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In 1941 Kolmogorov and Obukhov proposed that there exists a statistical the-
ory of turbulence that should allow the computation of all the statistical quantities
that can be computed and measured in turbulent systems. These are quantities
such as the moments, the structure functions and the probability density func-
tions (PDFs) of the turbulent velocity field. In this paper we will outline how to
construct this statistical theory from the stochastic Navier-Stokes equation. The
additive noise in the stochastic Navier-Stokes equation is generic noise given by
the central limit theorem and the large deviation principle. The multiplicative
noise consists of jumps multiplying the velocity, modeling jumps in the velocity
gradient. We first estimate the structure functions of turbulence and establish the
Kolmogorov-Obukhov 62 scaling hypothesis with the She-Leveque intermittency
corrections. Then we compute the invariant measure of turbulence writing the
stochastic Navier-Stokes equation as an infinite-dimensional Ito process and solv-
ing the linear Kolmogorov-Hopf functional differential equation for the invariant
measure. Finally we project the invariant measure onto the PDF. The PDFs turn
out to be the normalized inverse Gaussian (NIG) distributions of Barndorff-Nilsen,
and compare well with PDFs from simulations and experiments.



1 Introduction

In 1941 Kolmogorov and Obukhov [21, 20, 27] proposed a statistical theory of tur-
bulence based on dimensional arguments. The main consequence and test of this
theory was that the structure functions of the velocity differences of a turbulent
fluid

E(Ju(x,t) —u(x+1,1)]P) = S, = C,IP/3

should scale with the distance (lag variable) / between them, to the power p/3.
This theory was immediately criticized by Landau for not taking into account the
influence of the large flow structure on the constants C,, and later for not includ-
ing the influence of the intermittency in the velocity fluctuations on the scaling
exponents.

In 1962 Kolmogorov and Obukhov [22, 28] proposed a corrected theory were
both of those issues were addressed. They also pointed out that the scaling ex-
ponents for the first two structure functions could be corrected by log-normal
processes. For higher order structure functions the log-normal processes gave
intermittency corrections inconsistent with contemporary simulations and experi-
ments, see [1].

The correct intermittency corrections were found by She and Leveque [35] in
1994. She and Waymire [36] and Dubrulle [16] showed that these corrections are
produced by log-Poisson processes.

Assuming that the noise in fully-developed turbulence is a generic noise de-
termined by the general theorems in probability, the central limit theorem and the
large deviation principle, we are able to formulate and solve the Kolmogorov-
Hopf equation for the invariant measure of the stochastic Navier-Stokes equa-
tions. The stochastic Navier-Stokes equation arises from the deterministic equa-
tion when fluid instabilities magnify ambient noise present in the fluid, see [11].
It can also be considered to be the equation for the small (inertial) scales in a
Reynolds decomposition, [8, 32] of the flow, or the equation for the small scales
in a coarse graining of the Navier-Stokes equation, see [23].

The intermittency corrections to the scaling exponents of the structure func-
tions require a multiplicative (multipling the fluid velocity u) noise in the stochas-
tic Navier-Stokes equation. We let this multiplicative noise, in the equation, con-
sists of a simple (Poisson) jump process and then show how the Feynmann-Kac
formula produces the log-Poissonian processes, see [35], [36] and [16], in the
solution. These log-Poissonian processes give the intermittency corrections that
agree with modern direct Navier-Stokes simulations (DNS) and experiments.



The probability density function (PDF) plays a key role when direct Navier-
Stokes simulations or experimental results are compared to theory. The statistical
theory of turbulence is determined, including the scaling of the structure functions
of turbulence, by the invariant measure of the Navier-Stokes equation and the
PDFs for the various statistics (one-point, two-point,- - -, N-point) can be obtained
by taking the trace of the corresponding invariant measures. Hopf [18] derived
a functional equation for the characteristic function (Fourier transform) of the
invariant measure. In distinction to the nonlinear Navier-Stokes equation, this is a
linear functional differential equation. The theory for solving such equation, see
Da Prato [33], has only recently become available.

The PDFs obtained from the invariant measures for the velocity differences
(two-point statistics) are shown to be the four parameter normalized inverse Gaus-
sian (NIG) distributions, found and investigated by Barndorff-Nilsen [4, 5]. These
PDF have heavy tails and a convex peak at the origin. A suitable projection of
the Kolmogorov-Hopf equations is the differential equation determining the NIG
distributions. Because of intermittency each structure function generates its own
NIG distribution with separate parameters. Then we compare these PDFs with
DNS results and experimental data, see also [6, 7].

2 The Deterministic Navier-Stokes Equation
Fluid flow is described by the deterministic Navier-Stokes equation

(D) w+u-Vu = VAu—Vp
u(x,0) = up(x)

with the incompressibility conditions
V-u=0, 2)

where u(x), x € R, is the velocity of the fluid and v is the kinematic viscosity.
Eliminating the pressure p using (2) gives the equation

ur +u-Vu=vAu+ V{A Yrrace(Vu)?]}. (3)

The turbulence of the fluid is quantified by the dimensionless Reynolds number
R= % where U is a typical velocity of the flow and L is a typical length scale
associated with the flow. The transition to turbulence occurs at R ~ 500 and the



flow is typically fully turbulent when R ~ 2000. Most flows occuring in nature are
turbulent even a small stream can have Reynolds number of 10* and for a large
river it is not unusual that R ~ 106.

The deterministic Navier-Stokes equation describes laminar flow that may ex-
ist when the Reynolds number is large, but then laminar flow is usually unstable.
Small noise prevalent in nature is magnified by the instabilities in the flow and
it becomes more useful to consider the velocity u(x,?) in turbulent flow to be a
stochastic process, see [21]. Then u satisfies a stochastic Navier-Stokes equation

4) du = (VAu—u-Vu+V{A trace(Vu)?]})dt +df;
u(x,0) = wup(x).

Here d f; denotes the stochastic forcing in fully developed turbulence.

Much effort has gone into trying to derive the form of the stochastic forcing
d f; in the stochastic Navier-Stokes equation (4) for particular cases of fluid flow
and flow boundaries. Most of this effort have been in vain because the noise in
fully develop turbulence does not seem to care how it arose, at least not suffi-
ciently far away from the boundary. Instead the noise seems to take a general
form depending only on that generic small environmental noise was magnified by
the fluid instabilities and this growth then saturated by the nonlinearities present
in the flow (and in the Navier-Stokes equation), see [11]. The resulting large noise
has a generic form. Below we will assume that the stochastic forcing has a gen-
eral form stipulated by probability theory and use this form and the structure of
the Navier-Stokes equation to derive the probability density function (PDF) for
turbulence. Then we will compare this PDF with PDFs obtained from simulations
and fluid experiments.

If we let D denote the volume in space and put vanishing (or periodic for
D a box) velocity boundary condition on the boundary dD then we can derive a
differential equation relating the mean energy and the mean enstrophy:

1 1
Z:—/ u(x,r)|dx, Q:—/ Vu(x,t)|dx. 5
51 ) 551 V) s

Here |D| denotes the volume of D and “mean” refers to the fact that we are divid-
ing the energy and enstrophy by the volume. Multiplying the equation (1) by u
and integrating over D we get, by integration by parts,

d
—FE =-2vQ
dt v



because all the other terms integrate to zero by the vanishing boundary conditions.
The mean energy dissipation is now defined to be

d

g=——F.
dt

(6)

3 The Noise in Fully-Developed Turbulence

We will assume that the fluid satisfies periodic boundary conditions on its domain.
This is done for convenience and can easily be relaxed. Then the velocity lies in
a nice Hilbert space namely u(x) € L>(T?) or the underlying domain D can be
taken to be a three-torus T? and the fluid velocity is in the space of functions
square integrable on the torus. By a classical result by Leray [25] one knows that,
if Vu(x,0) lies in L2, then u(x,?) lies in L? for all ¢ and that one can also make
sense of the gradient Vu for almost every ¢, at least for the deterministic equation
(D).

The stochastic Navier-Stokes equations describing fully developed turbulence
is,

1
du= (VAu—u-Vu+ VA~ tr(Vu)?)dr + Z ¢} dbfer(x)
kez?

@) + Z dimedter(x) +u Z / hka(dt,dZ)
k0 k£07 R

u(x,0) = up(x)

where, in the additive noise, each Fourier component ¢, = 2Tk comes with its

own independent Brownian motion b¥ and a deterministic term 1. The coeffi-
1

cients c,f and d; decay sufficiently fast so that the Fourier series converges. The
sizes of the jumps Ay in the velocity gradient do not decay, but for r < oo, only
finitely many /s, |k| < m, are nonzero.

The stochastic processes b* are independent. The discrete processes N¥ are
also independent for different ks but can be associated with b; and Mt for the
same k. This link is manifested in the experimentally observed fact that large
velocity excursion are accompanied by large dissipation events.

The situation described by the equation (7) is the general situation in turbulent
flow. There is some large scale flow that drives all the small scale and one can
decompose the velocity field into two parts U 4+ u where U describes the large

5



scale flow and u describes the smaller scale turbulence. In physics u is said to
describe the fluctuations. The large scale flow generates a force acting on the
small scale and the noise in (7) is a model of this force. We will argue below
that based on probability theory this force has a general form in fully developed
turbulence. This decomposition of the velocity field can also be thought of as
the classical Reynolds decomposition and then the force exterted by the small
scales u on the large scales U is the well-known eddy diffusivity. Still another
way of thinking about the equation (7) is in terms of the coarse graining of the
Navier-Stokes equation, where U describes the mean flow and (7) is the equation
describing the fluctuations u.

Turbulent flow consists of complicated and sometimes violent motion that is
dissipated in the flow. We split the torus into small boxes and let p; denote the
stochastic dissipation process in the jth box. We assume that the p;s in different
boxes are weakly coupled and have mean m. By the Central Limit Theorem [10]
in probability theory, the average

120
an— E pj
nj:1

converges to a normal (Gaussian) random variable \/n(M, —m)/c — N(0,1) as
n — oo, with mean zero and variance one, as we let the number of boxes (n)
increase to infinity. We now let

n
=

denote the sum and define the stochastic processes

Sitn) —nm
\/no

where [tn] denotes integer value. Then if the pjs are independent and identically
distributed with variance 6% > 0 and mean m, the functional central limit theorem,
see Theorem 8.1 in [9], says that the stochastic processes {x/',7 > 0} converge (in
distribution) to a Brownian motion b, starting at the origin with zero drift and
diffusion coefficent 1, as n — oo. This must be done in the direction of any Fourier
component (e; = exp(2mik - x)) that form a basis in the infinite dimensional space
L? and the result is the differential of an infinite dimensional Brownian motion

1
dfl = Z c,?dbfek(x).
kezZ3

x;’l:
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Here each Fourier component comes with its indpendent Brownian motion bf and
the c,i/ 2s are constant vectors.

The Central Limit Theorem says that the average of the dissipation processes
converges to a Gaussian but there also exist large excursion or fluctuations in
the mean. The effects of these fluctuations are frequently captured by the Large
Deviation Principle [39]. If these excursions are completely random then they
can, for example, be modeled by a Poisson process with the rate A. If, moreover,
these processes have a bias, an application of the Large Deviation Principle shows
that the large deviations of M,, are bounded above by a deterministic term which
is a constant determining the direction of the bias, times the rate 1. By Theorems
1.3 and 1.5 and Examples 1.3 and 1.5 in [13], since the rate A; — oo as k — oo the
rate function is bounded by m = A. This also holds in the direction of each Fourier
component and gives the term,

dff =Y diidtey(x),
k#0

the second term in the additive noise in stochastic Navier-Stokes equation. Here
the dis are constant vectors, representing the bias in a particular direction in
Fourier space, and the 1y are the rates in the kth direction. We will choose the
rate M = |k|'/3 below. This makes the two terms in the additive noise give similar
scaling in the Fourier variable k. This must be the case because the second term
is capturing the fluctuations in the mean by an application of the Large Deviation
Priniciple and thus together the two terms give a more accurate description of the
mean. In other words there is only one additive noise term d f; +df>. It turns
out, see below, that the two terms together produce the Kolmogorov-Obukhov
’42 scaling. Intermittency in the dissipation is then an additional effect caused
by the interaction of the multiplicative and additive noise with the Navier-Stokes
evolution. This will be made clear below.

We must also capture the large excursions and intermittency in the velocity
and this gives rise to a multiplicative noise term (multiplying the velocity) in the
stochastic Navier-Stokes equations. The velocity fluctuations are discrete and if
they are completely random they can be modeled by the Poisson jump process
xf, with its number process Ntk denoting the integer number of velocity excursion,
associated with kth wavenumber, that have occurred at time ¢. The differential
dN*(t) = N¥(t +dt) — N*(t) denotes the number of these excursions in the time
interval (z,7 + dt]. The process

Y /R hy(t,2)N*(dt,dz),

k0



in the multiplicative noise, models the excursion (jumps) in the velocity gradient,
see [30]. The hy are the sizes of the jumps in the velocity gradients and N* is the
compensated number (of jumps) process. We will include a term in the Poissonian
distribution for the jump process that correlates N* with only the kth Fourier mode.
This models the link between large velocity and dissipation events.

The equation (7) represents the stochastic Navier-Stokes equation for the small
scales with the general form of turbulent noise. The two terms in the additive noise
result from scaling the averge of the dissipation processes in different ways in n
(number of processes), but they must both be present, and together they accurately
describe the mean dissipation. The coefficents c,lc/ ? and dy give their relative size
that varies from experiments to experiment, for small k. For large k this ratio
should be universal. The Central Limit Theorem and the Large Deviation Princi-
ple determine the additive noise in fully developed turbulence, but the multiplica-
tive noise is modeled in (7) as a general (Poisson) jump process. It would also be
possible to formulate the equation as the deterministic equation (1) if we contin-
uously modified the initial data so as to absorb the evolving noise. This amounts
to continuously modifying the initial data with a stochastic process and is what
is effectively done in direct Navier-Stokes simulations (DNS). Clearly, these two
formulations must be equivalent.

4 Integral Equation and Spectrum of the Navier-
Stokes Operator

We write the stochastic Navier-Stokes equation in integral form,
t t ) t
u=KOelidapg0 1 Y o2 / K)ol daps, bk, (x)
k0 0

t 1
(8) + Z dk/ K=9) s qu,,s|k]1/3dt er(x)
k20 70

where K is the linear (Navier-Stokes) operator

K =VA+ VA ltr(Vuv),

1t
M, :exp{_/u(Bws)st_E/o |u(By,s)|ds}



is a Martingale with B, € R? an auxiliary Brownian motion, and

3/Stdq:k§){/Ot/Rln(l+hk)Nk(ds,dz)+/0t/R(ln(1+hk)—hk)mk(ds,dz)},

by Ito’s formula and a computation similar to the one that produces the geometric
Lévy process, see [30]. We have set the rates 1 = || 1/3 assuming that the two
terms in the additive noise produce similar scalings. The operator K does not
generate a semi-group because of its dependence on u but with some conditions
on u, see below, it generates a flow. The notation eX (t=5) (s) simply means that
we solve the equation f; = K f, with initial data f(s) for the time interval [s,z].

The form of the integral equation (8) requires a couple of assumptions. The
first observation is that the pressure term VA~!tr(Vu - V) is independent of the
fluid velocity u(x,¢) at the point x. This is of course true since x is a set of mea-
sure zero and we can be set the integrand to any value at x without changing the
integral. In other words the pressure gradient can be treated as a global force that
depends on the velocity field as a whole not only on some particular fluid particle.
This is consistent with the view of pressure in most of fluid dynamics. The other
assumption is that pressure acts as additional diffusion and the integral equation
(8) describes a (Ito) diffusion. This is also consistent with most researchers view
of pressure but seems to be a more radical assumption from a mathematical point
of view. However, it can be proven to be true using the vorticity formulation of the
Navier-Stokes equation, see [13]. The first assumption implies that the right hand
side of (8) is independent of u(x,t) so that by Ito’s formula the integral eqution
(8) 1s equivalent to the initial value problem (7). The second assumption implies
that we can apply Girsanov’s theorem, see [29], to remove the inertial (drift) term
from the operator K above in lieu of the Martingale M,.

To proceed we need to develop the spectral theory of the operator K. The
existence of unique turbulent solutions to the stochastic Navier-Stokes equations
(7) can be proven in some cases. For example if the equation is driven by a
strong swirling flow, see [12]. This result is not terribly surprising. If the ini-
tial data had the symmetry of the swirl then the deterministic problem would be
two-dimensional and the global existence of the two-dimensional Navier-Stokes
equation is well known. It is also well-known that if the initial data is close to such
a two-dimensional flow then global existence can be extened to this case also, see
[2, 3], for another such example.

In [12] the author obtained the global bound for the Sobolev space norm of u,



based on L2(T%) with index {1 " = 1L ¢ & small, for a swirling flow,

E(Hqu%w(t)) <C, ©)
where E denotes the expectation and the constant C is independent of 7. The
Sobolev space consists of Holder continuous functions of Holder index 1/3, as
pointed out by Onsager [31].

Suppose that
E(lluH;) <C, (10)

then the operator K generates a flow denoted by eX () and lim,_,. X fo =0, for
fo € H'(T?), see [13].
Then using the bound (9) we get an estimate on the operator K.

Lemma 4.1 Suppose that (9) holds, then the pressure operator is bounded by
the spectrum of a symmetric operator with discrete spectrum 7»% and satisfies the
estimate

—CIkP? < M <|VA'uVu- VP <M < CK[PP, keZ?, (D

. u+ . . . . .
on the Hilbert space Hs (T3), in the inertial range, see below. Py is the projec-
tion onto the kth eigenspace of the symmetric operator. Morover, in the inertial
range the operator K satisfies the bound

—C|k|*3 +avi?|k|? < |KP|y, < Ck|?? —avrP|k?, ke Z7. (12)

We will use this estimate below in order to compute the structure functions of
turbulence or the moments of the velocity difference at two points in the fluid, in
the inertial range of turbulence, where 1/L < |k| < 1/m, k, =1/ = (8/\’3)1/4,
a constant. N = 1/k, is called the Kolmogorov length scale, € is the energy dis-
sipation rate (6) and L is a typical length scale associated with the large eddies
in the flow. The above estimate implies that for a large Reynolds number where
v is small and 1/L < |k| < 1/m, we can think of the spectrum of K growing as
a constant times |k|?/3, with the error 4vr?|k|?, in the inertial range, see [13] for
more details.

The proof of Lemma 4.1 and the bounds (11) and (12) is the following. A
general vector w in L?(T?) can be decomposed into a divergence free and and an
irrotational part

w=u+v=VxA+Vop

10



respectively. The pressure operator Df = VA~ 'trVu - Vf maps the subspace U
of divergence free vectors in L?(T?) to the subspace of the irrotational vectors V
in L2(T3). Thus thus D has no eigenvalues or eigenvectors in U. However, the
magnitude of the pressure gradient, the force that keeps the fluid velocity in U, is
measure by the norm |[Df|; or by

IDf3 = (Df,Df) = (f,.D'Df)

where D7 is the transpose of D on V. Thus the magnitude of D measured by A;
where the k% are the eigenvalues of the symmetric operator D? D on the eigenspaces
P, in U, if DT D has discrete spectrum. We will establish the discreteness of the
spectrum and estimate the spectrum of D’ D by comparing it with the spectrum of

the symmetric operator (8)2/ 3)2 on U. For f € H?/3, D satisfies the estimate

IDfla < Clufy 13 fla. (13)
The estimate (13) follows from Fourier transform

—~ — 2mik

Df = VA TuVu- V=2 Y (k- j)@alk— j)j® F()
[kl J#0
1 . A N1 A2/31 Ay
2m—tr Y k|21 P k= jllatk— IR
k327 =
1 /%\ ~1211/2 7/3\ N 1271/2
) /
< G G P k=D R

by Schwartz’s inequality. Now squaring and summing in k we get (13).

Thus for non-degenerate fluid velocities u that satisfy (9), DT D maps a dense
subset of H2/3(T3)NU onto L>(T3)NU. This means that the resolvent (I —
DTD)~! maps L>(T*) N U onto H?3(T3)NU. Since the latter space sits com-
pactly in the former, (I — DT D)~! is a compact operator with discrete spectrum.
This implies that D’ D also has discrete spectrum.

The estimate (11) follows from the minimax principle, see [19], comparing
the eigenvalues of the symmetric operators

2 2/3\2
DD < Clulfyy+ (3 73

and taking both branches of the square root. Similarly, (11) follow by comparing
the eigenvalues of the symmetric operators

2/3

(VA+D)T (vA+ D) =Vv*A? +v(DTA+AD) +D'D < (Cllully -0 +VA)Z.

11



This concludes the proof of Lemma 4.1, [13] can be consulted for more details.

S The Log-Poissonian Processes

The processes found by She and Leveque [35], and shown to be log-Poisson pro-
cesses by She and Waymire [36] and by Dubrulle [16], are produced by applying

the Feynmann-Kac formula to the potential dg. Namely, eloda — Xizolodar apg
by setting iy = B — 1 and computing the mean of N

_ YIn|k|

E(NS) = [ ma(e,d2) = , (14
R -1
we get that
t 1 !
3/ qu:/ /1n(1+hk)Nk(ds,dz)+/ /(ln(l—l—hk)—hk)mk(dS,dZ)
0 0 JR 0 JR
In |k
— M) n(B)+ (B 1(rg ),
so we get the term
e%d%::ewmkHNHMﬂﬁ::(MWBM)U3::OkaW>IB (15)

in the (implicit) solution (8) of the stochastic Navier-Stokes equation. These are
exactly the log-Poisson processes found by the above authors. This gives

_op PR
)—Y(g— B_1

InE (M kFNnB) 5y — 1n £ ((|k[YBY)5

JInfk| = 7, Ink],

for the logarithm of the pth moment, where T, are the intermittency corrections in
(20). Now the expression

p BrA-1
W="3 g

implies that Tp = 0 and T3 = 0 independently of y. The latter condition is re-
quired by the Kolmogorov 4/5th law, see [17]. However, to be consistent with
the spectral theory of the operator D above that moves energy around in quanta of
|k|2/3 we should set y=2/3. This means that the log-Poissionian processes also

12



|2/3 |2/3

move energy in quanta of |k|“/° in Fourier space. However, |k|*/~ is multiplied
by Bka in (15) above, namely the number of jumps on the kth level contribute to
the transfer of energy, and so far P is a free parameter. We follow [35] in mak-
ing the assumption that determines 3, see also [37]. The basic assumption is that
the most singular structures in the turbulent fluid are one-dimensional vortex lines
that the highest moments capture. Thus (assuming 0 < 3 < 1) by the Lagrange

transformation, see [35],

2/p\ 2 1 2pPS3 2/p\ 2 1 2 p)
= 2(5)+2 _z (Y +i——=-2(D)+q,
K 3(3>+31—B 31-p 3(3)+31—B 3(3 *

as p — oo, where C, = 2 is the codimension of the one-dimensional vortex lines
and this implies that § = 2/3. We will make this choice of f.
Thus we see that the jumps multiplying u in the equation (7) produce the log-

k
Poisson processes (|k|% (%)N’ )% in the integral equation for u.
KO (TT %12 (2 /3 )V 3
u = e (H|k|3(2/3) ©)3M;ug
k

t m i
+ Y [ I /)My ey
k#0 j

t m i
+ Xde [T /M) MK P ()
k0 j

since only the kth log-Poissonian processes are correlated with the kth Fourier
component. This equation clearly shows how the intermittency in the velocity (in
Equation (7)) causes intermittency in the dissipation through the Navier-Stokes
evolution, if we recall how the discrete (Poisson) distribution picks the kth term
(associated with e;) out of the product.

6 The Kolmogorov-Obukhov-She-Leveque Theory

In 1941 Kolmogorov and Obukhov [21, 20, 27] proposed a statistical theory of tur-
bulence based on dimensional arguments. The main consequence and test of this
theory was that the structure functions of the velocity differences of a turbulent
fluid

E(ju(x,1) —u(x+1,1)]P) = S, = C,IP/3

13



should scale with the distance (lag variable) [ between them, to the power p/3.
This theory was immediately criticized by Landau for not taking into account the
influence of the large flow structure on the constants C, and later for not includ-
ing the influence of the intermittency in the velocity fluctuations on the scaling
exponents, see [1].

In 1962 Kolmogorov and Obukhov [22, 28] proposed a corrected theory were
both of the above issues were addressed. They presented their refined similarity
hypothesis

Sp=C), <&/3 >3 (16)
where [ is the lag variable and the averaged energy dissipation rate is
1
g= 4—/ e(x+s)ds (17)
T3 Jis|<t

€ being the mean energy dissipation rate (6). They also pointed out that the scaling
exponents for the first two structure functions could be corrected by log-normal
processes. However, for higher order structure functions the log-normal processes
gave intermittency corrections inconsistent with contemporary simulations and
experiments.

In the refined similarity hypothesis (16) the averaged dissipation rate € will
depend on the large flow structure, so its addition addresses Landau’s objections
at least partially. The assumption is that

<p/3
< &P >~ %,

because of intermittency, where the T, are called the intermittency corrections (to
the scaling). Consequently, intermittency corrections are also produced,

Sp=C), <& > 1P =C, 1P = C,l%,

where the P
Cp - g +Tp

are the scaling exponents with intermittency corrections included and the C), are
not universal but depend on the large flow structure. We will see below that start-
ing with (7) this scaling hypothesis in fact holds.

The She-Leveque intermittency corrections are

2
=% +21-(2/377)
given by the log-Poissonian processes derived above. These intermittency correc-
tions are consistent with contemporary simulations and experiments, see [1], [34],

[35] and [37].
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7 Estimates of the Structure Functions

We will now show how the integral form (8) can be used to compute an estimate
for the structure functions of turbulence.

In order to compute the structure functions of turbulence or the moments of
the velocity difference at two points in the fluid, we need to estimate the the op-
erator K above, compare Equation (11). Recall the eigenvalues A; > O that are
the square roots of the eigenvalues of the symmetric operator D’ D above, with Py
the projector onto the corresponding eigenspace. Then the equation (12) can be
reformulated as

—Clk]?3 +avi? k> < =M +vam?k]> < |KP»
(18) < Me—vamP k> < Clk[23 —var? k|2,
if u satisfies the bound

E([lully+)(r) < C, (19)

by the above. For a large Reynolds number Vv is small and since |k|*> < k2, k, =
(e/v3)/*, where kq is the inverse of the Kolmogorov length, we can now think of
the spectrum of K growing as a constant times |k|2/ 3 in the inertial range. € is the
dissipation rate (6). The coefficient C is a constant times a Sobolov space norm of
u, by the estimate (13), see [12].

Now estimates of the structure function are possible and we get the following
result. Suppose that the coefficients ¢y and dj in equation (4) satisfy the condi-
tions Y73 cx < oo and Yrezs (o K| 1/3|dy| < oo. Then the scaling of the structure
functions of (4) is

Sp ~ Cplx—y|%, (20)

where

G =L 41, = E+201-2/3)") @

é—’ being the Kolmogorov-Obukhov *41 scaling and T, the She-Leveque intermit-
tency corrections, when the lag variable |x — y| is small.

The values in equation (21) agree with experimental values in [34], they are
in agreement with Kolmogorov-Obukhov scaling hypothesis with intermittency
corrections, computed by She and Leveque, but disagree with the log-normal dis-
tribution [22, 28], for the intermittency corrections.
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The estimate of the first structure function is straight-forward,

S10x,3,1) = E(lu(x,1) —u(y,1)]) =
o) Z dk/ w(t—s ‘k|1/3dsE([eyln‘kHN"ln(B)]lB)Sin(TCk- (x_y))
kez3\{0}

2
22 <z ) ldd
keZ3\{0}

(1 e M t) '
————=|sin(Tk- (x —y))|.

o sinGk =)
We have estimated K(7) by Ay ~ C |k|2/ 3 in the second line (we use this approxi-
mation throughout the computations) and also used the expectation of the Poisson

jump process
1

ZE

We used the lower estimate in (18) and this makes the estimate in (22) be an
overestimate. The measure of the discrete process must be written as

E([eyln|k|+Nkln( )]1/3)

j
Z SzkHSN,Z : 7 (=), (23)

I=—e0  j#I  j=0

where 8;x = 0,] # k, 1,1 = k is the Kronecker delta function, because Ntk depends
on the kth Fourier component e; (or dbf and |k| 1/3dr) but is independent of the
components with different wavenumbers. The 8 functions in the product imply
that the probabilities of all the N/s, j # k consentrate at 0.

Now, if ¥ 73\ 10 [dk| < oo, then we get a stationary state as t — oo

2 dy
Sty <2 ¥ Btk (x)
kezjoy K™
and for |x — y| small,
275@1
S1(x,y,00) ~ < Y il =y,
keZ\ {0}

where {; = 1/3+1; ~ 0.37.
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A similar computation gives the second structure function,

S, = E(]u(x,t)—u(y,t)|2)

2 1— 6_27‘” 2
< = Y g——F—sin* (k- (x—y))
C rezno) k|
_ 77\,]([ 2
+ é Z dﬁ%sinz(nk-(x—y)),
keZA\ {0} [K[>2

again by using the lower estimate in (18). Ast — oo, we get

452
CZ

C
Y [+ (e,
kezZ3\{0}

Sa(x,y,00) ~

when |x — y| is small, where {, =2/3 4+ 1, ~ 0.696.
Similarly

S3 = E(ulx,1)—u(y1)])

< 2 y [ldi (1= e™™)3 4-3(C/2)crldi] (1 — e 2M0) (1 — e M)
N C3k 3 |k|

€7°\{0}
X |sin® (k- (x—y))l,

and
2’1 3
Ss(xvy,“’)wﬁ Y ldil’ +3(C/2)enldillx —yl.
keZA\{0}

All the structure functions are computed in a similar manner, for the pth struc-
ture functions, we get that S, is estimated by

5,< 2y SCWVIMPUC g -3 M/0))
CP e o) k[

|sin? (nk - (x —y))|.

where U is the confluent hypergeometric function, M = |di|(1 — e ™) and ¢ =
V/(C/2)cr(1 — e=2Mt). Thus the coefficients of S, are given by the raw moments
of a Gaussian, the first few of which are listed in Table 1. Now S, (x,y,c0) is

ZPTECP
p~ Ccr

1 1 d;
L (/D) (-iVBal)r U (~5p 5. & Yol
keZ3\ {0} Ck
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Table 1: Moments of a Gaussian

Order Raw moment Central Cumulant
moment

1 M 0 M

2 M? + 62 c? c?

3 M3 + 3Mc? 0 0

4 M* + 6M?%c2 + 36* 30* 0

5 M’ + 10M362 + 15Mc* 0 0

6 MO + 15M*c2 + 45M?%*6* + 1506° 156 0

7 M7 + 21M°6? + 105M36* + 105Mc® 0 0

8 M8 +28M°%G?% + 210M*c* + 420M?*c® + 105 6% 10568 0

to leading order for |x — y| small. We also obtain Kolmogorov’s 4/5 law, see [17],

4
S5 =€)k

to leading order, were € is the mean energy dissipation rate (6).

8 The Invariant Measure of Turbulence

The invariant measure of the stochastic Navier-Stokes equation determines all the
one-point statistics of turbulence, or the statistics of quantities defined at one point
x in the flow. This quantity determines all the statistical properties of the turbulent
velocity field, see [33], and in distinction to the nonlinear Navier-Stokes equa-
tion, the invariant measure satisfies a linear but a functional differential equation,
see [33]. In fact Hopf [18] found a linear equation for the characteristic function
(Fourier transform) of the invariant measure in 1952, but at that time methods for
solving such an equation were not available. In Hopf’s equation the noise for fully
developed turbulence was missing, but in Kolmogorov’s equation for the invari-
ant measure the noise is always supplied. Since only the linearized Navier-Stokes
equation appears in the Kolmogorov-Hopf equation, below, for the invariant mea-
sure, we will think about the linearized Navier-Stokes equation as the infinite-
dimensional Ito process whose generator gives the Kolmogorov-Hopf equation.
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Thus associated with such an Ito process is a diffusion equations, a linear func-
tional differential equation that is the Kolmogorov-Hopf equation determining the
invariant measure. We will now derive this equation. This will make clear how to
compute the coefficients in the Kolmogorov-Hopf equation.

The Kolmogorov-Hopf equation for the invariant measure is

g_j’ _ %tr[P,CPt*AQ)] +tu[PDVO+ < R(2)P, VO >, (24)

where D = (|k|'/3dy), ¢(z) is a bounded function of z and |x| =< x,x >'/2 where
< -,- > is the inner product on H. Here C'/2, D € L(H) are linear operators on
H = L*(T?), defined by

1
Cl/zu = Z Ck2 ﬁkek, Du = Z Dkﬁkek
k#0 k#0

for u =Y zo ke € L*(T3), C,i/ 2 and Dy, are 3 by 3 diagonal matricies with entries
1/2

. and dy j, j = 1,2,3 on the diagonal.
_ —fivudr o 2/3 N1
Pr=e DT (IK>(2/3)")3,

k

by the computation of how the log-Poisson processes are produced, from the
Navier-Stokes equation, by the Feynmann-Kac formula (15) above. The opera-
tor K is the linearized Navier-Stokes operator

K=VA—u-V+2VA~'tr(VuV) =K —u-V.

and z is the solution of the linearized Navier-Stokes equation. Notice that now K
has a 2 in front of the pressure term as in Section 7.

To find the infinite-dimensional Ito process whose Kolmogrov’s backward
equation is (24), we consider the linearized Navier-Stokes equation with the same
noise as (7), see Section 7. This is the functional derivative of the deterministic
Navier-Stokes equation (1), driven with the same noise as the stochastic equa-
tion (7), to give an Ito process in function space. It is analogous to the stochastic
evolution of the volume element in finite dimensions, but here the Ito process
determines the evolution of any bounded function of u, in infinite dimensions,
see [33]. The solution of the linearized Navier-Stokes equation can be written in
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integral form as
z=eXPM,° + ) 61/2/ KU=5)p,_M,_sdbley (x)
k0 0

(25) +Y d / K=)p_ M, k| ds ex(x)
k0

by the Feynmann-Kac formula, where is the operator K generates the flow X',

and {
M, :exp{_/u(Bhs)st_E/ |u(By,s)|ds}
0

is a Martingale with B; € R3 an auxiliary Browninan motion, see Section 7.
Now we define the variance

t *
0, = /0 KO P M,CM,PFK ) ds (26)

and drift t
E = / &6 p.M Dds (27)
0

operators. Then the solution of the Kolmogorov-Hopf equation (24) can be written
in the form

th) / q) eKtPleZ+E[I7Qt) * IEDP[ (dy)
— /H O(eX PiMyz+ BT +y)No.0,) *Pr (dy)

where Pp, is the Poisson law of P, see [33]. A, o, denotes the infinite-dimensional
normal distribution on H with mean m and variance Q;, [ =Y ey, E:l € H.

8.1 The Invariant Measure of Turbulence

We can now write a formula for the invariant measure of turbulence.

Theorem 8.1 The invariant measure of the stochastic Navier-Stokes equation on
H,=H3?" (T3) has form

1/2 “1)2 11p-1/2p72
u(dx) = e~ "ELC e 2107 E Noo,0) (dx) ZSHHSNJZPW 1—J)
k J#l j=0
(28)
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where Q = Qw, E = Ew, my, = In |k|2/ 3 is the mean of the log-Poisson processes
(14) and p,]nk = Wﬂ is the the probability of N = Ny having exactly j jumps,
Ok is the Kroncker delta function.

Suppose that the operator Q is trace-class, E (Ql/ ’H) C Q'/? (H) and that
XM, (H) C Qt1 / 2(H ), t > 0, where H = H,, then, with u given, the invari-
ant measure u is unique, ergodic and strongly mixing. We know that the above
invariant measure is unique for the strong swirl [12] and strong rotation [2, 3] but
it depends on u, and its uniqueness for general turbulent flows depends on the
uniqueness of u.

The proof of Theorem 8.1 uses the above machinery and is analogous to the

proof of Theorem 8.20 in [33], see [13] for details.

9 The Invariant Measure for the Velocity Differences

We will now find the Kolmogorov-Hopf functional differential equation for the
invariant measure of the Navier-Stokes equation for the velocity differences

z=u—w=u(x,t)—u(yt).

The previous measure was the measure determining the 1-point statistics but the
measure for the velocity difference will determine the 2-point statistics. We are
simplifying this a little using isotrophy; namely, in general the velocity difference
is a tensor. The linearized Navier-Stokes operator is now

K=VA—u-V+VA tr((Vu+Vw)V),

but otherwise the derivation is similar to the derivation of the 1—point measure
above. The formula for the 2—point measure is the same (28), but now the op-
erator K depends on the two points x and y and therefore the variance (26) and
the drift (27), will also depend on these two points. In fact the measure depends
on the lag variable x —y. A better way of capturing the dependence on the lag
variable is to write the difference of the inertial terms as

—u-Vw+w-Vu=—u-Vu—w) — (u—w)-Vu+ (u—w)-Vu—w)
This produces the new operator

K=VA—u-V4+2z.-V=Vu+VA''tr(Vu+Vw)V) =K —u-V+z-V—Vu
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with the understanding that now K is a function of (@) through the pressure

term. The last three terms are removed by a combination of Feynmann-Kac and
the Cameron-Martin formula (Girsanov’s theorem) and we get the martingale

t !
Mtzexp{/o u(x—Bﬁ-y,s)-dBﬁ—/o 7(Bs) -dBgs —
1 t
3 | =Bt y9) +2(B).5) )

after a time reversal of the auxiliary Brownian motion B; see [26]. The computa-
tion of the measure follows the procedure for the computation of the measure for
the 1-point statistics. The difference of the two equations (for # and w) is written
as an integral equation

7 = eK(t)e_f‘; Vu dseféqutZO + Z C}i/Z /t eK(t—s)e—f‘fVu dre.[:qut_sdbfek(x)
k0 0

t 1 t
e Y d / KU=s) = s Vudrolsdapy,  1k|\3ds ey (x)
k£0 /0

by the Feynmann-Kac formula and Girsanov’s theorem where K is the operator

K =VA+VA ' tr(Vu+Vw)V), (30)

and
P = e—féVu dseféqut _ e—féVu drH|k|2/3(2/3)N’kMt.
k

The Kolmogorov-Hopf equation for the Ito processes (29) now becomes

?)_‘1’ = %tr[P,CPt*A(])] +tr[ADVO]+ < K(z)P,, Vo >, (3D

where D = (|k|'/3Dy) and ¢(z) is a bounded function of z. It is also the Kol-
mogorov backward equation of the Ito process (29).
The variance is

t *
0 = /O K pCPr K ) ds (32)

and the drift is .
E = / KO P Ps. (33)
0
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Then the solution of the Kolmogorov-Hopf equation (31) can be written in the
form

R(z) /(I) OP+ETLQ) *MO ov) *Pp,(dy)

(34) —/¢ DBzt Ed +)No.0,) * Noa) *Pr, (d)

where Pp, is the Poisson law of P, see [33]. Here |x| =< x,x >1/2 where < -, > is
the inner product on H, and z = zp. %Q, denotes the infinite-dimensional normal
distribution on H with mean m and variance Q;, I = Y ey, E;I € H and Mo,zv) the
the law of the three-dimensional Brownian motion in the Martingale M,;. If Q; is
of trace-class Q, € L (H), then R, is Markovian.

Theorem 9.1 The invariant measure for the velocity differences (two-point statis-
tics) of the Navier-Stokes equation on H, = H3/? (T3) has form

—1/2 120 L1n-1/2F72 =
p(dx,dy) = =@ EL QRO EEIR ad, o (d)« No.avy (dY) Y81 Y Pl Sv—i)
r =0

(35)
where Q = Qw, E = Eo.. Here my = In|k|?/? is the mean of the log-Poisson pro-
cesses (14) and mek % is the the probability of N = Ny, having exactly j
Jjumps, & is the Kroncker delta function.

Suppose that the operator Q is trace-class, E(Q'/2H) ¢ Q'/2(H) and that
OB (H) C 01 (H), 1 >0,

where H = L?(T?), then, given u, the invariant measure u is unique, ergodic and
strongly mixing. The proof of Theorem 9.1 is similar to the proof of Theorem 8.1,
see [13] for details.

It is easy to check that the moments of the invariant measure for the two-point
statistics give the estimates for the structure functions above. The variable in the
latter three-dimensional Gaussian 9\4072\,) (dy) in the invariant measure is the lag
variable.

The same comments as above apply to the measure (35) as the invariant mea-
sure for the one-point statistics (28). It is unique for the strong swirl [12] and
strong rotation [2, 3] but its uniqueness for general turbulent flows depends on the
uniqueness of u.
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10 The Differential Equation for the PDF

We must compute the PDF of the invariant measure (28), for the velocity differ-
ences, in order to compare with PDFs constructed from simulations and experi-
ments. The simplest way of doing this is to derive the differential equation for the
density function from the Kolmogorov-Hopf equation (24). We start by rewriting
the equation Kolmogorov-Hopf (24) in the form

%0 _ L(0a¢] + (V) 36)
t 2

where Q; and E; are respectively time-derivatives of the variance (26) and drift
(27), but computed with the operator K in (30). This can be done by redefining
the underlying infinite-dimensional Ito process approprietly, see [13]. We have
to take the trace of the functional variables to get the equation for the PDF. The
resulting equation is

% 1 1
T AL .
> (I)‘f‘\/ZC

ot
where é(|k|) = (Q, 1/ 2E,) « are coefficients, after we scale by the variance Q;. Now
scaling the equation by —2¢ and sending t — oo gives the equation

Vo (37)

S8+ Vo =0 (38)

with a trivial rescaling of time. This is the (stationary) equation for the distribution
function. Now the PDF is for the absolute value of the velocity differences w =
lu(x,t) — u(y,t)|, by the Equation (43) below, so the angle derivatives of w do
not appear, and & = (Q~/2E); ~ ¢|k|'/3 /|k|'/3 = ¢ for k large. Thus, taking the

trace of the spatial (lag) variables also, we get that ¢ = . In polar cordinates

AO = Oy + %q)w, in three dimensions. Thus (38) becomes

I+c¢
w

1
Eq)ww + q)w = ¢ (39)
This is the stationary equation satisfied by the PDF.
The above computation is clarified by the following example. Consider the
equation
c

¢t = q)xx + \/Zq)x
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~(x—a)?/b . . . . .
where ¢ = % is a Gaussian. It is easy to check that this equation holds

\/%7 and b, = 4, so a = —cv2t and b = 4¢. Thus invariant measure is

produced by scaling out ¢,

ifat:—

fre)? - /2>2
e 2 e 2
o(y)dy = N dy = Nir dy = ¢(x,t)dx.

where y = x/+/2¢t. This invariant measure satisfies the stationary equation (38).

11 The PDF for the Turbulent Velocity Differences

It is now possible to compute the probability density function (PDF) for the veloc-
ity differences in turbulence, knowing the asymptotics of the structure functions.

The form of the equation (39) suggests that we should look for a solution of
the form f = x?K; where K, is a modified Bessel’s function of the second kind,
satisfying the equation,

1 A2
Ko+ -Ki— (1 +—2)K: 0.
X X

A substitution of this ansatz into the equation (39) givesa = —c and A = 4/ C(ETH)
The solution is the generalized hyperbolic distribution, see Barndorff-Nilsen [4].
It has an algebraic cusp at the origin and exponential tails and is constructed by
multiplying the modified Bessel’s function of the second kind Kj;, by x~*. For
the zeroth moment we get a distinguished solution A = ¢ = 1 which give the Nor-
mal Inverse Gaussian (NIG) distribution that was also investigated by Barndorff-
Nilsen [5] and used by Barndorff-Nilsen, Blasild and Schmiegel to model PDF
of velocity increments for several data sets in [7]. It turns out that the distribution
functions for all of the moments can be expressed by the NIG distribution func-
tion. However, since the intermittence corrections are different for the different
moments the NIG distributions for the different moments have different parame-
ters, as will be explained below.
The PDF of the NIG is

03K (oc %+ (x —y)2>
T/ 8%+ (x — )
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The parameters are:
o heavyness of the tail, B asymmetry, & scaling
u centering, ¥ =1/ 02— p2.

The NIG distribution has very nice properties that are summarized in [7]. In par-
ticular its characteristic function and all of its moments are easily computed. How-
ever, the moments of the velocity differences are not the moments of the same NIG
distributions because of the intermittency correction. In fact, the invariant measure
(35) has both a continuous and a discrete part and because of this each moment
comes with its own PDF, as mentioned above. All of these PDF are solutions of
the stationary equation (39) and they can be expressed in terms of NIG distribu-
tions. However, their parameters o, 3, 0 and u all depend on the particular moment
for which one is computing the PDF. Thus these parameters are different for the
different moments. The cumulant generating function uz +8(y— /o2 — (B +z)2)
is particularly simple for the NIG and this make the moments easy to compute, see
[7]. The first few moments and the characteristic function of the NIG distribution
are:

Mean u+op/y
Variance do® /v’
41) Skewness 3B/ (0/8Y)

Excess kurtosis or flatness ~ 3(1 +4B%/0%) /(y)

. . . ; 7 2_ :\2
Characteristic Function < t8(y—va?=(B+iz)?)

However, since the parameters o, 3,8 and u are different for different moments,
care must be taken when the moments above are used the compute these parame-
ters. This will be discussed in more details in the next section.

Thus we see that the probability density function of the velocity increment is
a normalized inverse Gaussian (NIG) distribution that is a generalized hyperbolic
distributions with index 1. Using the invariances of the NIG it is given by the
four-parameter formula

ad K, (oc\/?)z + (x —,u)z)
T/ + (x — u)?

where, o measures how heavy the tail of the distribution is, f measures how skew
itis, 0 is a scaling parameter and u determines the location (center) of the distribu-
tion, Y= /02 — B2. K| is the modified Bessel’s function of the second kind with

fi(x,0,B,8,u) = P =12 (42
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index 1. Now the 1st moment of the velocity differences is
E(8ju) = E([u(x+s,") —ulx,-)]-r) = E(Ju(x+s,-) —u(x,-)||r| cos(8))
#3) = [ B

where j = 1, if r = § is the longitudinal direction (that is the direction along the
lag vector s), and j =2, if r =7 where ¢ L s is a transversal direction, 7 and 7 being
unit vectors. 0 is the angle between the vectors [u(x+s,-) —u(x,-)] and r, and the
absolute value of the former is the reason why the angle derivatives wash out in
(39). The PDF is symmetric in the transversal direction, then B = u = 0. In that
case there are only two independent adjustable parameters, o is the exponential
decay at x = +oo and J is the ’peakedness” at the origin. In the nonsymmetric case,
there are two more independent adjustable parameters, the skewness parameter [3
and the centering parameter u.
The PDF for the velocity increments has the asymptotics,

Seﬁy eB()C—[J)
D @ )
for (x — i) small. This is the algebraic (rational) cusp at the origin. The exponen-
tial tails are,

\/ZSGeS’YfB:u efq‘xH»Bx
fj ~ 13/2 |x|3/2

for |x| large.

The exponential tails of the PDF are caused by occasional sharp velocity gradi-
ents (rounded-off shocks), whereas the cusp at the origin is caused by the random
and gentile fluid motion in the center of the ramps leading up to the sharp velocity
gradients, see Kraichnan [24].

For large values of the lag variable, the NIG distribution must also approxi-
mate a Gaussian. It turns out to do just that. Letting ot,d — o, in the formulas for
fj(x) above, in such a way that 8/ — o, we get that

fio & B,

V21O

12 Comparison with Simulations and Experiments.

We now compare the above PDFs with the PDFs found in simulations and experi-
ments, using the first moment g ;(x) = (xf;)(x, o, 3,0, u), where f;, j = 1,2 are the
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Figure 1: The PDF from simulations and fits for the longitudinal direction. The
PDFs for increasing values of the lag variable are displaced downward. The last
PDF looks distinctly Gaussian.

=

=20 -10

Figure 2: The log of the PDF from simulations and fits for the longitudinal direc-
tion, compare Fig. 4.5 in [40]. Again the logs of PDFs for increasing values of
the lag variable are displaced downward. The last ones look Gaussian.
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Figure 3: The PDF from simulations and fits for a transversal direction. The PDFs
for increasing values of the lag variable are displaced downward. The last PDF
looks distinctly Gaussian.

Figure 4: The log of the PDF from simulations and fits for the a transversal direc-
tion, compare Fig. 4.6 in [40]. Again the logs of PDFs for increasing values of
the lag variable are displaced downward. The last ones look Gaussian and all of
them are symmetric and centered at O.
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Figure 5: The PDF from experiments and fits. The PDFs for increasing values of
the lag variable are displaced downward.

Figure 6: The log of the PDF from experiments and fits. Again the logs of PDFs
for increasing values of the lag variable are displaced downward.
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Figure 7: The exponents of the structure functions as a function of order, theory or
Kolmogorov-Obukov-She-Leveque scaling (red), experiments (disks), dns simu-
lations (circles), from [14], and experiments (X), from [35]. The Kolomogorov-
Obukhov ’41 scaling is also shown as a blue line for comparion.
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Figure 8: The exponents of the structure functions as a function of order (—1,2],
theory or Kolmogorov-Obukov-She-Leveque scaling (red), experiments (disks),
dns simulations (circles), from [14]. The Kolmogorov-Obukov ’41 scaling is also
shown as a blue line for comparion.
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PDFs in formula (42). Because of the discrete jump measure (23) all the higher
moments come with their own PDF. The PDF for the pth moment is given by the
formula

0B MK (0‘ 52+(X_“)2> Bx—) (44)
= e 5

P
fj (0‘75187:‘1)(/7) (X) T /82 + (x _'u)z

where Y= /02 — B2, K| is the modified Bessel’s function of the second kind with
index 1, similar to (42). The density of the pth moment itself is

ol 78 1K, (O(.« [+ (- y)2>

p £P —
T} gV T T @ )2

Bl (45)

where j = 1, for the longitudinal and j = 2 for the transverse component, as in
(42). All the four parameters o, 3, 8, u are functions of p because of intermittency.

If the first four moments in (41) are given, then the four parameters in the
NIG distribution can be computed directly. However, this is probably not the best
way to do so. Firstly, this would only give the parameters for the first four mo-
ments and the parameters for the higher moments would have to be computed
separately. Secondly, since both the longitudinal and the transverse moments can
be measured, see Formula (43), giving the first four moments may overdetermine
the four parameters in NIG. A better method is to give both the longitudinal and
transverse measurements for two moments. This will determine the four parame-
ters in NIG and give the NIG for these two moments. One is actually giving the
NIG of the projection onto these two moments in moments space. From a theo-
retical point of view it makes sense to always give the measurements for the third
moment, because it does not have any intermittency corrections, corresponding
to Kolmogorov’s 4/5 law. Thus one can say given the longitudinal and trans-
verse measurements for the third moment, the PDF (NIG) for every moment is
determined by the longitudinal and transverse measurements for that moment.
However, it may depend on the experiment whether this is the most practical pro-
jection.

The direct Navier-Stokes (DNS) simulations, in Figures 1 to 4, were provided
by Michael Wilczek from his Ph.D. thesis, see [40]. The simulations are plotted
in blue and the fits in red. The experimental results in Figures 5 and 6 are from the
particle tracking experiments by Eberhard Bodenschatz group. The PDFs of Eu-
lerian velocity differences are obtained from the instantaneous particle velocities
by conditioning on given spatial separations, see Xu, Ouellette and Bodenschatz
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[42]. In each case the fit was checked by computing the normalized log-likelihood
function. First the data point zero or close to zero were removed and then the
normalized log-likelihood function computed for the remaining points.The exper-
imental results are plotted in blue and the fits in red. The experimental results in
Figures 7 and 8 are from Sreenivasan and Dhruva [38] for the high Reynolds num-
ber atmospheric turbulence. The numbers plotted are from Table 2 in [14] where
both experimental and simulations results are compared. We plotted the numbers
from the latter simulation (10243) in the Table. We thank all of these researchers
for the permission to use their results to compare with the theoretically computed
PDFs. The NIG distribution, was used by Barndorff-Nilsen et al. [7] to obtain fits
to the PDFs for three different experimental data sets.

13 Description of Simulations and Experiments

First we described the simulations in the Ph.D. thesis of Michael Wilczek follow-
ing [40]. The DNS data was produced by a standard pseudospectral code with
periodic boundary conditions at a Taylor-based Reynolds number of 112. The
simulations were run in a statistically stationary state with a large-scale forcing
that preserves the kinetic energy of the flow and delivers approximately homo-
geneous isotropic turbulence. For more details we refer the reader to Michael
Wilczek’s Ph.D. thesis [40] and to [41].

The experiment by Xu, Ouellette and Bodenschatz is described in their pa-
per [42]: The turbulence is generated in a closed cylindrical chamber containing
roughly 0.1 m> of water using counterrotating disks (French washing machine).
The flow was seeded with transparent polystyrene microspheres with a diameter
of 25um (smaller than or comparable to the smallest turbulent length scale) and
a density 1.06 times that of water. These particles have previously been shown
to act as passive tracers in this flow. The microspheres were illuminated by two
pulsed Nd: YAG lasers, and their motion was recorded in three dimensions by three
high-speed cameras at rates of up to 27 000 frames per second so that the smallest
turbulent time scales were well resolved. The trajectories of individual tracer par-
ticles were reconstructed using particle tracking algorithms. Once the raw particle
tracks were obtained, Lagrangian velocities were obtained by convolution with a
Gaussian smoothing and differentiating kernel. The smoothing operation works
as a filter to suppress the measurement noise while the differentiation operation
gives the derivative of the filtered signal.

The data from [38] consists of a series of measurements in atmospheric tur-
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U u € n A Ry,
7.6 ms™! 1.36 ms™'  0.032m2s3 0.57 mm 11.4 mm 10,340

Table 2: Some relevant parameters for the atmospheric data. Here, U is the mean
speed, u’ is the root-mean-square velocity, € is the mean rate of energy dissipation,
n and A are the Kolmogorov and Taylor microscales, respectively, and Ry = ul/v,
v being the kinematic viscosity of air at the measurement temperature.

bulence at Talylor microscale Reynolds number ~ /15R ranging between 10,000
and 20,000. The Taylor frozen hypothesis is used but it was verified by com-
parison with true spatial data obtained from two probes separated by a known
streamwise distance, see [38]. The parameter values are listed in Table 2, see
[14].

Hotwire measurements were made in the atmospheric surface layer at a height
of 35 m above the ground using a standard meteorological tower at Brookhaven
National Laboratory. The tower itself presented very little obstacle to the wind
because of its low solidity. The dataset analyzed here is part of a more compre-
hensive batch of data obtained at the tower. The hotwire, 0.7 mm in length and
0.5 wm in diameter, was placed facing the wind, about two meters away from
the tower. (For monitoring the wind direction, the tower was equipped with a
vane anemometer placed two meters away from the measurement station.) The
calibration was performed in situ using a TSI calibrator and checked later in a
windtunnel. The signals were low-pass filtered at 5 kHz and sampled at 10 kHz.
The anemometer and signal conditioners were placed nearby at the height of mea-
surement, and the conditioned signal was transmitted to the ground and digitized
using a 12-bit A/D converter. Typical data records contained between 10 and 40
million samples, during which time the wind direction and its mean speed were
deemed acceptably constant. More details are given in Dhruva [15], but the essen-
tial features for this particular set of data are listed in Table 2. The wind conditions
were somewhat unstable.

14 Conclusion
We have seen that the Navier-Stokes equation for all but the largest scales in tur-

bulent flow can be expressed as a stochastic Navier-Stokes equation (7). The
stochastic forcing results from instabilities of the flow that magnifies small am-
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bient noise and saturates its growth into large stochastic forcing. This has been
modeled before by a Reynolds decomposition and by a coarse graining of the
flow. The stochastic force is generic and is determined by the general principles
of probability with a minimum of physical inputs. It consists of two components
additive noise and multiplicative noise and the additive component is determined
by the central limit theorem and the large deviation principle. The physical in-
put is that these two term must produce similar scalings because they are caused
by the same dissipative processes. This determines the rate in the large deviation
principle. The multiplicative noise multiplies the fluid velocity and models jumps
(vorticity concentrations) in the velocity gradient. It is expressed by a generic
Poisson process where only the rate needs to be given. This rate is determined
by the spectral analysis of the (linearized) Navier-Stokes operator and the require-
ment, following [35], that the dimension of the most singular vorticity structure
(filaments) is one. Thus the stochastic forcing is generic and determined with two
mild physical inputs.

The stochastic Navier-Stokes equation can be expressed as an integral equa-
tion (8) and the log-Poissonian processes found by She and Leveque and explored
by She and Waymire and Dubrulle are produced from the multiplicative noise by
the Feynmann-Kac formula. This give a satisfying mathematical derivation of the
intermittency phenomena that had earlier been derived from impirical consider-
ations. Moreover, the integral equations show how the Navier-Stokes evolution
and the log-Poissonian intermittency processes act on the dissipation processes
to product the intermittency in the dissipation. This is a mathematical derivation
of the experimental observation that intermittent dissipation processes accompany
intermittent velocity variations. Using the integral equation we get a lower esti-
mate on all the structure functions of the velocity differences in turbulence. The
evidence from simulations and experiments is that this lower bound is reached in
turbulent flow. Why the inertial cascade achieves this maximal efficiency in the
energy transfer remains to be explained.

We then built on Hopf’s [18] ideas to compute the invariant measure of tur-
bulent flow. This measure can be computed because it solves a linear functional
differential equation, see [33]. It turns out to be an infinite-dimensional Gaussian
multiplied by a (discrete) Poisson distributions. This Poisson distribution corre-
sponds to the intermittency and the log-Poisson processes. Then by taking the
trace of the invariant measure we get the PDF of the velocity differences. We first
derive the functional differential equation (PDE) for the PDF and then show that
there are infinitely many PDF each corresponding to a particular moment, because
of the intermittency corrections. The PDE (38) for the sequence of PDFs can also
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be solved and the PDF turn out to be the normalized inverse Gaussian (NIG) dis-
tributions of Barndorff-Nilsen [5]. Their parameters are easly computed and we
see how to do this for both simulations and experiments.

It is interesting to notice that although the solution of the Navier-Stokes equa-
tion may not be unique or smooth the invariant measure of the velocity differences
(35) is still well defined by Leray’s [25] existence theory. Moreover, different ve-
locities produce equivalent measures so the statistical observables of turbulence
are unique although the turbulent velocity may not be.
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