Skip to main content
Log in

The Inviscid Limit for the Navier–Stokes Equations with Slip Condition on Permeable Walls

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We consider the Navier–Stokes equations in a 2D-bounded domain with general non-homogeneous Navier slip boundary conditions prescribed on permeable boundaries, and study the vanishing viscosity limit. We prove that solutions of the Navier–Stokes equations converge to solutions of the Euler equations satisfying the same Navier slip boundary condition on the inflow region of the boundary. The convergence is strong in Sobolev’s spaces \(W^{1}_{p}, p>2\), which correspond to the spaces of the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alekseev, G.V.: The solvability of an inhomogeneous boundary value problem for two-dimensional non-stationary equations of the dynamics of an ideal fluid. In: Dinamika Splošn. Sredy Vyp. 24. Dinamika Zidk. so Svobod. Granicami, vol. 169, pp. 15–35 (1976) (Russian)

    Google Scholar 

  • Amrouche, C., Rodriguez-Belido, M.A.: On the Regularity for the Laplace Equation and the Stokes System. Monografias de la Real Academia de Ciencias de Zaragoza, vol. 38, pp. 1–20 (2012)

    Google Scholar 

  • Arnal, D., Juillen, J.C., Reneaux, J., Gasparian, G.: Effect of wall suction on leading edge contamination. Aerosp. Sci. Technol. 8, 505–517 (1997)

    Article  Google Scholar 

  • Bardos, C., Titi, E.S.: Euler equations for incompressible ideal fluids. Russ. Math. Surv. 62(3), 409–451 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Beirão da Veiga, H., Crispo, F.: Concerning the W k,p-inviscid limit for 3-D flows under a slip boundary condition. J. Math. Fluid Mech. 13, 117–135 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Beirão da Veiga, H., Crispo, F.: The 3-D inviscid limit result under slip boundary conditions. A negative answer. J. Math. Fluid Mech. 14, 55–59 (2012)

    Article  MathSciNet  Google Scholar 

  • Black, T.L., Sarnecki, A.J.: The turbulent boundary layer with suction or injection. Aeronautical Research Council Reports and Memoranda, N. 3387 (October, 1958), London (1965)

  • Boyer, F.: Trace theorems and spatial continuity properties for the solutions of the transport equation. Differ. Integral Equ. 18(8), 891–934 (2005)

    MathSciNet  MATH  Google Scholar 

  • Braslow, A.L.: A history of suction-type laminar-flow control with emphasis on flight research. NASA History Division (1999)

  • Bucur, D., Feireisl, E., Necasova, S.: Boundary behavior of viscous fluids: influence of wall roughness and friction-driven boundary conditions. Arch. Ration. Mech. Anal. 197, 117–138 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Caflisch, R., Sammartino, M.: Navier–Stokes equations on an exterior circular domain: construction of the solution and the zero viscosity limit. C. R. Acad. Sci., Ser. 1 Math. 324(8), 861–866 (1997)

    MathSciNet  MATH  Google Scholar 

  • Caflisch, R., Sammartino, M.: Existence and singularities for the Prandtl boundary layer equations. Z. Angew. Math. Mech. 80(11–12), 733–744 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Chemetov, N.V., Antontsev, S.N.: Euler equations with non-homogeneous Navier slip boundary condition. Physica D 237(1), 92–105 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Clopeau, T., Mikelic, A., Robert, R.: On the vanishing viscosity limit for the 2D incompressible Navier–Stokes equations with the friction type boundary conditions. Nonlinearity 11, 1625–1636 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, P.: Euler and Navier–Stokes equations. Publ. Mat. 52(2), 235–265 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Ebin, D.G., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92(1), 102–163 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  • Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations. Springer, Berlin (2001)

    MATH  Google Scholar 

  • Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  • Iftimie, D., Sueur, F.: Viscous boundary layers for the Navier–Stokes equations with the Navier slip conditions. Arch. Ration. Mech. Anal. 199(1), 145–175 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Jager, W., Mikelic, A.: On the roughness-induced effective boundary conditions for a viscous flow. J. Differ. Equ. 170, 96–122 (2001)

    Article  MathSciNet  Google Scholar 

  • Kato, T., Lai, C.Y.: Nonlinear evolution equations and the Euler flow. J. Funct. Anal. 56, 15–28 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Kelliher, J.: Navier–Stokes equations with Navier boundary conditions for a bounded domain in the plane. SIAM J. Math. Anal. 38(1), 210–232 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Kruzkov, S.N.: First order quasilinear equations in several independent variables. Math. USSR Sb. 10, 217–243 (1970)

    Article  Google Scholar 

  • Kufner, A., John, O., Fučík, S.: Function Spaces. Academia Publishing House of the Czechoslovak Academia of Sciences, Prague (1977)

    MATH  Google Scholar 

  • Lieb, E.H., Loss, M.: Analysis, 2nd edn. Graduate Studies in Math., vol. 14. AMS, Providence (2001)

    MATH  Google Scholar 

  • Lions, P.-L.: Mathematical Topics in Fluid Mechanics, vol. 1. Clarendon Press, Oxford University Press, New York (1996)

    MATH  Google Scholar 

  • Lions, J.L., Magenes, E.: Problèmes aux limites non Homogénes et Applications, vol. 2. Dunod, Paris (1968)

    MATH  Google Scholar 

  • Lopes Filho, M.C., Nussenzveig Lopes, H.J., Planas, G.: On the inviscid limit for 2D incompressible flow with Navier friction condition. SIAM J. Math. Anal. 36(4), 1130–1141 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Malek, J., Necas, J., Rokyta, M., Ruzicka, M.: Weak and Measure-Valued Solutions to Evolutionary PDEs. Chapman & Hall, London (1996)

    MATH  Google Scholar 

  • Marshall, L.A.: Boundary-layer transition results from the F-16XL-2 supersonic laminar flow control experiment. NASA/TM-1999-209013, Dryden Flight Research Center Edwards, California 93523-0273, December (1999)

  • Mucha, P.: On the inviscid limit of the Navier–Stokes equations for flows with large flux. Nonlinearity 16, 1715–1732 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Necas, J.: Direct Methods in the Theory of Elliptic Equations. Springer, Berlin (2010)

    Google Scholar 

  • Oleinik, O.A., Samokhin, V.N.: Mathematical Models in Boundary Layer Theory. Chapman & Hall/CRC, London (1999)

    MATH  Google Scholar 

  • Otto, F.: Initial-boundary value problem for a scalar conservation law. C. R. Acad. Sci. Paris Sér. I Math. 322(8), 729–734 (1996)

    MathSciNet  MATH  Google Scholar 

  • Priezjev, N.V., Troian, S.M.: Influence of periodic wall roughness on the slip behavior at liquid/solid interfaces: molecular-scale simulations versus continuum predictions. J. Fluid Mech. 554, 25–46 (2006)

    Article  MATH  Google Scholar 

  • Priezjev, N.V., Darhuber, A.A., Troian, S.M.: Slip behavior in liquid films on surfaces of patterned wettability: comparison between continuum and molecular dynamics simulations. Phys. Rev. E 71, 041608 (2005)

    Article  Google Scholar 

  • Sammartino, M., Caflisch, R.E.: Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space. II. Construction of the Navier–Stokes solution. Commun. Math. Phys. 192, 463–491 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Schlichting, H., Gersten, K.: Boundary-Layer Theory. Springer, Berlin (2003)

    Google Scholar 

  • Simon, J.: Compact sets in the space L p(0,T;B). Ann. Mat. Pura Appl. 146(1), 65–96 (1986)

    Article  Google Scholar 

  • Temam, R., Wang, X.: Boundary layers associated with incompressible Navier–Stokes equations: the noncharacteristic boundary case. J. Differ. Equ. 179(2), 647–686 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao, Y., Xin, Z.: On the vanishing viscosity limit for the 3D Navier–Stokes equations with a slip boundary condition. Commun. Pure Appl. Math. 60(7), 1027–1055 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for several corrections and comments which improved the presentation of the article.

N.V. Chemetov thanks for support from FCT and FEDER through the project POCTI/ISFL/209 of Centro de Matemática e Aplicações Fundamentais da Universidade de Lisboa (CMAF/UL). The research work of F. Cipriano was supported by the projects FCT-PTDC/MAT/104173/2008 and EURATOM/IST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Chemetov.

Additional information

Communicated by Andrew Szeri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chemetov, N.V., Cipriano, F. The Inviscid Limit for the Navier–Stokes Equations with Slip Condition on Permeable Walls. J Nonlinear Sci 23, 731–750 (2013). https://doi.org/10.1007/s00332-013-9166-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-013-9166-5

Keywords

Mathematics Subject Classification (2000)

Navigation