixe R"*™ in S
the followi :

e following way and Zyi T ﬁ}}-

P { Ln—1 Lon } . (14) = i
L 1 Moreover, each equilibrium point* € F\F, is

The last row of the transformation matrik is chosen to unstable. o .
be the basis of the kernel of the Laplacian maifi§g), for 2) Fory > 0, and oddn > 1, each equilibrium point
G € T',,. Hence, a coordinate transform through matfx x* € Fp is unstable.

separates the center manifold and the stable/unstable man- Proof: We transform the coordinates tp = Pu,
ifold. Now, we state some properties of the transformatioand observe that in the new coordinates the equation (11)

matrix P. transforms to
Lemma 2 (Properties of the transformation matrix): -y
Given a graphg € I',,, then for the transformation matrix }
P defined in equation (14) the following statements hold: P ly=+ 1 5 . (16)
1) The submatrix,,_, is symmetric positive definite. Yn—1=Yn-1
! i no e 5
2) The transformation matri® is full rank. =i Y+ (i wi)
following: system in equation (16) is equivalent to
1
T p—1 T —1 . P
1nP =€, and P [ Eln, U1 Yy — yf
_ _ T
wheree, =0 ... 0 1. = =Y(Ln-1— Lipnl,y) L
Proof: For the brevity, we present only the idea of Yn—1 Yn—1 = Yp—1
the proof. The first statement follows from some algebraic + Linyn, (17)

manipulations on the Laplacian matrix, Theorem 1.37 in [3],
and semi-positive definiteness of the Laplacian matrix. The n—1 o1 3
second statement follows from the first statement and the and g, = — ny + (Z yi> ' (18)
fact that1,, belongs to the kernel of the Laplacian matrix. = Py

To prove the third statement, we note that the inverse of

transformation matrix? is given by To establish the first statement, we note that the equi-

librium point of the system in equation (17), for eatke

1 (Lp—y — LT )7t 11,4 {1,...,n — 1}, are given by
P B _15—1(Ln71 - L*,nlg—l)_1 % . (15) .
* {0}, if <0,
It follows immediately from equation (15) thaf P~! = ¢, Yi (0,7} if y>o0.
and P~ le, = %1,1. This concludes the proof of the third ’

and the last statement. B The equilibrium points, thus obtained, should be consisten
Theorem 2 (Dis. nonlin. flow with pitchfork nonlinearity):with the equilibrium condition of equation (18). Substitut
For the disagreement nonlinear flow with pitchforkof these equilibrium points into the equation (18) yields

nonlinearity, the following statements hold: Z?:_f y; € {0,£,/7}. The equilibrium value ofy, is a free



parameter, and can take any valdec R. This concludes z;-+z- is an invariant along any trajectory of the system, and

the proof of the first statement. it can be utilized to reduce the dimension of the system. For
The proof of the second statement is similar to théhe reduced system; + x5 = ¢ is a parameter, and it turns
Lyapunov function based proof in Theorem 1. out that a pitchfork bifurcation is observed at= /4~/3.

~ To prove the local stability of each equilibrium point € The corresponding bifurcation diagram fpe= 1 is shown in
Fy, for n even, we shift the origin of (17) and (18), definingFigure 1(b). Forc > +/4~/3, the only equilibrium paint of

new coordinates as the system is at = ¢/2. For ¢ < /4v/3, this equilibrium
T T . point loses its stability and two new stable equilibriumrisi
(€,62)" = (Cras 5 Gy )" =y =07 appear in the system. This is a pitchfork bifurcation.
where P~1y* € F,. In these new coordinates, (17) and (18)
become ]
{ G } _ [ ~2y Ly (I +1,115) 0 ] -
G2 0 0 '

G G1(¢1) oo

x { (2 } * [ g2(C2) ] - (19

whereg, : R* ! — R ! andg, : R"! — R satisfy *

equation (3).

The dynamics of (19) are similar to the dynamics of (2), 7o w s ones s
and¢; = h(¢2) = 0 is the center manifold. Thg, dynamics
on this manifold are neutrally stable. Hence, each equilibr

point 2* € F, is locally stable.
Similarly, for n odd, expressing (17) and (18) in the new
coordinates gives :

<:_1 _ "/Ln—l(_2l + 171,—113;_1) 0 - * ____.-""-‘---
G =31}, 0

Jal+ [ e

where,g; : R — R™ !, andg, : R*' — R satisfy

(a) Equilibrium points

o 05 1 15

the conditions in equation (3). Since, the matr/ + (b) Bifurcation diagram
1,117 | has an eigenvalue at — 3, the equilibria are
unstable forn > 3. Fig. 1. Absolute nonlinear flow with pitchfork nonlinearign a graph
. s = . with two nodes andy = 1. (a) The unstable equilibrium points are shown
The instability of the sef,\F; follows similarly. B \ith magenta color while the stable ones are shown in bluer.ci The

Remark 3: The absolute and disagreement nonlinear flowiifurcation diagram for the reduced system. Notice the fiitghbifurcation
can be studied with other normal forms for the bifurcations j &1 + @2 = 2/V3.
scalar systems. For example, one may consider the transcrit
ical nonlinearity f; : R — R defined byf;(z) = yo — 22, We now consider a line graph with three nodes. &t 0,
for all i € {1,...,n}, and somey € R. It can be shown the set of equilibrium points is the consensus getg(R?),
that, fory > 0, the absolute nonlinear flow with transcritical which are all stable. The set of equilibrium points fpr=
nonlinearity converges to consensus under very resgictil is shown in Figure 2(a). Similar to the two node case,
conditions, otherwise each equilibrium point is unstablee  x1 + x2 + x3 iS an invariant along any trajectory of the
disagreement nonlinear flow with transcritical nonlingari system, and this can be utilized to reduce the dimension of

has each equilibrium point unstable for> 0. O the system. For the reduced system+ z2 + 23 = c is
a parameter, and very interesting behaviors are observed as
V. NUMERICAL RESULTS this parameter is varied (see Figure 2(b)). We note that the

We determined the equilibrium points of the absolutequilibrium at(c/3,¢/3) corresponds to the consensus state.
nonlinear flow with pitchfork nonlinearity and establishedFor ¢ = 0 the set of equilibrium points is the consensus point
their stability in Theorem 1. Now we study this system orand an ellipse. Each point on the ellipse is stable, while the
some lower order graphs to better understand the underlyiegnsensus point is a source. As the value: @ increased
dynamics. We start with a graph with two nodes. Fox 0, from zero, the reduced system has seven equilibrium points,
the set of equilibrium points of this system is the consensuhkree of which are sinks, three are saddle points, and one is a
set, diag(R?), which are all stable, while foy > 0, the set source. As the value afis further increased the three saddle
of equilibrium points is shown in Figure 1(a). The subset opoints move towards the source, reaching it at /3y at an
the consensus sé belonging to the convex hull of the set S3-symmetric transcritical bifurcation [2], [8]. As the sded
&, is unstable. Asy is decreased, the ellipse of equilibriumpoints cross the source, i.e., for- /3, the source becomes
points shrinks in size, disappearing~at= 0. Observe that a sink, and the three saddle points move towards the other



three sinks. Atc = 2,/7, the three saddles meet the threghrough these dynamics, and examined their stability. We
sinks and annihilate each other in saddlenode bifurcatiorslso described the bifurcation behavior in multi-agent net
For ¢ > 2, there is only one equilibrium point in the system,works using these frameworks, and demonstrated a variety

which is a sink.

of interesting behaviors that can be achieved.

A number of extensions to the work presented here are
possible. For example, the networks considered here are
static. There is a high possibility that the described dyicam

[1]
(a) Equilibrium points [2]
1 3]
[4]
-0.5. [5]
[6]
(b) Bifurcation diagram g}
Fig. 2. Absolute nonlinear flow with pitchfork nonlinearion a line graph
with three nodes and = 1. (a) The equilibrium points are comprised 9
of three ellipses and a line. (b) The bifurcation diagram tfee reduced (9]
system. Notice theSs-symmetric transcritical bifurcation at = /3, and
the saddlenode bifurcations at= 2. [10]

We now study the disagreement nonlinear flow with
pitchfork nonlinearity on a line graph with two nodes. For1l
~v < 0, the set of equilibrium points for this system is the
consensus safjag(R?), and each equilibrium point is stable. [12]
For~ = 1, the set of equilibrium points is shown in Figure 3.
For~ > 0 each point in the consensus set is unstable, whilgz;
all other equilibrium points are stable.

[14]

[15]

[16]

[17]

Fig. 3. Phase plot for relative nonlinear flow with pitchfaré&nlinearity on (18]
a graph with two nodes ang = 1. The consensus set (shown in magenta)
is unstable, while two sets (shown in blue) are stable. [19]

VI. CONCLUSIONS [20]

In this paper, we considered three frameworks which de-
fine distributed nonlinear dynamics in multi-agent netveork
We determined the set of equilibria that could be achieved

persist for networks with switching topology as well. Fur-
thermore, the class of functions which yield stable eqridib

is not well understood yet. It remains an open problem to
characterize this.
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