Skip to main content
Log in

Searching for Targets of Nonuniform Size Using Mixing Transformations: Constructive Upper Bounds and Limit Laws

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We investigate searching for closed balls \(B\) in the \(n\)-dimensional torus \({\mathbb {T}}^n\), where the ball’s center is located uniformly at random in \({\mathbb {T}}^n\) and its volume is uniformly distributed in \((\delta , V], 0<\delta \ll V \ll 1\). For exponentially mixing maps and multi-valued maps, it is shown that hitting time of a small ball and the expected hitting time are of \({\fancyscript{O}}(1/\hbox {vol}(B))\) and \({\fancyscript{O}}(-\ln \delta )\), respectively, for every ball center and almost every initial condition. Along the way, an ergodic theory framework is developed for \({\mathfrak {B}}\)-regular, multi-valued maps. Finally, discrete-time maps are used to generate continuous-time dynamics on \({\mathbb {T}}^n\), and it is shown that the asymptotic behavior for the continuous case is the same as the discrete case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The \(q\)-adic maps preserve the invariant density \(\varphi _{*}=1\) (Lasota and Mackey 1994, Example 4.1.1). Lasota and Mackey (1994, Example 4.1.1) show that the \(q\)-adic maps are mixing and hence ergodic, and Lasota and Mackey (1994, Theorem 4.2.2) give the uniqueness.

  2. While an unrealistic example, consider Manhattan for the search domain and let the searcher be some specific pedestrian that will walk (or run) around according to the directions these algorithms specify. From a viewpoint a few miles above the city, the dynamics of our pedestrian will look first order.

References

  • Abadi, M.: Sharp error terms and necessary conditions for exponential hitting times in mixing processes. Ann. Probab. 32(1A), 243–264 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization. Part I: background and development. J. Glob. Optim. 6(4), 467–484 (2007a)

    MATH  MathSciNet  Google Scholar 

  • Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. J. Glob. Optim. 7(1), 109–124 (2007b)

    MathSciNet  Google Scholar 

  • Barreira, L., Saussol, B.: Hausdorff dimension of measures via Poincaré recurrence. Commun. Math. Phys. 219, 443–463 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Boshernitzan, M.: Quantitative recurrence results. Invent. Math. 113, 617–631 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Bratley, P., Fox, B.L., Niederreiter, H.: Implementation and tests of low-discrepancy sequences. ACM Trans. Model. Comput. Simul. (TOMACS) (1992)

  • Bullo, F., Cortés, J., Martínez, S.: Distributed Control of Robotic Networks. A Mathematical Approach to Motion Coordination Algorithms. Princeton University Press, Princeton (2009)

    Book  MATH  Google Scholar 

  • Caflisch, R.E: Monte Carlo and Quasi-Monte Carlo methods. In: Acta Numerica, pp. 1–49. Cambridge University Press, Cambridge (1998)

  • Chernov, N., Kleinbock, D.: Dynamical Borel-Cantelli lemmas for Gibbs measures. Isr. J. Math. 122(1), 1–27 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Choset, H.: Coverage for robotics - A survey of recent results. Ann. Math. Artif. Intell. 31(1/4), 113–126 (2001)

    Article  Google Scholar 

  • Coelho, Z.: Asymptotic laws for symbolic dynamical systems. In: Topics in Symbolic Dynamics and Applications. London Mathematical Society Lecture Notes Series, vol. 279, pp. 123–165. Cambridge University Press (2000)

  • Fernández, J.L., Melián, M.V., Pestana, D.: Expanding maps, shrinking targets and hitting times. Nonlinearity 25(9), 2443–2471 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Gage, D.: Randomized search strategies with imperfect sensors. In: Proceedings of SPIE, pp. 270–279 (2003)

  • Galatolo, S.: Hitting time and dimension in axiom A systems, generic interval exchanges and an application to Birkoff sums. J. Stat. Phys. 123(1), 111–124 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Galatolo, S., Kim, D.H.: The dynamical Borel-Cantelli lemma and the waiting time problems. Indag. Math. 18(3), 421–434 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Helmke, U., Moore, J.B.: Optimization and Dynamical Systems. Springer, Berlin (1994)

    Book  Google Scholar 

  • Kim, D., Seo, B.: The waiting time for irrational rotations. Nonlinearity (2003)

  • Kim, D.H.: The recurrence time for irrational rotations. Osaka J. Math. 43(2), 351–364 (2006)

    MATH  MathSciNet  Google Scholar 

  • Kim, D.H.: The shrinking target property of irrational rotations. Nonlinearity 20(7), 1637–1643 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Kolesar, P.: On searching for large objects with small probes: a search model for exploration. J. Oper. Res. Soc. 33(2), 153–159 (1982)

    Article  MATH  Google Scholar 

  • Lalley, S., Robbins, H.: Stochastic search in a convex region. Probab. Theory Rel. Fields 77(1), 99–116 (1988)

  • Lalley, S.P., Robbins, H.E.: Uniformly ergodic search in a disk. In: Lecture Notes in Pure and Applied Mathematics, pp. 131–151. Dekker, New York (1989)

  • Lasota, A., Mackey, M.C.: Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, volume 97 of Applied Mathematical Sciences, 2nd edn. Springer, Berlin (1994)

    Book  Google Scholar 

  • L’Ecuyer, P., Demers, V., Tuffin, B.: Rare events, splitting, and quasi-Monte Carlo. ACM Trans. Model. Comput. Simul. 17(2), 9-es (2007)

    Article  Google Scholar 

  • Liverani, C.: Decay of correlations. Ann. Math. 2nd Ser. 142(2), 239–301 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Liverani, C.: Multidimensional expanding maps with singularities: a pedestrian approach. Ergod. Theory Dyn. Syst. 33(01), 168–182 (2012)

    Article  MathSciNet  Google Scholar 

  • Niederreiter, H.: Low-discrepancy and low-dispersion sequences. J. Number Theory 30(1), 51–70 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006)

    Article  MathSciNet  Google Scholar 

  • Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

    Article  Google Scholar 

  • Pavone, M., Frazzoli, E.: Decentralized policies for geometric pattern formation and path coverage. J. Dyn. Syst. Meas. Control 129, 633–643 (2007)

    Article  Google Scholar 

  • Ramm, A.G.: Dynamical Systems Method for Solving Nonlinear Operator Equations, vol. 208. Elsevier, Amsterdam (2006)

    Google Scholar 

  • Roberts, G., Rosenthal, J.S.: General state space Markov chains and MCMC algorithms. Probab. Surv. 1, 20–71 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  • Sertl, S., Dellnitz, M.: Global optimization using a dynamical systems approach. J. Glob. Optim. Int. J. Dealing Theor. Comput. Asp. Seek. Glob. Optim. Appl. Sci. Manag. Eng. 34(4), 569–587 (2006)

    MATH  MathSciNet  Google Scholar 

  • Slipantschuk, J., Bandtlow, O.F., Just, W.: On the relation between Lyapunov exponents and exponential decay of correlations. J. Phys. A Math. Theor. 46(7), 075101 (2013)

    Article  MathSciNet  Google Scholar 

  • Sobol, I.M.: On quasi-Monte Carlo integrations. Math. Comput. Simul. 47(2–5), 103–112 (1998)

    Article  MathSciNet  Google Scholar 

  • Young, L.-S.: What are SRB measures, and which dynamical systems have them? J. Stat. Phys. 108(5/6), 733–754 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Mohr.

Additional information

Communicated by Oliver Junge.

The authors gratefully acknowledge funding from The Office of Naval Research through Grant N00014-07-1-0587N00014-07-1-0587 and the Air Force Office of Scientific Research through Grant FA9550-09-1-0141.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohr, R., Mezić, I. Searching for Targets of Nonuniform Size Using Mixing Transformations: Constructive Upper Bounds and Limit Laws. J Nonlinear Sci 25, 741–777 (2015). https://doi.org/10.1007/s00332-015-9240-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-015-9240-2

Keywords

Mathematics Subject Classification

Navigation