Skip to main content
Log in

Entrainment by Chaos

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

A new phenomenon, the entrainment of limit cycles by chaos, which results from the appearance of cyclic irregular behavior, is discussed. In this study, sensitivity is considered as the main ingredient of chaos to be captured, and the period-doubling cascade is chosen for extension. Theoretical results are supported by simulations and discussions regarding Chua’s oscillators, entrainment of toroidal attractors by chaos, synchronization, and controlling problems. It is demonstrated that the entrainment cannot be considered as generalized synchronization of chaotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abarbanel, H.D.I., Rulkov, N.F., Sushchik, M.M.: Generalized synchronization of chaos: the auxiliary system approach. Phys. Rev. E 53, 4528–4535 (1996)

    Article  Google Scholar 

  • Akhmet, M.U.: Hyperbolic sets of impact systems. Dyn. Contin. Discr. Imp. Syst. Ser. A 15(suppl. S1), 1–2 (2008)

  • Akhmet, M.U.: Devaney’s chaos of a relay system. Commun. Nonlinear Sci. Numer. Simulat. 14, 1486–1493 (2009a)

    Article  MATH  MathSciNet  Google Scholar 

  • Akhmet, M.U.: Li-Yorke chaos in the impact system. J. Math. Anal. Appl. 351, 804–810 (2009b)

    Article  MATH  MathSciNet  Google Scholar 

  • Akhmet, M.U.: Shadowing and dynamical synthesis. Int. J. Bifur. Chaos 19, 3339–3346 (2009c)

    Google Scholar 

  • Akhmet, M.U.: Dynamical synthesis of quasi-minimal sets. Int. J. Bifur. Chaos 19, 2423–2427 (2009d)

    Google Scholar 

  • Akhmet, M.U.: Principles of Discontinuous Dynamical Systems. Springer, New York (2010a)

  • Akhmet, M.U.: Homoclinical structure of the chaotic attractor. Commun. Nonlinear Sci. Numer. Simulat. 15, 819–822 (2010b)

    Google Scholar 

  • Akhmet, M.U.: Nonlinear Hybrid Continuous/Discrete-Time Models. Atlantis Press, Amsterdam, Paris (2011)

  • Akhmet, M.U., Fen, M.O.: Chaotic period-doubling and OGY control for the forced Duffing equation. Commun. Nonlinear Sci. Numer. Simulat. 17, 1929–1946 (2012a)

    Article  MATH  MathSciNet  Google Scholar 

  • Akhmet, M.U., Fen, M.O.: Chaos generation in hyperbolic systems. Discontin. Nonlinearity Complex. 1, 353–365 (2012b)

    Google Scholar 

  • Akhmet, M.U., Fen, M.O.: Replication of chaos. Commun. Nonlinear Sci. Numer. Simulat. 18, 2626–2666 (2013a)

    Article  MathSciNet  Google Scholar 

  • Akhmet, M.U., Fen, M.O.: Shunting inhibitory cellular neural networks with chaotic external inputs. Chaos: Interdiscip. J. Nonlinear Sci. 23, 023112 (2013b)

  • Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos: An Introduction to Dynamical Systems. Springer, New York (1996)

    MATH  Google Scholar 

  • Anishchenko, V.S., Kapitaniak, T., Safonova, M.A., Sosnovzeva, O.V.: Birth of double-double scroll attractor in coupled Chua circuits. Phys. Lett. A 192, 207–214 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • Aulbach, B.: Behaviour of solutions near manifolds of periodic solutions. J. Diff. Equ. 39, 345–377 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  • Caneco, A., Rocha, J.L., Grácio, C.: Topological entropy in the synchronization of piecewise linear and monotone maps, coupled Duffing oscillators. Int. J. Bifurc. Chaos 19, 3855–3868 (2009)

    Article  MATH  Google Scholar 

  • Chua, L.O., Wu, C.W., Huang, A., Zhong, G.: A universal circuit for studying and generating chaos—part I: routes to chaos. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 40, 732–744 (1993)

    Google Scholar 

  • Clayton, M., Sager, R., Will, U.: In time with the music: the concept of entrainment and its significance for ethnomusicology. In: ESEM Counterpoint 1 (2004)

  • Devaney, R.: An Introduction to Chaotic Dynamical Systems. Addison-Wesley, Reading, MA (1987)

    Google Scholar 

  • D’Humieres, D., Beasley, M.R., Huberman, B.A., Libchaber, A.: Chaotic states and routes to chaos in the forced pendulum. Phys. Rev. A 26, 3483–3496 (1982)

    Article  Google Scholar 

  • Dombrowski, C., Lewellyn, B., Pesci, A.I., Restrepo, J.M., Kessler, J.O., Goldstein, R.E.: Coiling, entrainment, and hydrodynamic coupling of decelerated fluid jets. Phys. Rev. Lett. 95(184501), 1–4 (2005)

    Google Scholar 

  • Farkas, M.: Periodic Motions. Springer, New York (2010)

    Google Scholar 

  • Feigenbaum, M.J.: Universal behavior in nonlinear systems. Los Alamos Science/Summer, 1, 4–27 (1980)

  • Field, R.J., Györgyi, L.: Chaos in Chemistry and Biochemistry. World Scientific, Singapore (1993)

    Book  Google Scholar 

  • Fradkov, A.L.: Cybernetical Physics. Springer, Berlin (2007)

    MATH  Google Scholar 

  • Gonzales-Miranda, J.M.: Synchronization and Control of Chaos. Imperial College Press, London (2004)

    Book  Google Scholar 

  • Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1990)

    Google Scholar 

  • Hale, J.K., Stokes, A.P.: Behaviour of solutions near integral manifolds. Arch. Ration. Mech. Anal. 6, 133–170 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  • Hale, J.K.: Ordinary Differential Equations. Krieger Publishing Company, Malabar, FL (1980)

    MATH  Google Scholar 

  • Hale, J., Koçak, H.: Dynamics and Bifurcations. Springer, New York (1991)

    Book  MATH  Google Scholar 

  • Hartman, P.: Ordinary Differential Equations. Wiley, New York (1964)

    MATH  Google Scholar 

  • Hassard, B.D., Kazarinoff, N.D., Wan, Y.-H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  • Hirsch, M.W., Pugh, C.C., Shub, M.: Invariant Manifolds. Springer, Berlin (1977)

    MATH  Google Scholar 

  • Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge, MA (1992)

    Google Scholar 

  • Hunt, B.R., Ott, E., Yorke, J.A.: Differentiable generalized synchronization of chaos. Phys. Rev. E 55, 4029–4034 (1997)

    Article  MathSciNet  Google Scholar 

  • Huygens, C.: Letter to de Sluse, In: Oeuveres Completes de Christiaan Huygens (letters; no. 1333 of 24 February 1665, no. 1335 of 26 February 1665, no. 1345 of 6 March 1665), (Societe Hollandaise Des Sciences, Martinus Nijhoff, La Haye, 1893)

  • Jiang, W., Tsang, K.M., Hua, Z.: Hopf bifurcation in the Hodgkin-Huxley model exposed to ELF electrical field. Chaos Solitons Fractals 20, 759–764 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Kapitaniak, T.: Synchronization of chaos using continuous control. Phys. Rev. E 50, 1642–1644 (1994)

    Article  Google Scholar 

  • Keller, G., Zweimüller, R.: Unidirectionally coupled interval maps: between dynamics and statistical mechanics. Nonlinearity 15, 1–24 (2002)

    Article  MATH  Google Scholar 

  • Kocarev, L., Parlitz, U.: Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett. 76, 1816–1819 (1996)

    Article  Google Scholar 

  • Kostova, T., Ravindran, R., Schonbek, M.: Fitzhugh-Nagumo revisited: types of bifurcations, periodical forcing and stability regions by a Lyapunov functional. Int. J. Bifurc. Chaos 14, 913–925 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Kovacic, I., Brennan, M.J. (eds.): The Duffing Equation: Nonlinear Oscillations and Their Behavior. Wiley, New York (2011)

    Google Scholar 

  • Lakshmanan, M., Rajasekar, S.: Nonlinear Dynamics: Integrability. Chaos and Patterns, Springer, Berlin (2003)

    Book  Google Scholar 

  • Langford, W.: Unfolding of degenerate bifurcations. In: Fisher, P., Smith, W. (eds.) Chaos, Fractals, and Dynamics, pp. 87–103. Marcel Dekker, New York (1985)

    Google Scholar 

  • Lengyel, I., Rábai, G., Epstein, I.R.: Experimental and modeling study of oscillations in the chlorine dioxide-iodine-malonic acid reaction. J. Am. Chem. Soc. 112, 9104–9110 (1990)

    Article  Google Scholar 

  • Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci 20, 130–141 (1963)

    Article  Google Scholar 

  • Lorenz, H.W.: Nonlinear Dynamical Economics and Chaotic Motion. Springer, New York (1993)

    Book  MATH  Google Scholar 

  • Macau, E.E.N., Grebogi, C., Lai, Y.-C.: Active synchronization in nonhyperbolic hyperchaotic systems. Phys. Rev. E 65, 027202 (2002)

    Article  MathSciNet  Google Scholar 

  • Marotto, F.R.: Snap-back repellers imply chaos in \(\mathbb{R}^n\). J. Math. Anal. Appl. 63, 199–223 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  • Massera, J.L.: The existence of periodic solutions of systems of differential equations. Duke Math. J. 17, 457–475 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  • Minorsky, N.: Introduction to Non-linear Mechanics. J.W. Edwards, Ann Arbor (1947)

    Google Scholar 

  • Mitropolskij, Y.A., Lykova, O.B.: Integral Manifolds in Nonlinear Mechanics. Nauka Dumka, Moscow (1973). (in Russian)

  • Morton, S.A., Beran, P.S.: Hopf-bifurcation analysis of airfoil flutter at transonic speeds. J. Aircr. 36, 421–429 (1999)

    Article  Google Scholar 

  • Oster, G.: Auditory beats in the brain. Sci. Am. 229, 94–102 (1973)

    Article  Google Scholar 

  • Palmer, K.: Shadowing in Dynamical Systems: Theory and Applications. Kluwer, Dordrecht (2000)

    Book  Google Scholar 

  • Parlitz, U., Lauterborn, W.: Superstructure in the bifurcation set of the Duffing equations. Phys. Lett. A 107, 351–355 (1985)

    Article  MathSciNet  Google Scholar 

  • Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–825 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, New York (2001)

    Book  Google Scholar 

  • Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Rev. A 170, 421–428 (1992)

    Google Scholar 

  • Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  • Rössler, O.E.: An equation for continuous chaos. Phys. Lett. 57A, 397–398 (1976)

    Article  Google Scholar 

  • Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  • Rulkov, N.F., Sushchik, M.M., Tsimring, L.S., Abarbanel, H.D.I.: Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51, 980–994 (1995)

    Article  Google Scholar 

  • Sander, E., Yorke, J.A.: Connecting period-doubling cascades to chaos. Int. J. Bifurc. Chaos 22(1250022), 1–16 (2012)

    Google Scholar 

  • Sander, E., Yorke, J.A.: Period-doubling cascades galore. Ergod. Theory Dyn. Syst. 31, 1249–1267 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Sato, S., Sano, M., Sawada, Y.: Universal scaling property in bifurcation structure of Duffing’s and of generalized Duffing’s equations. Phys. Rev. A 28, 1654–1658 (1983)

    Article  MathSciNet  Google Scholar 

  • Schöll, E., Schuster, H.G.: Handbook of Chaos Control. Wiley, Weinheim (2008)

    MATH  Google Scholar 

  • Sendiña-Nadal, I., Leyva, I., Buldú, J.M., Almendral, J.A., Boccaletti, S.: Entraining the topology and the dynamics of a network of phase oscillators. Phys. Rev. E 79(046105), 1–8 (2009)

    Google Scholar 

  • Shaw, R.: Strange attractors, chaotic behavior, and information flow. Z. Naturf. 36a, 80–112 (1981)

    Google Scholar 

  • Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Springer, New York (1982)

    Book  MATH  Google Scholar 

  • Strogatz, S.H.: Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering. Perseus Books, New York (1994)

    Google Scholar 

  • Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos. Wiley, New York (2002)

    MATH  Google Scholar 

  • Walter, V.J., Walter, W.G.: The central effects of rhythmic sensory stimulation. Electroencephalogr. Clin. Neurophysiol. 1, 57–86 (1949)

    Article  Google Scholar 

  • Wang, M.: Stability and Hopf bifurcation for a prey-predator model with prey-stage structure and diffusion. Math. Biosci. 212, 149–160 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Wiggins, S.: Global Bifurcations and Chaos. Springer, New York (1988)

    Book  MATH  Google Scholar 

  • Wu, J., Jiao, L.: Synchronization in complex delayed dynamical networks with nonsymmetric coupling. Phys. A 386, 513–530 (2007)

    Article  MathSciNet  Google Scholar 

  • Yoshizawa, T.: Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  • Zelinka, I., Celikovsky, S., Richter, H., Chen, G. (eds.): Evolutionary Algorithms and Chaotic Systems. Springer, Berlin (2010)

    MATH  Google Scholar 

  • Zhang, S., Tan, D., Chen, L.: Chaotic behavior of a chemostat model with Beddington–DeAngelis functional response and periodically impulsive invasion. Chaos Solitons Fractals 29, 474–482 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to express their sincere gratitude to the referees for their helpful criticism and valuable suggestions, which helped to improve the paper significantly. This research is supported by Grant 111T320 from TÜBİTAK, the Scientific and Technological Research Council of Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. U. Akhmet.

Additional information

Communicated by Celso Grebogi.

Appendix: Motion Near the Limit Cycle

Appendix: Motion Near the Limit Cycle

In this part, we provide the needed information from the proof of the Andronov–Witt theorem (Farkas 2010) and clarify the decay of the solutions regarding the initial value.

Without loss of generality, let us assume that \(p(0)=0\) and \(p'(0)=\left( \bar{p}_1,0,0,\ldots ,0 \right) \) for some positive number \(\bar{p}_1\).

According to our assumption that system (2.7) admits the number \(1\) as a simple characteristic multiplier and the remaining \(n-1\) characteristic multipliers are smaller than one in modulus, system (2.7) has a real fundamental matrix \(\Phi (t)\) of the form \( {\small \Phi (t)=P(t) \left( \begin{array}{lll} 1 &{} 0\\ 0 &{} e^{B_1t} \end{array} \right) }\), where \(P(t)\) is a regular, continuously differentiable \(T\)-periodic matrix and \(B_1\) is an \((n-1) \times (n-1)\) matrix all of whose eigenvalues have negative real parts.

We emphasize that for an arbitrary solution \(u(t)\) of Eq. (2.2), the differential equation satisfied by the function \(z(t)=u(t)-p(t)\) is

$$\begin{aligned} z'=A(t)z + \varphi (t,z), \end{aligned}$$
(9.1)

where \(A(t)= \frac{\partial f(p(t))}{\partial u}\) and \(\varphi (t,z)=f(p(t)+z)-f(p(t))-A(t)z\). It is clear that \(\varphi (t+T,z)=\varphi (t,z)\) and \(\varphi (t,0)=\varphi _z (t,0)=0\) for all \(t \in \mathbb R_+\).

Since \(\varphi _z(t,z)=o(1)\) as \(z \rightarrow 0\) uniformly in \(t \in \mathbb R_+\), there exist numbers \(L_{\varphi }>0\) and \(\widetilde{\delta }(L_{\varphi })>0\) such that if \(\left\| z_1\right\| < \widetilde{\delta }(L_{\varphi }),\,\left\| z_2\right\| < \widetilde{\delta }(L_{\varphi })\), then the inequality \(\left\| \varphi (t,z_1)-\varphi (t,z_2)\right\| \le L_{\varphi } \left\| z_1-z_2\right\| \) holds uniformly for \(t \in \mathbb R_+\).

Suppose that \(a=\left( 0,a_2,a_3,\ldots ,a_n \right) \) is an \(n\)-dimensional vector that is orthogonal to \(p'(0)\). There exist positive numbers \(K_1\) and \(\alpha \) such that \(\left\| \Phi (t)a\right\| \le K_1\left\| a\right\| e^{-\alpha t}\) for all \(t\in \mathbb R_+\). Moreover, if \(\left\| a \right\| < \widetilde{\delta }(L_{\varphi })/(2K_1)\), then a solution \(z(t,a)\) of (9.1) exists on \([0,\infty )\) and satisfies the following inequality:

$$\begin{aligned} \left\| z(t,a)\right\| \le 2K_1\left\| a\right\| e^{-\alpha t /2}, ~~t\ge 0. \end{aligned}$$
(9.2)

A solution \(\zeta (t,\zeta _0)\) to (2.2) satisfies the relation \(\zeta (t,\zeta _0)=z(t,a)+p(t)\), where \(z(t,a)\) is a solution to (9.1) with \(z(0,a)=\zeta _0\). Additionally, the equation

$$\begin{aligned} \zeta _0= P(0)a-\widetilde{h}(a) \end{aligned}$$
(9.3)

holds, where \(\widetilde{h}(a)=\left( \widetilde{h}_1(a_2,\ldots ,a_n),0,\ldots ,0\right) \), for some continuously differentiable function \(\widetilde{h}_1\), and \(\widetilde{h}(a)=o(\left\| a\right\| )\).

Suppose that \(\zeta _0=(\zeta _1^0,\zeta _2^0,\ldots ,\zeta _n^0)\) and \(p_{ij}\) are the coordinates of the matrix \(P(0)\), where \(i,j=1,2,\ldots ,n\). Equation (9.3) is equivalent to

$$\begin{aligned} \zeta _1^0+\displaystyle \sum _{i=2}^n q_i \zeta _i^0 - h(\eta _2^0,\zeta _3^0,\ldots ,\zeta _n^0)=0, \end{aligned}$$
(9.4)

where \(q_i, i=2,\ldots ,n\), are constants and \(h\) is a continuously differentiable function such that

$$\begin{aligned} h(\zeta _2^0,\ldots ,\zeta _n^0)=o\left( \left( \, \sum _{i=2}^n (\zeta _i^0)^2 \right) ^{1/2} \right) . \end{aligned}$$

Denote by \(S\) the \((n-1)\) dimensional, \(C^1\) manifold determined by the equation

$$\begin{aligned} x_1+\displaystyle \sum _{i=2}^{n} q_ix_i-h(x_2,x_3,\ldots ,x_n)=0. \end{aligned}$$
(9.5)

The hypersurface \(S\) crosses the orbit \(\gamma \), which is defined by Eq. (2.6), transversally, so that for any solution \(\zeta (t,\zeta _0)\) starting on this initial manifold we have \(\left\| \zeta (t,\zeta _0)-p(t)\right\| \rightarrow 0\) exponentially as \(t \rightarrow \infty \).

We will now prove that for each number \(l\in (0,1)\) there exists a natural number \(n_0=n_0(l)\) such that if \(\zeta _0\) belongs to \(S\), then

$$\begin{aligned} \left\| \zeta (n_0T,\zeta _0)\right\| \le l\left\| \zeta _0\right\| . \end{aligned}$$
(9.6)

Let \(\overline{\epsilon }=1/\left( 2\left\| P^{-1}(0)\right\| \right) \). It is possible to find a number \(\overline{\delta } \left( \overline{\epsilon }\right) >0\) such that if

$$\begin{aligned} \left\| a\right\| < \displaystyle \min \left\{ \widetilde{\delta }(L_{\varphi })/(2K_1), \overline{\delta } \left( \overline{\epsilon }\right) \right\} , \end{aligned}$$

then the inequality

$$\begin{aligned} \left\| \widetilde{h}(a)\right\| < \overline{\epsilon } \left\| a\right\| \end{aligned}$$
(9.7)

is valid.

Let us fix a solution \(\zeta (t,\zeta _0)\) such that \(\zeta _0\) belongs to \(S\). In the case \(\left\| a\right\| < \displaystyle \min \left\{ \widetilde{\delta }(L_{\varphi })/(2K_1), \overline{\delta } \left( \overline{\epsilon }\right) \right\} \), taking advantage of (9.3) and (9.7) one can find that \(\left\| a\right\| \le 2 \left\| P^{-1}(0)\right\| \left\| \zeta _0 \right\| \), and, according to (9.2), we have

$$\begin{aligned} \left\| \zeta (t,\zeta _0)-p(t)\right\| \le 4K_1\left\| P^{-1}(0)\right\| \left\| \zeta _0 \right\| e^{-\alpha t/2}, ~t\ge 0. \end{aligned}$$
(9.8)

Let us fix an arbitrary number \(l \in (0,1)\). There exists a natural number \(n_0=n_0(l)\) such that \(4K_1\left\| P^{-1}(0)\right\| e^{-\alpha T n_0/2}<l\). Making use of (9.8) we obtain that \(\left\| \zeta (n_0T,\zeta _0)-p(n_0T)\right\| < l \left\| \zeta _0 \right\| \). Since \(p(n_0T)=0\), inequality (9.6) holds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhmet, M.U., Fen, M.O. Entrainment by Chaos. J Nonlinear Sci 24, 411–439 (2014). https://doi.org/10.1007/s00332-014-9194-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-014-9194-9

Keywords

Mathematics Subject Classification

Navigation