Skip to main content
Log in

On Solitary Waves and Wave-Breaking Phenomena for a Generalized Two-Component Integrable Dullin–Gottwald–Holm System

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We study here a generalized two-component integrable Dullin–Gottwald–Holm system, which can be derived from the Euler equation with constant vorticity in shallow water waves moving over a linear shear flow. We first derive this system in the shallow-water regime. We next classify all traveling wave solution of this system. Finally, we study the blow-up mechanism and give two sufficient conditions which can guarantee wave-breaking phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 272, 47–78 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • Bressan, A., Constantin, A.: Global conservative solutions of the Camassa–Holm equation. Arch. Ration. Mech. Anal. 183, 215–239 (2007a)

    Article  MathSciNet  MATH  Google Scholar 

  • Bressan, A., Constantin, A.: Global dissipative solutions of the Camassa–Holm equation. Anal. Appl. 5, 1–27 (2007b)

    Article  MathSciNet  MATH  Google Scholar 

  • Burns, J.C.: Long waves on running water. Proc. Camb. Philos. Soc. 49, 695–706 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  • Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Camassa, R., Holm, D.D., Hyman, J.: A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)

    Article  Google Scholar 

  • Cao, C.S., Holm, D.D., Titi, E.S.: Traveling wave solutions for a class of one-dimensional nonlinear shallow water wave models. J. Dyn. Differ. Equ. 16, 167–178 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, R.M., Liu, Y.: Wave breaking and global existence for a generalized two-component Camassa–Holm system. Int. Math. Res. Not. 6, 1381–1416 (2011)

    Google Scholar 

  • Chen, M., Liu, S.Q., Zhang, Y.J.: A 2-component generalization of the Camassa–Holm equation and its solutions. Lett. Math. Phys. 75, 1–15 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, R.M., Liu, Y., Qiao, Z.J.: Stability of solitary waves and global existence of a generalized two-component Camassa–Holm system. Commun. Partial Differ. Equ. 36, 2162–2188 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50, 321–362 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, A.: Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 81 (2011)

    Book  MATH  Google Scholar 

  • Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998a)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Ann. Sc. Norm. Super. Pisa 26, 303–328 (1998b)

    MathSciNet  MATH  Google Scholar 

  • Constantin, A., Escher, J.: On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Math. Z. 233, 75–91 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, A., Ivanov, R.: On the integrable two-component Camassa–Holm shallow water system. Phys. Lett. A 372, 7129–7132 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, A., Johnson, R.S.: Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis. Fluid Dyn. Res. 40, 175–211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, A., Molinet, L.: Obtital stability of solitary waves for a shallow water equation. Physica D 157, 75–89 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, A., Strauss, W.A.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Dai, H.H.: Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod. Acta Mech. 127, 193–207 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Dullin, R., Gottwald, G., Holm, D.: An integrable shallow water equation with linear and nonlinear dispersion. Phys. Rev. Lett. 87, 4501–4504 (2001)

    Article  Google Scholar 

  • Dullin, R., Gottwald, G., Holm, D.: Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent equations for shallow water waves. Fluid Dyn. Res. 33, 73–95 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Dullin, R., Gottwald, G., Holm, D.: On asymptotically equivalent shallow water wave equations. Physica D 190, 1–14 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Escher, J., Lechtenfeld, O., Yin, Z.Y.: Well-posedness and blow-up phenomena for the 2-component Camassa–Holm equation. Discrete Contin. Dyn. Syst. 19, 493–513 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Fokas, A.S., Fuchssteiner, B.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica D 4, 47–66 (1981/82)

    Article  MathSciNet  Google Scholar 

  • Fu, Y., Liu, Y., Qu, C.Z.: Well-posedness and blow-up solution for a modified two-component periodic Camassa–Holm system with peakons. Math. Ann. 348, 415–448 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. J. Funct. Anal. 74, 160–197 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Guan, C.X., Yin, Z.Y.: Global existence and blow-up phenomena for an integrable two-component Camassa–Holm shallow water systems. J. Differ. Equ. 248, 2003–2014 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Guan, C.X., Yin, Z.Y.: Global weak solutions for a two-component Camassa–Holm shallow water systems. J. Funct. Anal. 260, 1132–1154 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Gui, G.L., Liu, Y.: On the global existence and wave-breaking criteria for the two-component Camassa–Holm system. J. Funct. Anal. 258, 4251–4278 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Gui, G.L., Liu, Y.: On the Cauchy problem for the two-component Camassa–Holm system. Math. Z. 268, 45–66 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Guo, F., Gao, H.J., Liu, Y.: On the wave-breaking phenomena for the two-component Dullin–Gottwald–Holm system. J. Lond. Math. Soc. 86, 810–834 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Holm, D.D., Lennon, L.N., Tronci, C.: Singular solutions of a modified two-component Camassa–Holm equation. Phys. Rev. E 3, 016601 (2009), 13 pp.

    Article  Google Scholar 

  • Ivanov, R.: Two-component integrable systems modelling shallow water waves: the constant vorticity case. Wave Motion 46, 389–396 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Kato, T.: Quasi-linear equations of evolution, with applications to partial differential equations. In: Spectral Theory and Differential Equations. Lecture Notes in Math., vol. 448, pp. 25–70. Springer, Berlin (1975)

    Chapter  Google Scholar 

  • Lakshmanan, M.: Integrable nonlinear wave equations and possible connections to tsunami dynamics. In: Tsunami and Nonlinear Waves, pp. 31–49. Springer, Berlin (2007)

    Chapter  Google Scholar 

  • Lenells, J.: Traveling wave solutions of the Camassa–Holm equation. J. Differ. Equ. 217, 393–430 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Lenells, J.: Traveling waves in compressible elastic rods. Discrete Contin. Dyn. Syst. 6, 151–167 (2006)

    MathSciNet  MATH  Google Scholar 

  • Li, Y., Olver, P.: Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system. I. Compactons and peakons. Discrete Contin. Dyn. Syst. 3, 419–432 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, X.Z., Xu, Y., Li, Y.S.: Investigation of multi-soliton, multi-cuspon solutions to the Camassa–Holm equations and their interaction. Chin. Ann. Math. 33B, 225–246 (2012)

    Article  Google Scholar 

  • Lin, Z.W., Liu, Y.: Stability of peakons for the Degasperis–Procesi equation. Commun. Pure Appl. Math. 62, 125–146 (2009)

    MATH  Google Scholar 

  • Liu, Y.: Global existence and blow-up solutions for a nonlinear shallow water equation. Math. Ann. 335, 717–735 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Mustafa, O.: On smooth traveling waves of an integrable two-component Camassa–Holm shallow water system. Wave Motion 46, 397–402 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Olver, P., Rosenau, P.: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E 53, 1900–1906 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, P.Z., Liu, Y.: Stability of solitary waves and wave-breaking phenomena for the two-component Camassa–Holm system. Int. Math. Res. Not. 211, 1981–2021 (2010)

    Google Scholar 

  • Zhou, Y.: Blow-up of solutions to the DGH equation. J. Funct. Anal. 250, 227–248 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the NNSF (11071141, 11171158, 11271192) of China, National Basic Research Program of China (973 Program) No. 2013CB834100, “333” and Qing Lan Project of Jiangsu Province, the Natural Science Foundation of Jiangsu Province (BK2011777), China Postdoctoral Science Foundation (20100481161), the Postdoctoral Foundation of Jiangsu Province (1001042C) and the NSF of the Jiangsu Higher Education Committee of China (11KJA110001).

The authors are indebted to the referee for giving some important suggestions, which improved the presentations of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Gao.

Additional information

Communicated by G. Iooss.

Appendix

Appendix

In this section, we supplement the proof of Theorem 3.9.

Proof of Theorem 3.9

First from (3.24) and the decay of φ(x) at infinity, we know that solitary waves exist if condition (3.15) holds.

If c=A 1, then (3.24) becomes

$$ \varphi_{x}^{2}=\frac{-\varphi^{3}(A_{1}-A_{2}-\varphi)}{(A_{1}-\varphi )(A_{1}+\gamma-\sigma\varphi)}:=F_{1}( \varphi). $$
(A.1)

(1) If γ>−A 1, then we see that φ(x)<0 near −∞. Similarly as in the proof of Theorem 3.7, we can find some x 0 sufficiently negative with φ(x 0)=−ε<0 and φ x (x 0)<0, and we can construct a unique local solution φ(x) on [x 0L,x 0+L] for some L>0.

If σ<0, we see that \(\frac{1}{A_{1}+\gamma-\sigma\varphi}\) is decreasing when (A 1+γ)/σ<φ≤0. Combining this with (3.18) we know that F 1(φ) decreases for φ<0. Because φ x (x 0)<0,φ(x) decreases near x 0, so that F 1(φ) increases near x 0. Hence from (A.1), φ x (x) decreases near x 0, then φ and φ x both decreases on [x 0L,x 0+L]. Since \(\sqrt{F_{1}(\varphi)}\) is locally Lipschitz in φ for (A 1+γ)/σ<φ≤0, we can easily continue the local solution to (−∞,x 0L] with φ(x)→0 as x→−∞. As for xx 0+L, we can solve the initial valued problem

$$\left \{ \begin{array}{l} \psi_{x}=-\sqrt{F_{1}(\varphi)},\\ \psi(x_{0}+L)=\varphi(x_{0}+L)\\ \end{array} \right . $$

all the way until ψ=(A 1+γ)/σ, which is a simple pole of F 1(φ). By (3.27) and (3.28), we deduce that we can construct an anticusped solution with a cusp singularity at φ=(A 1+γ)/σ.

If σ>0, then \(F'_{1}(\varphi)<0\) for φ<0. A similar argument as Theorem 3.7 shows that there is no solitary wave in this case.

(2) If γ<−A 1, then we see that φ(x)>0 near −∞. Similarly as in the proof of Theorem 3.7, we can find some x 0 sufficiently negative with φ(x 0)=ε>0 and φ x (x 0)>0, and we can construct a unique local solution φ(x) on [x 0L,x 0+L] for some L>0.

If σ<0, then \(\frac{1}{A_{1}+\gamma-\sigma\varphi}\) is decreasing when 0≤φ<(A 1+γ)/σ. Using (3.18) it is easy to find that F 1(φ) increases for φ>0. If (σ−1)A 1<γ<−A 1, then \(\sqrt{F_{1}(\varphi)}\) is locally Lipschitz in φ for 0≤φ<(A 1+γ)/σ. Similarly as in the proof of (1), we can construct a cusped solution with a cusp singularity at φ=(A 1+γ)/σ.

If σ>0, we also see that there is no solitary wave by the similar proof of Theorem 3.7.

Similarly, we conclude that when c=A 2, there is no solitary wave when σ>0. When σ<0 and −A 2<γ<(σ−1)A 2, there is an anticusped solution with a cusp singularity at (A 2+γ)/σ. When σ<0 and γ<−A 2, there is an cusped solution with a cusp singularity at (A 2+γ)/σ.

For the case (3.16), 14 cases are there we will consider. we will only look at −c<−A 1<γ. The other cases can be handled in a very similar way. Applying (3.24), we know that φ cannot oscillate around zero near infinity. Let us consider the following two cases.

Case 1. φ(x)>0 near −∞. Then there is some x 0 sufficiently negative so that φ(x 0)=ε>0, with ε sufficiently small, and φ x (x 0)>0.

(i) When σ≤1, \(\sqrt{F(\varphi)}\) is locally Lipschitz in φ for 0≤φ<cA 1. Hence there is a local solution to

$$\left \{ \begin{array}{l} \varphi_{x}=\sqrt{F(\varphi)},\\ \varphi(x_{0})=\varepsilon\\ \end{array} \right . $$

on [x 0L,x 0+L] for some L>0. Therefore by (3.25) and (3.26), we obtain a smooth solitary wave with maximum height φ=cA 1 and an exponential decay to zero at infinity

$$ \varphi(x)=\mathrm{O} \biggl(\exp \biggl(-\frac{\sqrt{c^{2}+Ac-1}}{\sqrt{c(c-\gamma )}}|x| \biggr) \biggr) \quad \text{as}\ |x|\rightarrow\infty. $$
(A.2)

(ii) When σ>1, \(\sqrt{F(\varphi)}\) is locally Lipschitz in φ for \(0\leq\varphi<\frac{c+\gamma}{\sigma}\). Thus if \(c-A_{1}<\frac{c+\gamma}{\sigma}\), i.e., \(A_{1}<c<\frac{-\gamma-\sigma A_{1}}{1-\sigma}\), it becomes the same as (i) and we can obtain smooth solitary waves with exponential decay.

If \(c-A_{1}=\frac{c+\gamma}{\sigma}\), then the smooth solution can be constructed until \(\varphi=c-A_{1}=\frac{c+\gamma}{\sigma}\). However, at \(\varphi=c-A_{1}=\frac{c+\gamma}{\sigma}\) it can make a sudden turn and so give rise to a peak. Since φ=0 is still a double zero of F(φ), we still have the exponential decay here.

If \(c-A_{1}>\frac{c+\gamma}{\sigma}\), then \(\varphi=\frac{c+\gamma}{\sigma}\) becomes a pole of F(φ). Using (3.27) and (3.28), we obtain a solitary wave with a cusp at \(\varphi=\frac{c+\gamma}{\sigma}\) and decays exponentially.

Case 2. φ(x)<0 near −∞. In this case we are solving

$$\left \{ \begin{array}{l} \varphi_{x}=-\sqrt{F(\varphi)},\\ \varphi(x_{0})=-\varepsilon\\ \end{array} \right . $$

for some x 0 sufficiently negative and ε>0 sufficiently small.

When σ>0 we see that F′(φ)<0, for φ<0. Therefore in this case there is no solitary wave.

If σ<0, then φ=(c+γ)/σ<0 is a pole of F(φ). Arguing as before, we obtain an anticusped solitary wave with min x∈ℝ=(c+γ)/σ, which decays exponentially.

Finally, by the standard ODE theory and the fact that Eq. (3.11) is invariant under the transformations x⟶−x, we conclude that the solitary waves obtained above are unique and unambiguous up to translations. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., Guo, F. & Gao, H. On Solitary Waves and Wave-Breaking Phenomena for a Generalized Two-Component Integrable Dullin–Gottwald–Holm System. J Nonlinear Sci 23, 617–656 (2013). https://doi.org/10.1007/s00332-012-9163-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-012-9163-0

Keywords

Mathematics Subject Classification

Navigation