Skip to main content
Log in

On Generalizations of the Pentagram Map: Discretizations of AGD Flows

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper we investigate discretizations of AGD flows whose projective realizations are defined by intersecting different types of subspace in \(\mathbb{RP}^{m}\). These maps are natural candidates to generalize the pentagram map, itself defined as the intersection of consecutive shortest diagonals of a convex polygon, and a completely integrable discretization of the Boussinesq equation. We conjecture that the r-AGD flow in m dimensions can be discretized using one (r−1)-dimensional subspace and r−1 different (m−1)-dimensional subspaces of \(\mathbb{RP}^{m}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adler, M.: On a trace functional for formal pseudo-differential operators and the symplectic structure of the KdV. Invent. Math. 50, 219–248 (1979)

    Article  MATH  Google Scholar 

  • Calini, A., Ivey, T., Marí Beffa, G.: An integrable flow for starlike curves in centroaffine space (2012, submitted)

  • Dickson, R., Gesztesy, F., Unterkoer, K.: Algebro-geometric solutions of the Boussinesq hierarchy. Rev. Math. Phys. 11, 823–879 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Drinfel’d, V.G., Sokolov, V.V.: Lie algebras and equations of Korteweg–de Vries type. In: Current Problems in Mathematics. Itogi Nauki i Tekhniki, vol. 24, pp. 81–180. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform, Moscow (1984)

    Google Scholar 

  • Fels, M., Olver, P.J.: Moving coframes. II. Regularization and theoretical foundations. Acta Appl. Math., 127–208 (1999)

  • Gel’fand, I.M., Dickey, L.A.: A family of Hamiltonian structures connected with integrable nonlinear differential equations. In: Gelfand, I.M. (ed.) Collected Papers, vol. 1. Springer, Berlin (1987)

    Chapter  Google Scholar 

  • Gekhtman, M., Shapiro, M., Tabachnikov, S., Vainshtein, A.: Higher pentagram maps, weighted directed networks, and cluster dynamics. Electron. Res. Announc. Math. Sci. 19, 1–17 (2012)

    MathSciNet  MATH  Google Scholar 

  • Heredero, R., Lopez, A., Marí Beffa, G.: Invariant differential equations and the Adler–Gel’fand–Dikii bracket. J. Math. Phys. 38, 5720–5738 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Hubert, E.: Generation properties of differential invariants in the moving frame methods. Preprint http://hal.inria.fr/inria-00194528/en (2007)

  • Khesin, B., Soloviev, F.: Integrability of higher pentagram maps (2012a). arXiv:1204.0756

  • Khesin, B., Soloviev, F.: The pentagram map in higher dimensions and KdV flows (2012b). arXiv:1205.3744

  • Lobb, S.B., Nijhoff, F.W.: Lagrangian multiform structure for the lattice Gel’fand–Dikii hierarchy. J. Phys. A 43(7) (2010)

  • Marí Beffa, G.: The theory of differential invariants and KdV Hamiltonian evolutions. Bull. Soc. Math. Fr. 127, 363–391 (1999)

    MATH  Google Scholar 

  • Marí Beffa, G.: Poisson geometry of differential invariants of curves in some nonsemisimple homogeneous spaces. Proc. Am. Math. Soc. 134, 779–791 (2006)

    Article  MATH  Google Scholar 

  • Marí Beffa, G.: Geometric Hamiltonian structures on flat semisimple homogeneous manifolds, the Asian. J. Math. 12(1), 1–33 (2008)

    MATH  Google Scholar 

  • Marí Beffa, G.: On bi-Hamiltonian flows and their realizations as curves in real semisimple homogeneous manifolds. Pac. J. Math. 247(1), 163–188 (2010)

    Article  MATH  Google Scholar 

  • Ovsienko, V., Schwartz, R., Tabachnikov, S.: The pentagram map: a discrete integrable system. Commun. Math. Phys. 299, 409–446 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Ovsienko, V., Schwartz, R., Tabachnikov, S.: Liouville–Arnold Integrability of the pentagram map on closed polygons (2011). arXiv:1107.3633

  • Schwartz, R.: The pentagram map is recurrent. J. Exp. Math. 10.4, 519–528 (2001)

    Article  Google Scholar 

  • Schwartz, R.: Discrete monodromy, pentagrams and the method of condensation. J. Fixed Point Theory Appl. 3, 379–409 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Schwartz, R., Tabachnikov, S.: The pentagram integrals for inscribed polygons. Electron. J. Combin. 18(1), 171 (2011)

    MathSciNet  Google Scholar 

  • Soloviev, F.: Integrability of the pentagram map (2011). arXiv:1106.3950

  • Wilczynski, E.J.: Projective Differential Geometry of Curves and Ruled Surfaces. Teubner, Leipzig (1906)

    MATH  Google Scholar 

Download references

Acknowledgement

This paper is supported by the author NSF grant DMS #0804541.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Marí Beffa.

Additional information

Communicated by A. Block.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marí Beffa, G. On Generalizations of the Pentagram Map: Discretizations of AGD Flows. J Nonlinear Sci 23, 303–334 (2013). https://doi.org/10.1007/s00332-012-9152-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-012-9152-3

Keywords

Mathematics Subject Classification

Navigation