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LIMIT CYCLES OF PIECEWISE LINEAR DIFFERENTIAL

SYSTEMS WITH THREE ZONES AND NO SYMMETRY

JAUME LLIBRE1, ENRIQUE PONCE2 AND CLÀUDIA VALLS3

Abstract. Some techniques for proving the existence and uniqueness of limit
cycles for smooth differential systems, are extended to continuous piecewise–
linear differential systems. Then we obtain new results on the existence and
uniqueness of limit cycles for systems with three linearity zones and without
symmetry. We also reprove existing results of systems with two linearity zones
giving shorter and clearer proofs.

1. Introduction and statement of the main results

One of the most interesting problems in the qualitative theory of planar differ-
ential systems is the study of their limit cycles, see for instance the books [35, 36].
This problem restricted to the planar polynomial differential equations is the fa-
mous second part of the 16–th Hilbert problem [16]. Due to the fact this Hilbert
problem becomes up to now intractable (see [19, 23]), Smale in [33] propose to
study it restricted to the polynomial Liénard differential systems.

For smooth Liénard systems there are many results on the non-existence, exis-
tence and uniqueness of limit cycles, see for instance [1, 6, 8, 14, 21, 24, 29, 34, 36].
Going beyond the smooth case a natural step is to allow non–smoothness while
keeping the continuity, as has been done in some recent works [10, 17, 18, 25]. In
a further step, other authors have considered a line of discontinuity in the vector
field defining the planar system, see [15, 26, 37].

In this work we will study the limit cycles of systems of the form

(1)
dx

ds
= ẋ = Ax+ φ(k · x)b,

where A is a 2× 2 real matrix and x, k and b are in R2 and k ·x denotes the usual
inner product between the vectors k and x. These systems are very important in
direct control and other areas, see for instance [5, 22, 30]. The divergence from
linearity of these systems results from the presence of the characteristic function
φ, here given by

φ(x) =





mL(x+ u)− u for x ≤ −u,
x for −u ≤ x ≤ v,

mR(x − v) + v for x ≥ v,

where u and v are positive, and u, v,mL,mR ∈ R are fixed parameters. In the case of
control systems the objective of the function φ is to improve the asymptotic stability
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behavior of the equilibrium located at the origin, and its nonlinear character comes
typically from saturation effects. In other cases the function φ naturally arises as
the characteristic of a nonlinear device.

We introduce the parameters

t = traceA, d = detA, T = traceB and D = detB,

where B = A+ bkt.

As we shall see later on the piecewise linear differential systems (1) can be written
as the Liénard piecewise linear differential systems

(2)
dx

dτ
= x′ = F (x)− y,

dy

dτ
= y′ = g(x),

where

(3) F (x) =





TL(x + u)− TCu if x ≤ −u,
TCx if −u ≤ x ≤ v,

TR(x− v) + TCv if x ≥ v,

and

(4) g(x) =





ℓ(x+ u)− u if x ≤ −u,
x if −u ≤ x ≤ v,

r(x − v) + v if x ≥ v,

where the constants u and v are the same that appear in the definition of charac-
teristic function, and τ = −

√
Ds.

We shall see in section 3 that the differential systems (1) and (2) are equivalent
if D > 0, i.e. there exists a change of variables which transforms one system into
the other.

The main goal of this paper is to study the number of limit cycles of systems
(1), or equivalently of systems (2) when D > 0. In the case that these systems are
symmetric with respect the origin of coordinates, i.e.

u = v, mL = mR, TL = TR, ℓ = r.

the study of their limit cycles is done, see [2, 10, 11, 12, 27], and for a complete
analysis the book [28].

In this paper we shall study the limit cycles of systems (2) or (1) when D > 0
in the non–symmetric case with respect to the origin of coordinates. Of course,
as a particular case we shall get the symmetric case. The first main result in this
direction is the following theorem that characterizes the number of limit cycles
when there are only two linearity zones.

We need the following definitions. Let

Y r
± = ±v exp(±γθ±)

√
(σ − µ±)2 + ω2,

where, provided that TC ∈ (−2, 2) and r < 0, we take

γ =
TC√
4− T 2

C

, µ± =
TR ±

√
T 2
R − 4r

2r
, σ =

TC
2
, ω =

√
4− T 2

C

2
,
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and

θ± = 2 arctan

(
ω√

(σ − µ±)2 + ω2 ± (σ − µ±)

)
.

Moreover, let

Y ℓ
± = ±u exp(±γψ±)

√
(σ − δ±)2 + ω2,

where it is assumed ℓ < 0, and we take

δ± =
TL ±

√
T 2
L − 4ℓ

2ℓ
and ψ± = 2 arctan

(
ω√

(σ − δ±)2 + ω2 ± (σ − δ±)

)
.

Theorem 1. Consider the differential systems (2) with only two linearity zones,
where TL = TC and ℓ = 1. Assume TC 6= 0. Then the following statements hold.

(a) Two necessary conditions for the existence of periodic orbits are |TC | < 2
and TCTR < 0.

(b) Assume that |TC | < 2 and TCTR < 0. Then system (2) has a periodic orbit
(b.1) when TC > 0 and r > 0 if and only if TC + TR/

√
r < 0;

(b.2) when TC < 0and r > 0 if and only if TC + TR/
√
r > 0;

(b.3) when TC > 0and r < 0 if and only if eπγY r
+ + Y r

− < 0;

(b.4) when TC < 0 and r < 0 if and only if eπγY r
+ + Y r

− > 0.
Moreover in all cases that the origin is surrounded by a limit cycle which
is unique, stable if TC > 0 and unstable if TC < 0.

The proof of Theorem 1 is given in section 5. Its dual result, whose proof is
similar and we will not provide it, is the following.

Theorem 2. Consider the differential systems (2) with only two linearity zones,
where TR = TC and r = 1. Assume TC 6= 0. Then the following statements hold.

(a) Two necessary conditions for the existence of periodic orbits are |TC | < 2
and TLTC < 0.

(b) Assume that |TC | < 2 and TLTC < 0. Then system (2) has a periodic orbit

(b.1) when TC > 0 and ℓ > 0 if and only if TC + TL/
√
ℓ < 0;

(b.2) when TC < 0 and ℓ > 0 if and only if TC + TL/
√
ℓ > 0;

(b.3) when TC > 0, and ℓ < 0 if and only if eπγY ℓ
+ + Y ℓ

− < 0;

(b.4) when TC < 0, and ℓ < 0 if and only if eπγY ℓ
+ + Y ℓ

− > 0.
Moreover in all cases that the origin is surrounded by a limit cycle, this is
unique, stable if TC > 0 and unstable if TC < 0.

Theorems 1 and 2 improve and extend cases studied in [9]. Here we give a
shorter and clear proof using the techniques developed in [25]. In [25] the authors
proved Theorem 1 with the additional hypothesis that systems (2) have only one
equilibrium point, which is the origin and with TC > 0. This is equivalent to state
that r ≥ 0 in the case TL = TC and ℓ = 1, and that ℓ ≥ 0 in the case TR = TC and
r = 1. We extend Theorem 2 of [25] to cover all cases.

We remark that if we consider for instance the case of Theorem 1 (b.1) and
we allow TC to vanish, then we have a center at the origin, its periodic annulus
is bounded by the line x = v. If we perturb this degenerate situation by taking
TC > 0 and small, then the necessary and sufficient condition of the statement
is automatically fulfilled, so that we conclude that such a perturbation implies a
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bifurcation of a limit cycle from the periodic annulus. This bifurcation and the
analogous for the other statements of Theorems 1 and 2 are quantitatively studied
in a more general setting in [32].

In the case of three linearity zones our main result is the following.

Theorem 3. Consider the differential systems (2) and assume TC > 0. Then the
following statements hold.

(a) A necessary condition for the existence of periodic orbits is that the traces
TL, TC, TR have not the same sign.

(b) If TR, TL < 0, and r, ℓ ≥ 0, then the origin is surrounded by a limit cycle
which is unique and stable.

(c) If TR and TL have the same sign and opposite to the sign of TC, then the
origin is surrounded by at most one limit cycle, that if it exists is stable.

(d) If TR and TC have the same sign and opposite to the sign of TL, then the
origin is surrounded by at most one limit cycle, that if it exists is stable.

(e) If TL and TC have the same sign and opposite to the sign of TR, then the
origin is surrounded by at most one limit cycle, that if it exists is stable.

Theorem 3 is proved in section 6. Its immediate dual result, which is given
without proof, is the following.

Theorem 4. Consider the differential systems (2) and assume TC < 0. Then the
following statements hold.

(a) A necessary condition for the existence of periodic orbits is that the traces
TL, TC, TR have not the same sign.

(b) If TR, TL > 0, and r, ℓ ≥ 0, then the origin is surrounded by a limit cycle
which is unique and unstable.

(c) If TR and TL have the same sign and opposite to the sign of TC, then the
origin is surrounded by at most one limit cycle, that if it exists is unstable.

(d) If TR and TC have the same sign and opposite to the sign of TL, then the
origin is surrounded by at most one limit cycle, that if it exists is unstable.

(e) If TL and TC have the same sign and opposite to the sign of TR, then the
origin is surrounded by at most one limit cycle, that if it exists is unstable.

Theorem 3 is Theorem 1 of [25] in the case that the sign of TR and TL are equal
and different from the sign of TC and under the additional assumption that TC > 0
and the origin is the unique equilibrium point of the system, i.e. that r ≥ 0 and
ℓ ≥ 0. Here we extend the result of [25] covering all the cases when the sign of TR
and TL are equal and different from the sign of TC . Moreover we also study the
cases in which either TC and TR have the same sign and TL has different sign, or
TC and TL have the same sign and TR has different sign. More precise information
on the relations between Theorem 3 and Theorem 1 of [25] is given at the beginning
of section 6.

In the next section we show the usefulness of this kind of results in a relevant
problem of nonlinear electronics.



LIMIT CYCLES OF PIECEWISE LINEAR DIFFERENTIAL SYSTEMS 5

R

iR

L
iL

C

iC
iM

Figure 1. The simple oscillator with one memristor analyzed in
this section. Note that the negative value considered for R makes
it the only active element in the circuit.

2. Application to the study of a simple oscillator with one
memristor

Following [4] memristors are two-terminal electronic passive devices for which
a nonlinear relationship links charge and flux [3]. They seem to be at the basis
of future generation oscillatory associative and dynamic memories; as another im-
portant feature, nanoscale memristors have potential to reproduce the behavior of
biological synapses. Here we apply our previous results to the analysis of an ele-
mentary oscillator endowed with one flux-controlled memristor, see Figure 1 and
[20].

In the shown circuit the values of L and C for the impedance and capacitance
are positive constants, while the resistor R has a negative value. From Kirchoff’s
laws we see that

iR(τ) − iL(τ) = 0,

iL(τ) − iC(τ) − iM (τ) = 0,

vR(τ) + vL(τ) + vC(τ) = 0,

vC(τ)− vM (τ) = 0,

where v, i stand for the voltage and current, respectively, across the corresponding
element of the circuit.

Integrating with respect to time the above equations, and assuming as in [4] that
all the initial conditions are zero, we get

qR(τ) − qL(τ) = 0,(5)

qL(τ) − qC(τ) − qM (τ) = 0,(6)

ϕR(τ) + ϕL(τ) + ϕC(τ) = 0,(7)

ϕC(τ) − ϕM (τ) = 0,(8)

where q and ϕ stand respectively for the charge and flux associated to each element.
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We denote by fM the flux-charge characteristic of the memristor and, after
recalling the constitutive equations of the bipoles, namely

ϕR(τ) = RqR(τ),

ϕL(τ) = L
d

dτ
qL(τ),

qC(τ) = C
d

dτ
ϕC(τ),

qM (τ) = fM (ϕM (τ)),

we arrive at the equations

d

dτ
ϕC(τ) =

1

C
qC(τ) =

1

C
[qL(τ)− qM (τ)] ,

d

dτ
qL(τ) =

1

L
ϕL(τ) =

1

L
[−ϕC(τ) − ϕR(τ)] .

We denote the state variables by x1 = ϕC(τ) and x2 = qL(τ), and using (5) and
(8), to write ϕR(τ) = RqR(τ) = RqL(τ) and qM (τ) = fM (ϕM (τ)) = fM (ϕC(τ)),
we have the differential system

dx1
dτ

=
1

C
[−fM (x1) + x2] ,(9)

dx2
dτ

=
1

L
[−x1 −Rx2] .(10)

Instead of the symmetric piecewise linear function considered in [20] and [4], we
adopt here a more general model for the nonlinear flux-charge characteristic of the
memristor, namely

fM (x) =





bL(x+ u)− au for x ≤ −u,
ax for −u ≤ x ≤ v,

bR(x− v) + av for x ≥ v.

So we can apply our results to symmetric and non-symmetric oscillators. A rescaling
of the time by putting τ = Cs and the use of the positive parameters

G = − 1

R
, ν = −RC

L
.

brings the system to

dx1
ds

= −fM (x1) + x2,

dx2
ds

= −ν(Gx1 − x2),

which can be written as a system (1) with

A =

(
0 1

−Gν ν

)
, k =

(
1
0

)
, b =

(
a
0

)
,

and with a φ such that mL = bL/a, mR = bR/a.
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Now it is very easy to write the system in the Liénard form of Lemma 7 but with
the time reversed, by doing the change of variables x = x1, y = νx1 − x2, getting

dx

ds
= νx− fM (x) − y,

dy

ds
= ν[Gx− fM (x)].

A natural assumption is to take the determinant in the central region is to be
positive, which requires a < G. We assume such condition in the sequel, and after
introducing for convenience a positive constant ω, we have

D = ν(G− a) = ω2 > 0.

Therefore under the above assumption, using the transformation given in the proof
of Proposition 8 without reversing the time, namely the change (x, y, s) 7→ (X,Y, τ)
given by

X = x, Y =
y√
D

=
y

ω
and τ = ω s,

we get that system (9)-(10) can be written as (2), satisfying (3)-(4) with

TL =
ν − bL
ω

, TC =
ν − a

ω
, TR =

ν − bR
ω

,

and

ℓ =
Gν − bLν

Gν − aν
=
G− bL
G− a

, r =
Gν − bRν

Gν − aν
=
G− bR
G− a

.

We are now able to apply in a convenient way our previous results, without trying
to reproduce all the statements but only the most significant cases. We consider
first the case of non-symmetric memristors with three linear zones, getting from a
direct application of Theorem 3(b) the following result. Thus we consider the case
TC > 0, TL, TR < 0 with ℓ, r > 0.

Proposition 5. Assuming ν < G, that is R2C < L, and the additional hypotheses
a < ν, ν < bL ≤ G and ν < bR ≤ G, the circuit exhibits stable oscillations,
corresponding to a stable limit cycle in the phase plane state variables.

If we now consider rather non-symmetric memristors, namely those with a char-
acteristic with only two zones, from Theorem 1(b.1), we can deduce the following
result. Note that this case is also relevant when the system has indeed three zones
but the lack of symmetry allows to discard one zone whenever we can reasonably
assume that the periodic orbit will only use two zones. Thus, we take bL = a so
that ℓ = 1, and we require that 0 < TC < 2 (unstable focus at the origin) and
TR < 0, so to fulfill the necessary conditions for oscillation. The condition TC < 2
translates after some elementary algebra to (ν + a)2 < 4νG, and the necessary and
sufficient condition TC + TR/

√
r < 0, written in terms of the parameters of the

circuit, completes the statement.

Proposition 6. Assuming ν < G, that is R2C < L, and the additional hypotheses
bL = a < ν, (ν + a)2 < 4νG and ν < bR < G, the circuit exhibits stable oscillations
if and only if (2ν − a− bR)G < ν2 − abR.

These results complement the analysis done in [4], where the symmetric situation
bL = bR with u = v = 1 was considered, and only the case ℓ, r < 0 was analyzed.
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3. Preliminary results

First we prove the equivalence between systems (1) and (2).

The characteristic function φ induces a partition of R2 into three open strips
separated by two straight lines, as follows

SL =
{
x : x · k < −u

}
, SC =

{
x : −u < x · k < v

}
, SR =

{
x : x · k > v

}
,

and the straight lines are ΓL =
{
x : x · k = −u

}
, and ΓR =

{
x : x · k = v

}
.

So system (1) is a piecewise linear differential system with three different linearity
regions separated by two parallel straight lines. It can be written as

(11)

ẋ = Ax+mL(k · x+ u)b− ub in SL ∪ ΓL,

ẋ = Bx in ΓL ∪ SC ∪ ΓR,

ẋ = Ax+mR(k · x− v)b+ vb in SR ∪ ΓR.

We note that systems (11) are analytic in R2 \ (ΓL ∪ ΓR) but only of class T 0
C

on R2. Since they satisfy a Lipschitz condition in the whole R2, we can apply to
systems (1) the classical theorems on existence, uniqueness and continuity on initial
conditions and parameters. Note that their solutions are C1, but not C2.

The next result is proved in Proposition 4 of [27].

Lemma 7. System (1) having possible periodic orbits contained in two or three
zones, can be written as

ẋ = y − F (x), ẏ = g(x),

with F (x) = tx+ φ(x)(T − t), and g(x) = −dx− φ(x)(D − d).

The next proposition shows that systems (1) and (2) are equivalent when D > 0.

Proposition 8. System (1) with D > 0, having possible periodic orbits contained
in two or three zones, can be written as (2) where F (x) and g(x) are given by (3)
and (4), respectively, with

TR =
t+ (T − t)mR√

D
, TL =

t+ (T − t)mL√
D

, TC =
T√
D
,

r =
d+ (D − d)mR

D
, ℓ =

d+ (D − d)mL

D
.

Proof. It follows from Lemma 7 that if system (1) has a periodic orbit then it can
be written as system (2) with

F (x) =





tx+ (T − t)(mL(x + u)− u) if x ≤ −u,
Tx if −u ≤ x ≤ v,

tx+ (T − t)(mR(x− v) + v) if x ≥ v,

and

g(x) =





−dx− (D − d)(mL(x+ u)− u) if x ≤ −u,
−Dx if −u ≤ x ≤ v,

−dx− (D − d)(mR(x− v) + v) if x ≥ v.
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Equivalently we rewrite F (x) and g(x) in a more compact form as

F (x) =





T̃L(x+ u)− Tu if x ≤ −u,
Tx if −u ≤ x ≤ v,

T̃R(x − v) + Tv if x ≥ v,

and

g(x) =





−ℓ̃(x + u) +Du if x ≤ −u,
−Dx if −u ≤ x ≤ v,

−r̃(x− v)−Dv if x ≥ v,

where

T̃R = t+(T−t)mR, T̃L = t+(T−t)mL, r̃ = d+(D−d)mR, ℓ̃ = d+(D−d)mL.

Thus introducing the change of variables (x, y, s) 7→ (X,Y, τ) given by

X = x, Y =
y√
D

and τ = −
√
D s,

we get that system (1) can be written as (2) satisfying (3) and (4) with

TR =
R̃√
D
, TL =

T̃L√
D
, TC =

T√
D
, r =

r̃

D
, ℓ =

ℓ̃

D
,

and (X,Y, τ) instead of (x, y, s). This completes the proof of the proposition. �

Now we classify the equilibria of system (2).

Proposition 9. The following statement hold for the piecewise linear differential
system (1) satisfying D > 0 and written in the form (2).

(a) If ℓ ≥ 0 and r ≥ 0, then the origin is the unique equilibrium, and it is
hyperbolic.

(b) If ℓ ≥ 0 and r < 0, then there are two equilibria, the origin and eR =
(xR, yR) = ((r − 1)v/r, (TCr − TR)v/r) in SR, the origin is hyperbolic and
eR is a saddle.

(c) If ℓ < 0 and r ≥ 0, then there are two equilibria: the origin and eL =
(xL, yL) = ((1 − ℓ)u/ℓ, (TL − TCℓ)u/ℓ) in SL, the origin is hyperbolic and
eL is a saddle.

(d) If ℓ < 0 and r < 0, then there are three equilibria: the origin, eL in SL and
eR in SR, the origin is hyperbolic, and eL and eR are saddles.

Proof. The proof is straightforward, see for instance Theorem 2.15, or the hyper-
bolic singular point theorem of [7]. �

The next result will be useful when system (2) has more than one equilibrium
point.

Lemma 10. Consider the Liénard differential system (2) with r < 0 or ℓ < 0. If
it has a periodic orbit then it is contained in the strip x2 < x < x1 where

x1 =

{
xR if r < 0,

+∞ if r ≥ 0
and x2 =

{
xL if ℓ < 0,

−∞ if ℓ ≥ 0.



10 J. LLIBRE, E. PONCE AND C. VALLS

Proof. We first prove the case r < 0. Taking into account the behavior of the vector
field on the line x = xR, it follows that the periodic orbit is contained in the region
x < xR. Otherwise, since on the straight line x = xR we have ẋ > 0 if y > yR and
ẋ < 0 if y < yR, and the point eR of Proposition 9 is in the interior of the bounded
region V limited by the periodic orbit, we have a contradiction because the sum
of the indices of the equilibrium points contained in V is not equal to 1, see for
instance page 148 of [36].

The proof for the case ℓ < 0 follows in an analogous way. �
We note that system (2) is invariant under the following symmetry:

(12) (x, y, t, TL, TR, ℓ, r, u, v) 7→ (−x,−y, t, TR, TL, r, ℓ, v, u).
This symmetry will be useful to split the analysis of the system with three zones
into different subcases with only two zones.

It is easy to check that the traces in the regions SL, SC and SR are given by TL,
TC and TR, respectively. By the Bendixon theorem, see for instance Theorem 7.10
in [7], these traces cannot have the same sign when limit cycles exist.

Without loss of generality we can also assume that TC > 0. Clearly we can
change the sign of TC doing the change of variables (x, y, τ) 7→ (x,−y,−τ). From
now on in the rest of the paper we will assume that TC > 0. We remark that
following the proofs it becomes clear that when TC < 0 the stability of the limit
cycle (if exists) is unstable, because when TC > 0 it is stable.

We say that a vector field has the non–negative rotation property whenever along
any half-ray starting from the origin the angle of the vector field measured with
respect the positive direction of the x–axis does not decrease as long as one moves
far from the origin.

We will use the Massera’s method for uniqueness of limit cycles. To this end,
we recall that a period annulus is a region in the plane completely filled by non–
isolated periodic orbits. For a periodic orbit surrounding the origin, we say that
it is star–like with respect to the origin when any segment joining the origin and a
point of the periodic orbit has no other points in common with the periodic orbit,
and consequently such segments are in the interior of the periodic orbit.

Theorem 11 (Massera’s method). Consider a Liénard differential system x′ =
F (x)− y and y′ = g(x) defined in the open strip

S =
{
(x, y) ∈ R2 : x2 < x < x1

}

for some x2 < 0 < x1. Assume that xg(x) > 0 for x ∈ S, and that F (0) = 0, so
that the only equilibrium point in S is the origin. Assume also that the system in
S has the non–negative rotation property and has no period annulus surrounding
the origin. If the system has a periodic orbit then it is star–like with respect to the
origin and it is a limit cycle which is unique and stable.

Proof. Assume first that x1 = ∞, x2 = −∞, i.e. system x′ = F (x)−y and y′ = g(x)
has the origin as the unique equilibrium point. Then Theorem 11 is just Lemma 1
of [25].

Now assume either x1 = xR or x2 = xL. It follows from Lemma 10 that any
periodic orbit must be contained in the strip x2 < x < x1. Now we can apply
the arguments of the proof of Lemma 1 of [25] to the strip S and the theorem
follows. �
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4. Computation of the points Y r
± and Y ℓ

±

In this section we consider the system with two linearity zones, i.e., with either
TL = TC and ℓ = 1 (obtained by suppressing the left zone and extending the central
zone to the left), or TR = TC and r = 1 (obtained by suppressing the right zone
and extending the central zone to the right). Without loss of generality we can
consider the case TL = TC and ℓ = 1, because the other case can be studied in a
similar way. Hence in this section we will work with the system

(13) x′ = F (x)− y, and y′ = g(x),

where

F (x) =

{
TCx if x < v,

TR(x− v) + TCv if x ≥ v,

and

g(x) =

{
x if x < v,

r(x − v) + v if x ≥ v.

Moreover we will consider the focus-saddle case, i.e. the case in which TC ∈ (−2, 2)
and r < 0. To alleviate expressions, we can do a homogeneous rescaling by a factor
of v, which is equivalent to assume v = 1. At the end, it will suffice to multiply
both coordinates by v to undo the rescaling.

We suppose for the focus at the origin the eigenvalues σ± iω, where σ2+ω2 = 1,
and define the ratio γ between the real and imaginary parts of such eigenvalues, so
that

2σ = TC , ω =
√
1− σ2, γ =

σ

ω
=

TC√
4− T 2

C

.

With this notation, if (xi, yi) is the starting point for an orbit using the focus
dynamics and we want to know the final point (xf , yf ) along the orbit after a time
t, then we can write the computations in terms of the phase angle θ = ωt as follows,

(14)

(
xf
yf

)
= exp(γθ)



cos θ + γ sin θ − sin θ

ω
sin θ

ω
cos θ − γ sin θ



(
xi
yi

)
.

We remark that the phase angle θ does not coincide in general with the geometrical
angle of the orbit as seen from the focus at the origin, with the exception of the
cases when θ = nπ with n ∈ Z.

Regarding the saddle point, their eigenvalues are denoted by λ− < 0 < λ+ where

λ± =
TR ±

√
T 2
R − 4r

2
,

so that

TR = λ+ + λ−, r = λ+ · λ−,
and we also introduce for convenience the notation

µ± =
λ±
r

=
1

λ∓
=
TR ±

√
T 2
R − 4r

2r
.
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Note that the saddle point, originally at (xR, yR) = (v − v/r, TCv − TRv/r), after
the introduced rescaling, becomes the point (1−1/r, TC−TR/r) = (1−µ+µ−, 2σ−
µ+ − µ−). The λ±-eigenvectors of the matrix

(
TR −1
r 0

)
=

(
λ+ + λ− −1
λ+λ− 0

)

are (1, λ∓)T . The linear λ±-invariant manifolds that emanate from the saddle
following the eigenvectors (1, λ∓)T intersect the line x = 1 at the points (1, y±)
when (

1− µ+µ−
2σ − µ+ − µ−

)
+ α

(
1
λ∓

)
=

(
1
y±

)
,

that is, for α = µ+µ− = 1/r. Thus

y± = 2σ − µ+ − µ− + µ+µ−λ∓ = 2σ − µ+ − µ− + µ∓ = 2σ − µ±.

To compute now the values Y r
± it suffices to solve the equation

(15)

(
0
Y r
±

)
= v exp(γθ)



cos θ + γ sin θ − sin θ

ω
sin θ

ω
cos θ − γ sin θ



(

1
2σ − µ±

)
,

where we have added the factor v to undo the rescaling, and the phase angle must
satisfy 0 < ±θ < π, since we must integrate forward (backward) in time to get Y r

+

(Y r
−), see Figure 2.

Y
+

r

Y
-

r

y+

y-

Figure 2. Remarkable points for r < 0, 0 < TC < 2 and TR < 0.
The graphs of functions F (x) and g(x) are drawn in solid and
dashed, respectively. The vertical lines x = v and x = xR are also
drawn.

Assume first we want to compute Y r
+. From the first coordinate, we get

(16) cos θ + γ sin θ − (2σ − µ+)
sin θ

ω
= cos θ − γ sin θ + µ+

sin θ

ω
= 0.

Equivalently, we write
ω cos θ = (σ − µ+) sin θ,
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and so, from

tan θ =
ω

σ − µ+
,

we obtain

cos θ = sign(σ − µ+)
1√

1 + tan2 θ
=

σ − µ+√
(σ − µ+)2 + ω2

=
σ − µ+√

1− 2σµ+ + µ2
+

,

and then

sin θ =
ω√

1− 2σµ+ + µ2
+

.

To avoid problems with the determination of the arctan function, since it is not
difficult to build examples with θ > π/2, we use the trigonometric identity

tan
θ

2
=

sin θ

1 + cos θ
,

leading to

(17) θ = 2 arctan


 ω√

1− 2σµ+ + µ2
+ + σ − µ+


 .

Taking into account that, from (16) we know that

cos θ − γ sin θ = −µ+
sin θ

ω
,

we finally obtain from the second coordinate of (15) that

Y r
+ = v exp(γθ)

1− µ+(2σ − µ+)√
1− 2σµ+ + µ2

+

= v exp(γθ)
√
1− 2σµ+ + µ2

+,

where θ is given in (17).

The computations for Y r
− are identical if we change θ by −θ and µ+ by µ−. To

eliminate any ambiguity however, and to use also a positive angle θ in (0, π), we
start from

(18)

(
0
Y r
−

)
= v exp(−γθ)



cos θ − γ sin θ

sin θ

ω

− sin θ

ω
cos θ + γ sin θ



(

1
2σ − µ−

)
,

solving for

cos θ − γ sin θ +
sin θ

ω
(2σ − µ−) = 0,

leading now to

ω cos θ = −(σ − µ−) sin θ, tan θ = − ω

σ − µ−
,

so that

cos θ = − σ − µ−√
1− 2σµ− + µ2

−
,

and

sin θ =
ω√

1− 2σµ− + µ2
−
.



14 J. LLIBRE, E. PONCE AND C. VALLS

Using now that

cos θ + γ sin θ = µ−
sin θ

ω
,

we see that

Y r
− = −v exp(−γθ) 1− µ−(2σ − µ−)√

1− 2σµ− + µ2
−

= −v exp(−γθ)
√
1− 2σµ− + µ2

−,

where θ is given by

(19) θ = 2 arctan


 ω√

1− 2σµ− + µ2
− − (σ − µ−)


 .

Therefore the common expression for both ordinates is

Y r
± = ±v exp(±γθ±)

√
1− 2σµ± + µ2

±,

with

θ± = 2 arctan


 ω√

1− 2σµ± + µ2
± ± (σ − µ±)


 .

In a similar way we obtain Y ℓ
±.

5. Proof of Theorem 1

In this section we consider system (13). Then Theorem 1 can be stated as follows.

Theorem 12. Consider the differential system (13) with TC 6= 0. Then the fol-
lowing statements hold.

(a) Two necessary conditions for the existence of periodic orbits are |TC | < 2
and TRTC < 0.

(b) If |TC | < 2 and TRTC < 0 then the system has periodic orbits
(b.1) when TC > 0 and r > 0 if and only if TC + TR/

√
r < 0;

(b.2) when TC < 0 and r > 0 if and only if TC + TR/
√
r > 0;

(b.3) when TC > 0 and r < 0 if and only if eπTC/
√

4−T 2
CY r

+ + Y r
− < 0;

(b.4) when TC < 0 and r < 0 if and only if eπTC/
√

4−T 2
CY r

+ + Y r
− > 0.

In all cases the origin is surrounded by a limit cycle which is unique, stable
if TC > 0 and unstable if TC < 0.

Now we shall prove Theorem 12 when TC > 0. The case TC < 0 can be proved
in a similar way. Note that the traces in the regions SC , SR are given by TC and
TR, respectively. By the Bendixon theorem, see for instance Theorem 7.10 in [7],
they cannot have the same sign for the existence of limit cycles and thus TRTC < 0.
First we show that system (13) can be transformed in another system with the
non–negative rotation property. This is the statement of the following proposition,
where we prove more things that we will use later on.

Proposition 13. We restrict our attention to system (13) with TC > 0 in the
region x < xR when r < 0. We assume that TR ≤ TC. Then the system can be
transformed in another system having the non-negative rotation property if TR −
TCr ≤ 0, or if TR − TCr > 0, r < 0 and TR ≤ 0.
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Proof. To show the non-negative rotation property, we will compute the slope of
the vector field along half-rays of the form y = λx. Since it will appear F (x)−λx in
some denominators we can disregard the points of vertical slope in which F (x) = λx.

Now we transform the system by introducing a new first variable z = z(x),
namely

(20) z = sgn (x)
√

2G(x) where G(x) =

∫ x

0

g(s) ds.

Note that z = x for x ≤ v and that this change of variable is injective for x > v as
long as g(x) > 0, that is, for all x when r ≥ 0, or for x < xR when r < 0. Note
that z2(x) = 2G(x) and thus we have z(x)z′(x) = g(x) for all x, and so

(21)
dz

dx
=
g(x)

z
.

Therefore
dz

dt
=
dz

dx

dx

dt
=
g(x)

z
(F (x) − y),

and in the new variables the system is

dy

dz
=
dy/dt

dz/dt
=

z

F (x(z))− y
,

which is equivalent to the system ż = F (x(z)) − y, ẏ = z, where the dot now
indicates the derivative with respect to an implicitly defined, different time pa-
rameterization of the orbits. Now we study the slope of the vector field along the
half–rays of the form y = λz.

Then we can write

mλ(z) =
dy

dz

∣∣∣∣
y=λz

=
z

F (x(z))− λz
,

and to analyze the monotone character of this slope along the half–rays we compute
its derivative with respect to z, namely

dmλ(z)

dz
=
F (x(z))− λz − z [F ′(x(z))x′(z))− λ]

[F (x(z)) − λz]
2 ,

not to be considered at z = v, where this derivative has a jump discontinuity.
In the region x < v, since z = x we have

dmλ(z)

dz
=
F (x(z))− zF ′(x(z))x′(z)

[F (x(z)) − λz]2
=

TCz − TCz

[F (x(z))− λz]2
= 0.

So the slope of the vector field is constant along the half–rays.

For the region x > v we get

(22)
dmλ(z)

dz
=

(TC − TR)v − TR(zx
′(z)− x)

[F (x(z)) − λz]
2 .

Now we study the value of zx′(z) − x(z) for x > v. From (21) and the equality
z2 = 2G(x) = r(x − v)2 + 2vx− v2 for x > v, we have

zx′(z)− x(z) =
z2 − xg(x)

g(x)
=
r(x− v)2 + 2vx− v2 − rx(x − v)− vx

g(x)

=
(x− v)(rx − rv + v − rx)

g(x)
=
v(1− r)(x − v)

g(x)
.
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Then (22) can be rewritten as

(23)
dmλ(z)

dz
= v

(TC − TR)g(x) − TR(1− r)(x − v)

g(x) [F (x(z))− λz]
2 ,

and the sign of the above expression, as long as g(x) > 0, is controlled by the sign
of the numerator, namely

(TC − TR)v + [(TC − TR)r − TR(1− r)] (x− v) = (TC − TR)v − (TR − TCr)(x− v),

an expression which is affine in x− v.

Since our hypothesis implies TC − TR ≥ 0, we see that the first constant term
is always non-negative. If TR − TCr ≤ 0 then the second term is also non-negative
for x > v and we are done. The case TR − TCr > 0 leads always to a change in the
sign of the expression for z big enough, so that we cannot guarantee the monotone
increasing character of the slope along half–rays in the whole plane. When r < 0
however, we only need to study what happens for x < xR, that is for x− v < −v/r.
Substituting now x = xR in the above expression, we get

(TC − TR)v + (TR − TCr)
v

r
= −TRv + TR

v

r
= −TRv

(
1− 1

r

)
,

which for TR ≤ 0 is non-negative. Thus we can also assure in such a case the
required monotonicity for x < xR, and the proposition follows. �

Noticing that for TR ≤ 0 the hypothesis TC − TR ≥ 0 is strictly satisfied, we see
immediately that we can have TR − TCr ≤ 0 (and then Proposition 13 applies) or
TR − TCr > 0, that is r < TR/TC ≤ 0, but then since TR ≤ 0 Proposition 13 also
applies. In short we get the following result.

Corollary 14. We restrict our attention to system (13) with TC > 0 in the region
x < xR when r < 0. If TR ≤ 0 then the system can be transformed in another
system having the non-negative rotation property independently on the value of r.

Now we show that if system (13) has a periodic orbit, then it is unique.

Proposition 15. Assume that system (13) with TC > 0 has a periodic orbit. Then
the periodic orbit surrounds the origin and it is a limit cycle which is unique and
stable.

Proof. By Proposition 13 the system can be transformed into one which has the
non–negative rotation property. Therefore, by Theorem 11 such a periodic orbit is
a limit cycle which is unique. Applying Theorem 11 we get that the limit cycle of
system (13) is stable because we are assuming that TC > 0. �

To prove statement (b) we need to study the existence of periodic orbits sur-
rounding the origin. To do this, we will use the positive and negative parts of the
y–axis as domain and range for defining two different half–return maps, namely a
right half–return map PR and a left half–return map PL.

We start by studying the left half-return map PL defined in the positive y–axis,
by taking the orbit starting at the point (0, y) with y > 0, and coming back to
the negative y–axis at the point (0,−PL(y)). Since the system becomes purely
linear, it is easy to see, see for instance [13] that PL is a linear function given by

PL(y) = eπTC/
√

4−T 2
Cy.



LIMIT CYCLES OF PIECEWISE LINEAR DIFFERENTIAL SYSTEMS 17

Now we study the qualitative properties of the right half-return map PR defined
in the negative y–axis, by taking the orbit starting at the point (0,−y) with y > 0,
and coming back to the positive y–axis at the point (0, PR(y)). The following lemma
is Lemma 3 of [25].

Lemma 16. Consider a Liénard differential system with a continuous vector field
given by ẋ = F (x) − y and ẏ = g(x). Assume that F (x) is positive and increasing
for small positive values of x, it has a positive zero only at x = x̄ > 0, and it is
decreasing to −∞ as x→ ∞ monotonically for x > x̄. Assuming also that g(0) = 0
and g(x) > 0 for all x > 0, the following statements hold. The orbits starting at
the point (0,−y) with y > 0, enter the half–plane x > 0 and go around the origin
in a counterclockwise path, coming back to the y–axis at the point (0, PR(y)) with
PR(y)) > 0. The difference PR(y)−y is positive for small values of y, but eventually
becomes negative and tends to −∞ when y → ∞.

The map PR when r < 0 is not defined for all positive values of y. We shall
compute now its domain of definition. Two separatrices of saddle (xR, yR) intersect
the line x = v, the stable at the point (v, y−) and the unstable at the point (v, y+),
where

y± =

(
2TCr − TR ∓

√
T 2
R − 4r

)
v

2r
,

see Section 4 and Figure 2. The flow of system (13) in x < v starting at the point
(v, y−) in backward time intersects the negative y–axis at the point (0, Y r

−).

The flow of system (13) in x < v starting at the point (v, y+) in forward time
intersects the positive y–axis at the point (0, PR(−Y r

−)), where it is assumed

PR(−Y r
−) = lim

yր(−Y r
−)
PR(y) = Y r

+.

Hence the map PR : (0,−Y r
−) → (0, Y r

+).

Corollary 17. Assume that system (13) has TC > 0. Then the orbits starting at
the point (0,−y) with y > 0, enter the half–plane x > 0 and go around the origin
in a counterclockwise path, coming back to the y–axis at the point (0, PR(y)) with
PR(y)) > 0. The difference PR(y)− y is positive for small values of y, and

(a) it eventually becomes negative and tends to −∞ when y → ∞, if r > 0;
(b) tends to Y r

+ + Y r
− when y → −Y r

−, if r < 0.

Proof. Since we are assuming that TC > 0 and TR < 0 we get that F (x) is positive
and increasing for small positive values of x, and it has a positive zero only at
x = v(1 − TC/TR) > 0. It is decreasing to −∞ as x → ∞ monotonically for
x > v(1 − TC/TR). Note that g(0) = 0 and, when r > 0, g(x) > 0 for all x > 0.
Now we are under the assumptions of Lemma 16 and the statement (a) of the
corollary follows from it.

The proof of statement (b) follows directly from the domain of definition of the
map PR and its image. �

Now we continue with the proof of Theorem 12 and we need to show that in
fact, we have a periodic orbit. Note that for system (13) the origin is a node when
|TC | ≥ 2, and a focus when |TC | < 2. Moreover, it cannot be a node because
some of its invariant manifolds are straight lines that should extend to the infinity,
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precluding the existence of periodic orbits. Then it must be a focus and thus
|TC | < 2. This concludes the proof of statement (a).

Now we prove statements (b.1) and (b.3). Statement (b.1) can be proved with
exactly the same proof as in the proof of Theorem 2 in [25]. In this case, i.e. when
r > 0 we can show that a necessary and sufficient condition for the existence of
periodic orbits in this case is that

TC +
TR√
r
< 0.

Now we prove statement (b.3), i.e. we need to study the existence of periodic orbits
when r < 0. Note that as explained above we have that

(24) PL(y) = eπTC/
√

4−T 2
Cy,

and in particular

(25) PL(Y
r
+) = eπTC/

√
4−T 2

CY r
+.

If PL(Y
r
+) < −Y r

−, as shown in Figure 2, then it is easy to conclude the existence
of a trapping region that, since the focus at the origin is unstable, assures the
existence of a periodic orbit. Its uniqueness and stability comes from Proposition
15.

Suppose that PL(Y
r
+) = −Y r

−. Then we have a homoclinic connection. We claim
that inside the region limited by the homoclinic loop there are no periodic solutions.
For proving the claim we shall use the next result, see Theorem 1 in page 364 of
[31].

Theorem 18. Let p be a topological saddle of an analytic differential system in the
plane and let γ be a homoclinic loop at p. Then the orbits near γ contained in the
region limited by γ tend to γ in forward (respectively backward) time if and only
the trace of the linear part of the system at p is negative (respectively positive).

Corollary 19. Let eR be a saddle of the Liénard piecewise linear differential system
(2) and assume that this saddle has a homoclinic loop γ. Then the orbits near γ
contained in the region limited by γ tend to γ in forward (respectively backward)
time if and only the trace of the linear part of the system at p is negative (respectively
positive).

Proof. Since the Liénard piecewise linear differential system (2) can be a limit of
analytic differential systems in the plane having homoclinic loops tending to the
homoclinic loop γ of system (2), by Theorem 18 the corollary follows. �

Now we prove the claim. Since TR < 0 the trace of the saddle eR is negative. By
Corollary 19 the homoclinic loop surrounding the focus is stable. By Proposition
15 inside the region limited by the loop there is at most one periodic solution
surrounding the focus and it is stable. But this is in contradiction with the fact
that the homoclinic loop is stable. Hence the claim is proved.

If finally PL(Y
r
+) > −Y r

− then we have a trapping region in backward time. By
considering that the focus is stable when the time is reversed, the only possibilities
for periodic orbits are a semi–stable periodic orbit, or two or more periodic orbits,
again in contradiction with Proposition 15. Statement (b.3) is shown and this
concludes the proof of Theorem 12.
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6. Proof of Theorem 3

First we recall one of the main results of [25] which we shall use for proving
Theorem 3.

In [25] the authors studied the limit cycles of the Liénard piecewise linear differ-
ential systems of the form

(26) ẋ = F (x)− y, ẏ = g(x) − δ,

where

F (x) =





tL(x + 1)− tC , if x ≤ −1,
tCx, if |x| ≤ 1,
tR(x− 1) + tC , if x ≥ 1,

and

(27) g(x) =





dL(x+ 1)− dC , if x ≤ −1,
dCx, if |x| ≤ 1,
dR(x− 1) + dC , if x ≥ 1,

where dC > 0, −dC < δ < dC and dL, dR ≥ 0. Theorem 1 of [25] states:

Theorem 20. Consider the differential system (26)–(27) with only one equilibrium
point in the central zone (i.e. dC > 0, −dC < δ < dC), and dL, dR ≥ 0. If the
external traces satisfy tL, tR < 0, while the central trace is positive, that is tC > 0,
then the equilibrium point is surrounded by a limit cycle which is unique and stable.

We consider the change of variables (x, y) 7→ (X,Y ) given by

X = x− x̄, Y =
y − tC x̄√

dC
, τ =

√
dC s,

where x̄ = δ/dC . Then the differential system (26)–(27) becomes

X ′ = Y − F (X), Y ′ = g(X),

where

F (X) =





tL√
dL

(X −XL)−
tC√
dC

XL if X ≤ XL,

tC√
dC

X if XL ≤ X ≤ XR,

tR√
dC

(X −XR) +
tC√
dC

XR if x ≥ XR,

and

g(X) =





dL
dC

(X −XL) +XL if X ≤ XL,

X if XL ≤ X ≤ XR,

dR
dC

(X −XR) +XR if X ≥ XR,

where XR = 1− x̄, XL = −1− x̄ and comparing with system (2)–(4) we have

(28)
TL =

tL√
dC

, TC =
tC√
dC

, TR =
tR√
dC

,

r =
dR
dC

≥ 0, ℓ =
dL
dC

≥ 0, XL = −u, XR = v.
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We note that if the parameters of system (2)–(4) satisfies the conditions (28),
then from Theorem 20 it follows statements (b) and (c) of Theorem 3. Since
conditions (28) imply that

r ≥ 0, ℓ ≥ 0 and u+ v = 2,

it follows that Theorem 20 does not cover all the cases of statements (b) and (c) of
Theorem 3. In any case, Theorem 20 never provides information about statements
(d) or (e) of Theorem 3.

In what follows we shall prove Theorem 3, using the same ideas of the proof of
Theorem 20. Moreover in Theorem 20 it is only considered the case that the traces
in the regions SL, SC and SR have signs −, + and −, respectively.

To prove Theorem 3 we will state and prove several auxiliary results.

The next result proves the uniqueness of the limit cycle (if it exists) in Theorem
3.

Proposition 21. Assume that system (2) with TC > 0 has three linearity zones
and satisfies one of the following conditions.

(a) The sign of TR and TL are equal and different from the sign of TC , that is,
TR, TL ≤ 0;

(b) TL ≤ 0 but TR > 0 and we have TR − TCr ≤ 0;
(c) TR ≤ 0 but TL > 0 and we have TL − TCℓ ≤ 0.

If system (2) has a periodic orbit, then it surrounds the origin and it is a limit cycle
which is unique and stable.

Proof. The proof of statement (c) is very similar to the proof of statement (b), so
we do not do it. First we consider system (2) restricted to x ≥ 0, that it can be
considered with only two linearity zones as system (13) restricted to x ≥ 0. We
shall prove simultaneously statements (a) and (b).

From Proposition 13 and Corollary 14 system (13) can be transformed into an-
other having the non–negative rotation property for all the half–rays contained in
x ≥ 0. By using the symmetry given in (12), and applying again Proposition 13
and Corollary 14 , we can deduce that such systems can also be transformed into an
equivalent system having the non–negative rotation property for all the half–rays
contained in x ≤ 0. Note that the change of variables (20) is the same in the whole
plane, i.e. in x ≥ 0 and in x ≤ 0. In other words, the change of variables (20)
produce that simultaneously in x ≤ 0 and x ≥ 0 the non–negative rotation property
holds. In short, system (2) with three linearity zones can be transformed into a
system with the non–negative rotation property for all the half–rays contained in
S. Consequently from Theorem 11 we conclude that for a such system, if there
exists a periodic orbit, then it surrounds the origin and it is a limit cycle that is
unique and stable. �

To prove statement (b) of Theorem 3 we need to prove the existence of such a
periodic orbit surrounding the origin. To do this, again we will use the positive
and negative parts of the y–axis as domain and range for defining two different
half–return maps, namely a right half–return map PR and a left half–return map
PL.

We start by studying the qualitative properties of the right half-return map PR

defined in the negative y–axis, by taking the orbit starting at the point (0,−y) with
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y > 0, and coming back to the positive y–axis at the point (0, PR(y)). We have the
following result whose proof is exactly the same as Corollary 17.

Corollary 22. Assume that system (2) has three linearity zones, and that the
signs of TR and TL are equal and different from the sign of TC > 0. Then the
orbits starting at the point (0,−y) with y > 0, enter the half–plane x > 0 and go
around the origin in a counterclockwise path, coming back to the y–axis at the point
(0, PR(y)) with PR(y)) > 0. The difference PR(y) − y is positive for small values
of y, eventually becomes negative and

(a) tends to −∞ when y → ∞ if r > 0,
(b) tends to Y r

+ + Y r
− when y ր (−Y r

−), if r < 0.

Now we can do a similar study for the left half–return map PL defined in the
positive y–axis, by taking the orbit starting at the point (0, y), with y > 0, and
coming back to the negative y–axis at the point (0,−PL(y)). More precisely we
have the following result.

Corollary 23. Assume that system (2) has three linearity zones, and that the
signs of TR and TL are equal and different from the sign of TC > 0. Then the
orbits starting at the point (0, y), with y > 0, enter the half–plane x < 0 and go
around the origin in a counterclockwise path, coming back to the y-axis at the point
(0,−PL(y)) with PL(y) > 0. The difference PL(y) − y is positive for small values
of y, eventually becomes negative and

(a) tends to −∞ when y → ∞, if ℓ > 0,
(b) tends to Y ℓ

+ + Y ℓ
− when y ր Y ℓ

+, if ℓ < 0.

With these results we can prove Theorem 3.

Proof of Theorem 3. Note that the traces in the regions SL, SC and SR are given by
TL, TC and TR, respectively. By the Bendixon theorem, see for instance Theorem
7.10 in [7], they cannot have the same sign for the existence of limit cycles. This
proves statement (a) of the theorem.

Statements (c), (d) and (e) are immediate consequences of Proposition 21.

To prove statement (b) we first look for the existence of periodic orbits by show-
ing that system (2) has at least one periodic orbit. The existence of periodic orbits
is equivalent to the existence of two positive values yL and yR such that

PR(yR) = yL, yR = PL(yL).

Adding and subtracting the above equations we get an equivalent system of suffi-
cient and necessary conditions for the existence of periodic orbits, namely

PR(yR) + yR = yL + PL(yL),

PR(yR)− yR = yL − PL(yL).
(29)

Furthermore, conditions (29) for the existence of periodic orbits translate now to the

existence of a value Y > 0 being solution of the single equation P̂R(Y ) = −P̂L(Y ),
that is, of

P̂R(Y ) + P̂L(Y ) = 0,

where

P̂R(Y ) = PR(yR)− yR, P̂L(Y ) = PL(yL)− yL,
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being yR the unique solution of Y = PR(yR) + yR and yL the unique solution of
Y = PL(yL) + yL (we recall that PR and PL are monotone functions).

The function P̂R(Y )+ P̂L(Y ) is positive for small values Y > 0 and, when r > 0
and ℓ > 0, such function is negative when Y → ∞ as a consequence of statement
(a) of Corollaries 22 and 23.

Now we apply the mean value theorem to conclude the existence of at least a
solution, and so a periodic orbit of the system. The uniqueness and the stability of
the periodic orbit come from Proposition 21. This concludes the proof of statement
(b). �
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