Skip to main content
Log in

Nonlinear Network Modes in Cyclic Systems with Applications to Connected Vehicles

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel technique to decompose networked systems with cyclic structure into nonlinear modes and apply these ideas to a system of connected vehicles. We perform linear and nonlinear transformations that exploit the network structure and lead to nonlinear modal equations that are decoupled. Each mode can be obtained by solving a small set of algebraic equations without deriving the coefficients for any other mode. By focusing on the mode that is loosing stability, bifurcation analysis can be carried out. The techniques developed are applied to evaluate the impact of connected cruise control on the nonlinear dynamics of a connected vehicle system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Cochelin, B., Damil, N., Potier-Ferry, M.: Asymptotic-numerical methods and Pade approximations for non-linear elastic structures. Int. J. Numer. Methods Eng. 37(7), 1187–1213 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • Gasser, I., Sirito, G., Werner, B.: Bifurcation analysis of a class of ‘car following’ traffic models. Phys. D 197(3–4), 222–241 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Ge, J.I., Avedisov, S.S., Orosz, G.: Stability of connected vehicle platoons with delayed acceleration feedback. In: Proceedings of the ASME Dynamic Systems and Control Conference, pp. V002T30A006. ASME (2013). Paper no. DSCC2013-4040

  • Ge, J.I., Orosz, G.: Dynamics of connected vehicle systems with delayed acceleration feedback. Transp. Res. Part C. 46, 46–64 (2014)

    Article  Google Scholar 

  • Gendelman, O.V.: Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment. Nonlinear Dyn. 37(2), 115–128 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Georgiades, F., Peeters, M., Kerschen, G., Golinval, J.C., Ruzzene, M.: Modal analysis of a nonlinear periodic structure with cyclic symmetry. AIAA J. 47(4), 1014–1025 (2009)

    Article  Google Scholar 

  • Grolet, A., Thouverez, F.: Vibration analysis of a nonlinear system with cyclic symmetry. J. Eng. Gas Turbines Power 133(2), 022502 (2011)

    Article  Google Scholar 

  • Haterbouch, M., Benamar, R.: Geometrically nonlinear free vibrations of simply supported isotropic thin circular plates. J. Sound Vib. 280(3–5), 903–924 (2005)

    Article  Google Scholar 

  • Helbing, D., Moussaid, M.: Analytical calculation of critical pertubation amplitudes and critical densities by non-linear stability analysis of a simple traffic flow model. Eur. Phys. J. B 69(4), 571–581 (2009)

    Article  Google Scholar 

  • Jézéquel, L., Lamarque, C.H.: Analysis of non-linear dynamic systems by the normal form theory. J. Sound Vib. 149(3), 429–459 (1991)

    Article  Google Scholar 

  • Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes, Part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009)

    Article  Google Scholar 

  • Kuznetsov, Y.: Elements of Applied Bifurcation Theory. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  • Manevich, L.I., Mikhlin, Y.V.: On periodic solutions close to rectilinear normal vibration modes. J. Appl. Math. Mech. (PMM) 36(6), 1051–1058 (1972)

    Article  MathSciNet  Google Scholar 

  • Nayfeh, A.H.: On direct methods for constructing nonlinear normal modes of continuous systems. J. Vib. Control 1(4), 389–430 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Nayfeh, A.H., Nayfeh, S.A.: On nonlinear modes of continuous systems. J. Vib. Acoustics 116(1), 129–136 (1994)

    Article  Google Scholar 

  • Olson, B.J., Shaw, S.W., Shi, C., Pierre, C., Parker, R.G.: Circulant matrices and their application to vibration analysis. Appl. Mech. Rev. 66(4), 040803 (2014)

    Article  Google Scholar 

  • Orosz, G.: Connected cruise control: modeling, delay effects, and nonlinear behavior. Vehicle Syst. Dyn. (submitted) (2014)

  • Orosz, G., Moehlis, J., Bullo, F.: Delayed car-following dynamics for human and robotic drivers. In: Proceedings of the ASME IDETC/CIE Conference, pp. 529–538. ASME (2011). Paper no. DETC2011-48829

  • Orosz, G., Stépán, G.: Subcritical Hopf bifurcations in a car-following model with reaction-time delay. Proc. R. Soc. 462(2073), 2643–2670 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Orosz, G., Wilson, R.E., Stépán, G.: Traffic jams: dynamics and control. Philos. Trans. R. Soc. A. 368(1928), 4455–4479 (2010)

    Article  MATH  Google Scholar 

  • Orosz, G., Wilson, R.E., Szalai, R., Stépán, G.: Exciting traffic jams: nonlinear phenomena behind traffic jam formation on highways. Phys. Rev. E. 80(4), 046205 (2009)

  • Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.C.: Nonlinear normal modes, Part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23(1), 195–216 (2009)

    Article  Google Scholar 

  • Qin, W.B., Gomez, M.M., Orosz, G.: Stability analysis of connected cruise control with stochastic delays. In: Proceedings of the American Control Conference, pp. 4624–4629. IEEE (2014)

  • Roose, D., Szalai, R.: Continuation and bifurcation analysis of delay differential equations. In: Krauskopf, B., Osinga, H.M., Galan-Vioque, J. (eds.) Numerical Continuation Methods for Dynamical Systems, Understanding Complex Systems, pp. 359–399. Springer, Berlin (2007)

  • Rosenberg, R.M.: On nonlinear vibrations of systems with many degrees of freedom. Adv. Appl. Mech. 9, 155–242 (1966)

    Article  Google Scholar 

  • Shaw, S.W., Pierre, C.: Normal modes for non-linear vibratory systems. J. Sound Vib. 164(1), 85–124 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Shladover, S.E.: Longitudinal control of automotive vehicles in close-formation platoons. J. Dyn. Syst. Meas. Contr. 113(2), 231–241 (1991)

    Article  Google Scholar 

  • Slater, J.C.: A numerical method for determining nonlinear normal modes. Nonlinear Dyn. 10(1), 19–30 (1996)

    Article  Google Scholar 

  • Szemplinska-Stupnicka, W.: “Non-linear normal modes” and the generalized Ritz method in the problems of vibrations of non-linear elastic continuous systems. Int. J. Non-linear Mech. 18(2), 149–165 (1983)

  • Wang, F., Bajaj, A.K.: Nonlinear normal modes in multi-mode models of an inertially coupled elastic structure. Nonlinear Dyn. 47(1–3), 25–47 (2007)

    MATH  MathSciNet  Google Scholar 

  • Zhang, L., Orosz, G.: Designing network motifs in connected vehicle systems: delay effects and stability. In: Proceedings of the ASME Dynamic Systems and Control Conference, pp. V003T42A006. ASME (2013). Paper no. DSCC2013-4081

Download references

Acknowledgments

This work was partially funded by the National Science Foundation (Award No. 1351456).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei S. Avedisov.

Additional information

Communicated by Sue Ann Campbell.

Appendices

Appendix 1: Simplification of Cubic Terms

Before applying the cubic near-identity transformation (52), we need to express all the cubic terms of (50) using multiples of two circulant matrices. However, the cubic term \({\hat{\mathfrak {L}}}^{(\beta )}\Big ({\hat{\mathbf {S}}}_b\big (\hat{\varvec{\Psi }}({\hat{\mathbf {u}}}){\hat{\mathbf {u}}}\big )\Big )\,\hat{\mathbf {K}}^{(\beta )}_{b}\,{\hat{\mathbf {u}}}\) does not appear to have such structure. By spelling out the components corresponding to the dynamics of mode \(k\) (in other words the \(k+1\)-st row pair), we obtain

$$\begin{aligned} \begin{aligned}&\bigg [\sum _{b=0,1}\sum _{\beta =1,2}{\hat{\mathfrak {L}}}^{(\beta )}\big ({\hat{\mathbf {S}}}_{b}(\hat{\varvec{\Psi }}({\hat{\mathbf {u}}}){\hat{\mathbf {u}}})\big )\hat{\mathbf {K}}^{(\beta )}_{b}{\hat{\mathbf {u}}}\bigg ]_{k}\\&=\sum ^{N-1}_{j=0}\,\sum ^{N-1}_{\ell =0}\,\sum _{b=0,1}\,\sum _{\beta =1,2}\,\sum _{\delta =1,2} \begin{bmatrix} \mathrm {e}^{\mathrm {i}\frac{2\,\pi \,b\,(k-\ell )}{N}}\Big [\mathrm {\partial }^{(\beta )}_{b}\,\kappa ^{(1\,\delta )}_{\ell 0}\Big ]^{*}\Big (\overline{\mathrm {\varvec{\psi }}}^{(\beta 1)}_{m(\ell )\,j}\cdot \mathbf {u}_{f_{m(\ell )\,j}}\,u^{(1)}_{j}+\overline{\mathrm {\varvec{\psi }}}^{(\beta 2)}_{m(\ell )\,j}\cdot \mathbf {u}_{f_{m(\ell )\,j}}\,u^{(2)}_{j}\Big )\,u^{(\delta )}_{\ell }\\ \mathrm {e}^{\mathrm {i}\frac{2\,\pi \,b\,(k-\ell )}{N}}\Big [\mathrm {\partial }^{(\beta )}_{b}\,\kappa ^{(2\,\delta )}_{\ell 0}\Big ]^{*}\Big (\overline{\mathrm {\varvec{\psi }}}^{(\beta 1)}_{m(\ell )\,j}\cdot \mathbf {u}_{f_{m(\ell )\,j}}\,u^{(1)}_{j}+\overline{\mathrm {\varvec{\psi }}}^{(\beta 2)}_{m(\ell )\,j}\cdot \mathbf {u}_{f_{m(\ell )\,j}}\,u^{(2)}_{j}\Big )\,u^{(\delta )}_{\ell } \end{bmatrix}, \end{aligned} \end{aligned}$$
(103)

where \(m(\ell )\) is given as

$$\begin{aligned} m(\ell )=f_{k\ell }={\left\{ \begin{array}{ll} k-\ell \quad &{}\text {if} \quad k\,\ge \,\ell ,\\ N+k-\ell \quad &{}\text {if} \quad k\,<\,\ell . \end{array}\right. } \end{aligned}$$
(104)

If we consider a change of indexes \(\sigma =f_{k\ell }\), we get

$$\begin{aligned} \begin{aligned}&\bigg [\sum _{b=0,1}{\hat{\mathfrak {L}}}^{(\beta )}\big ({\hat{\mathbf {S}}}_{b}(\hat{\varvec{\Psi }}({\hat{\mathbf {u}}}){\hat{\mathbf {u}}})\big )\hat{\mathbf {K}}^{(\beta )}_{b}{\hat{\mathbf {u}}}\bigg ]_{k}\\&=\sum ^{N-1}_{j=0}\,\sum ^{N-1}_{\sigma =0}\,\sum _{b=0,1}\,\sum _{\beta =1,2}\,\sum _{\delta =1,2} \begin{bmatrix} \mathrm {e}^{\mathrm {i}\frac{2\,\pi \,b\,\sigma }{N}}\Big [\mathrm {\partial }^{(\beta )}_{b}\,\kappa ^{(1\,\delta )}_{f_{k\sigma }0}\Big ]^{*}\Big (\overline{\mathrm {\varvec{\psi }}}^{(\beta 1)}_{\sigma \,j}\cdot \mathbf {u}_{f_{\sigma \,j}}\,u^{(1)}_{j}+\overline{\mathrm {\varvec{\psi }}}^{(\beta 2)}_{\sigma \,j}\cdot \mathbf {u}_{f_{\sigma \,j}}\,u^{(2)}_{j}\Big )\,u^{(\delta )}_{f_{k\sigma }}\\ \mathrm {e}^{\mathrm {i}\frac{2\,\pi \,b\,\sigma }{N}}\Big [\mathrm {\partial }^{(\beta )}_{b}\,\kappa ^{(2\,\delta )}_{f_{k\sigma }0}\Big ]^{*}\Big (\overline{\mathrm {\varvec{\psi }}}^{(\beta 1)}_{\sigma \,j}\cdot \mathbf {u}_{f_{\sigma \,j}}\,u^{(1)}_{j}+\overline{\mathrm {\varvec{\psi }}}^{(\beta 2)}_{\sigma \,j}\cdot \mathbf {u}_{f_{\sigma \,j}}\,u^{(2)}_{j}\Big )\,u^{(\delta )}_{f_{k\sigma }} \end{bmatrix}. \end{aligned} \end{aligned}$$
(105)

Similarly, the \(k\)-th modal component of \({\hat{\mathfrak {L}}}^{(\beta )}\big ({\hat{\mathbf {S}}}_{b}({\hat{\mathbf {u}}})\big )\hat{\mathbf {K}}^{(\beta )}_{b}\hat{\mathrm {\varvec{\Psi }}}({\hat{\mathbf {u}}}){\hat{\mathbf {u}}}\) can be expanded as

$$\begin{aligned} \begin{aligned}&\bigg [\sum _{b=0,1}\sum _{\beta =1,2}{\hat{\mathfrak {L}}}^{(\beta )}\big ({\hat{\mathbf {S}}}_{b}({\hat{\mathbf {u}}})\big )\hat{\mathbf {K}}^{(\beta )}_{b}\hat{\mathrm {\varvec{\Psi }}}({\hat{\mathbf {u}}}){\hat{\mathbf {u}}}\bigg ]_{k}\\&=\sum ^{N-1}_{j=0}\,\sum ^{N-1}_{\ell =0}\,\sum _{b=0,1}\,\sum _{\delta =1,2}\,\sum _{\beta =1,2} \begin{bmatrix} \mathrm {e}^{\mathrm {i}\frac{2\,\pi \,b\,(k-\ell )}{N}}\Big [\mathrm {\partial }^{(\beta )}_{b}\,\kappa ^{(1\,\delta )}_{\ell 0}\Big ]^{*}\Big (\overline{\mathrm {\varvec{\psi }}}^{(\delta 1)}_{\ell \,j}\cdot \mathbf {u}_{f_{\ell \,j}}\,u^{(1)}_{j}+\overline{\mathrm {\varvec{\psi }}}^{(\delta 2)}_{\ell \,j}\cdot \mathbf {u}_{f_{\ell \,j}}\,u^{(2)}_{j}\Big )\,u^{(\beta )}_{f_{k\ell }}\\ \mathrm {e}^{\mathrm {i}\frac{2\,\pi \,b\,(k-\ell )}{N}}\Big [\mathrm {\partial }^{(\beta )}_{b}\,\kappa ^{(2\,\delta )}_{\ell 0}\Big ]^{*}\Big (\overline{\mathrm {\varvec{\psi }}}^{(\delta 1)}_{\ell \,j}\cdot \mathbf {u}_{f_{\ell \,j}}\,u^{(1)}_{j}+\overline{\mathrm {\varvec{\psi }}}^{(\delta 2)}_{\ell \,j}\cdot \mathbf {u}_{f_{\ell \,j}}\,u^{(2)}_{j}\Big )\,u^{(\beta )}_{f_{k\ell }} \end{bmatrix}. \end{aligned} \end{aligned}$$
(106)

If we re-label the \(\delta \) and \(\beta \), we obtain

$$\begin{aligned} \begin{aligned}&\bigg [\sum _{b=0,1}\sum _{\beta =1,2}{\hat{\mathfrak {L}}}^{(\beta )}\big ({\hat{\mathbf {S}}}_{b}({\hat{\mathbf {u}}})\big )\hat{\mathbf {K}}^{(\beta )}_{b}\hat{\mathrm {\varvec{\Psi }}}({\hat{\mathbf {u}}}){\hat{\mathbf {u}}}\bigg ]_{k}\\&=\sum ^{N-1}_{j=0}\,\sum ^{N-1}_{\ell =0}\,\sum _{b=0,1}\,\sum _{\beta =1,2}\,\sum _{\delta =1,2} \begin{bmatrix} \mathrm {e}^{\mathrm {i}\frac{2\,\pi \,b\,(k-\ell )}{N}}\Big [\mathrm {\partial }^{(\delta )}_{b}\,\kappa ^{(1\,\beta )}_{\ell 0}\Big ]^{*}\Big (\overline{\mathrm {\varvec{\psi }}}^{(\beta 1)}_{\ell \,j}\cdot \mathbf {u}_{f_{\ell \,j}}\,u^{(1)}_{j}+\overline{\mathrm {\varvec{\psi }}}^{(\beta 2)}_{\ell \,j}\cdot \mathbf {u}_{f_{\ell \,j}}\,u^{(2)}_{j}\Big )\,u^{(\delta )}_{f_{k\ell }}\\ \mathrm {e}^{\mathrm {i}\frac{2\,\pi \,b\,(k-\ell )}{N}}\Big [\mathrm {\partial }^{(\delta )}_{b}\,\kappa ^{(2\,\beta )}_{\ell 0}\Big ]^{*}\Big (\overline{\mathrm {\varvec{\psi }}}^{(\beta 1)}_{\ell \,j}\cdot \mathbf {u}_{f_{\ell \,j}}\,u^{(1)}_{j}+\overline{\mathrm {\varvec{\psi }}}^{(\beta 2)}_{\ell \,j}\cdot \mathbf {u}_{f_{\ell \,j}}\,u^{(2)}_{j}\Big )\,u^{(\delta )}_{f_{k\ell }} \end{bmatrix}. \end{aligned} \end{aligned}$$
(107)

Considering (105) and (107) for the same values of \(j,\,\beta ,\,\) and \(\delta \), and for \(\sigma =\ell \), we can show that

$$\begin{aligned} \sum _{b=0,1}\mathrm {e}^{\mathrm {i}\frac{2\,\pi \,b\,\sigma }{N}}\Big [\mathrm {\partial }^{(\beta )}_{b}\,\kappa ^{(1\,\delta )}_{f_{k\sigma }0}\Big ]^{*}=\sum _{b=0,1}\mathrm {e}^{\mathrm {i}\frac{2\,\pi \,b\,(k-\ell )}{N}}\Big [\mathrm {\partial }^{(\delta )}_{b}\,\kappa ^{(1\,\beta )}_{\ell 0}\Big ]^{*}, \end{aligned}$$
(108)

and hence (105) and (107) are equal. This means that (50) and (51) are identical.

Appendix 2: Cubic Near-Identity Coefficients (Left Hand Side)

The coefficient vector \({\tilde{\mathbf {b}}}_{k j\ell }\) in (57) is given by

$$\begin{aligned} {\tilde{\mathbf {b}}}_{k j\ell }\,=\, \begin{bmatrix} \gamma _{kj}^{(111)}\,\phi _{ j\ell }^{(111)}+\gamma _{kj}^{(121)}\,\phi _{ j\ell }^{(211)}\\ \gamma _{kj}^{(111)}\,\phi _{ j\ell }^{(112)}+\gamma _{kj}^{(121)}\,\phi _{ j\ell }^{(212)}\\ \gamma _{kj}^{(112)}\,\phi _{ j\ell }^{(111)}+\gamma _{kj}^{(122)}\,\phi _{ j\ell }^{(211)}\\ \gamma _{kj}^{(112)}\,\phi _{ j\ell }^{(112)}+\gamma _{kj}^{(122)}\,\phi _{ j\ell }^{(212)}\\ \gamma _{kj}^{(111)}\,\phi _{ j\ell }^{(121)}+\gamma _{kj}^{(121)}\,\phi _{ j\ell }^{(221)}\\ \gamma _{kj}^{(111)}\,\phi _{ j\ell }^{(122)}+\gamma _{kj}^{(121)}\,\phi _{ j\ell }^{(222)}\\ \gamma _{kj}^{(112)}\,\phi _{ j\ell }^{(121)}+\gamma _{kj}^{(122)}\,\phi _{ j\ell }^{(221)}\\ \gamma _{kj}^{(112)}\,\phi _{ j\ell }^{(122)}+\gamma _{kj}^{(122)}\,\phi _{ j\ell }^{(222)}\\ \gamma _{kj}^{(211)}\,\phi _{ j\ell }^{(111)}+\gamma _{kj}^{(221)}\,\phi _{ j\ell }^{(211)}\\ \gamma _{kj}^{(211)}\,\phi _{ j\ell }^{(112)}+\gamma _{kj}^{(221)}\,\phi _{ j\ell }^{(212)}\\ \gamma _{kj}^{(212)}\,\phi _{ j\ell }^{(111)}+\gamma _{kj}^{(222)}\,\phi _{ j\ell }^{(211)}\\ \gamma _{kj}^{(212)}\,\phi _{ j\ell }^{(112)}+\gamma _{kj}^{(222)}\,\phi _{ j\ell }^{(212)}\\ \gamma _{kj}^{(211)}\,\phi _{ j\ell }^{(121)}+\gamma _{kj}^{(221)}\,\phi _{ j\ell }^{(221)}\\ \gamma _{kj}^{(211)}\,\phi _{ j\ell }^{(122)}+\gamma _{kj}^{(221)}\,\phi _{ j\ell }^{(222)}\\ \gamma _{kj}^{(212)}\,\phi _{ j\ell }^{(121)}+\gamma _{kj}^{(222)}\,\phi _{ j\ell }^{(221)}\\ \gamma _{kj}^{(212)}\,\phi _{ j\ell }^{(122)}+\gamma _{kj}^{(222)}\,\phi _{ j\ell }^{(222)} \end{bmatrix}, \end{aligned}$$
(109)

where the constants \(\gamma _{kj}^{(\cdots )}\) and \(\phi _{ j\ell }^{(\cdots )}\) are defined in (53).

Appendix 3: Cubic Near-Identity Coefficients (Right Hand Side)

The coefficient vector \({\tilde{\mathbf {c}}}_{k j\ell }\) in (57) is given by

(110)

Appendix 4: Remaining Quadratic Terms for Mode 0

In Eq. (77), \(\frac{1}{2}{\hat{\mathbf {R}}}({\hat{\mathbf {u}}}){\hat{\mathbf {u}}}\) represents the quadratic terms that cannot be eliminated by the near-identity transformation (38) when modes 1 and \(N-1\) undergo a Hopf bifurcation. The only two nonzero entries in matrix \({\hat{\mathbf {R}}}({\hat{\mathbf {u}}})\) are given by

$$\begin{aligned}{}[{\hat{\mathbf {R}}}({\hat{\mathbf {u}}})]_{(1,2)}= \begin{bmatrix} 0&0\\ 4\,q_{1}\,\sin ^{2}\Big (\frac{\pi }{N}\Big )\,z^{(1)}_{N-1}&0 \end{bmatrix},\quad [{\hat{\mathbf {R}}}({\hat{\mathbf {u}}})]_{(1,N)}= \begin{bmatrix} 0&0\\ 4\,q_{1}\,\sin ^{2}\Big (\frac{\pi }{N}\Big )\,z^{(1)}_1&0 \end{bmatrix}, \end{aligned}$$
(111)

where subscripts denote the location of the block in \({\hat{\mathbf {R}}}({\hat{\mathbf {u}}})\), and \(q_{1}\) gives the value of \(q\) at the bifurcation point; cf. (10). Indeed, these quadratic terms correspond to the modes \(1\) and \(N-1\), and they only appear in the dynamics of the \(k=0\) mode. In the special case, when \(\beta =0\) and even \(N\) the term

$$\begin{aligned}{}[{\hat{\mathbf {R}}}({\hat{\mathbf {u}}})]_{(1,\frac{N}{2}+1)}= \begin{bmatrix} 0&0\\ 4\,q_{1}\,z^{(1)}_{\frac{N}{2}}&0 \end{bmatrix}, \end{aligned}$$
(112)

also remains in the equation of the \(k=0\) mode due to mode \(N/2\).

Appendix 5: Quadratic Near-Identity Coefficients for the Connected Vehicle Example

Equations (83) and (88) contain four nonzero quadratic near-identity coefficients that can be obtained by solving (57) for the car following model:

$$\begin{aligned} \begin{aligned} \psi ^{(111)}_{21}\,=&\,\frac{q_{1}\,(\mathrm {e}^{\mathrm {i}\frac{2\,\pi }{N}}-1)^2}{2\,\Delta }\,\bigg (-\big (2\,\kappa ^{(21)\;*}_{10}-\kappa ^{(21)\;*}_{20}\big )\,\big (4\,\kappa ^{(21)\;*}_{10}-\kappa ^{(21)\;*}_{20}\big )\\&-2\,\kappa ^{(21)\;*}_{10}\,\big (\kappa ^{(22)\;*}_{10}-\kappa ^{(22)\;*}_{20}\big )\kappa ^{(22)\;*}_{20}+\,\kappa ^{(21)\;*}_{20}\,\kappa ^{(22)\;*}_{10}\,\big (5\,\kappa ^{(22)\;*}_{10}-3\,\kappa ^{(22)\;*}_{20}\big )\\&-2\,\big (\kappa ^{(22)\;*}_{10}\big )^2\,\big (\kappa ^{(22)\;*}_{10}-\kappa ^{(22)\;*}_{20}\big )\,\big (2\,\kappa ^{(22)\;*}_{10}-\kappa ^{(22)\;*}_{20}\big )\bigg ),\\ \psi ^{(112)}_{21}\,+\psi ^{(121)}_{21}\,=&\,\frac{-q_{1}\,(\mathrm {e}^{\mathrm {i}\frac{2\,\pi }{N}}-1)^2}{\Delta }\,\bigg (4\,\kappa ^{(21)\;*}_{10}\,\kappa ^{(22)\;*}_{10}+\,\kappa ^{(21)\;*}_{20}\,\big (\kappa ^{(22)\;*}_{10}-\kappa ^{(22)\;*}_{20}\big )\\&-2\,\kappa ^{(22)\;*}_{10}\,\big (\kappa ^{(22)\;*}_{10}-\kappa ^{(22)\;*}_{20}\big )\,\big (2\kappa ^{(22)\;*}_{10}-\kappa ^{(22)\;*}_{20}\big ) \bigg ),\\ \psi ^{(122)}_{21}\,=&\,\frac{q_{1}\,(\mathrm {e}^{\mathrm {i}\frac{2\,\pi }{N}}-1)^2}{\Delta }\,\bigg (\big (4\,\kappa ^{(21)\;*}_{10}-\,\kappa ^{(21)\;*}_{20}\big )- \big (\kappa ^{(22)\;*}_{10}-\kappa ^{(22)\;*}_{20}\big )\,\big (2\kappa ^{(22)\;*}_{10}-\kappa ^{(22)\;*}_{20}\big ) \bigg ), \end{aligned} \end{aligned}$$
(113)

where the factor \(\Delta \) is

$$\begin{aligned} \begin{aligned} \Delta \,=&\,\kappa ^{(21)\;*}_{20}\big (4\,\kappa ^{(21)\;*}_{10}-\kappa ^{(21)\;*}_{20}\big )^2-16\,\kappa ^{(22)\;*}_{10}\,\big (\kappa ^{(22)\;*}_{10}-\kappa ^{(22)\;*}_{20}\big )\,\big (\kappa ^{(21)\;*}_{10}\big )^2\\&+4\,\big (2\,(\kappa ^{(22)\;*}_{10})^2-(\kappa ^{(22)\;*}_{20})^2\big )\,\kappa ^{(21)\;*}_{10}\,\kappa ^{(21)\;*}_{20}-\kappa ^{(22)\;*}_{10}\,\big (5\kappa ^{(22)\;*}_{10}-3\kappa ^{(22)\;*}_{20}\big )\,\big (\kappa ^{(22)\;*}_{20}\big )^2\\&+2\,\kappa ^{(22)\;*}_{10}\,\big (\kappa ^{(22)\;*}_{10}-\kappa ^{(22)\;*}_{20}\big )\,\big (2\,\kappa ^{(22)\;*}_{10}-\kappa ^{(22)\;*}_{20}\big )\,\big (-2\,\kappa ^{(21)\;*}_{10}\,\kappa ^{(22)\;*}_{20}+\,\kappa ^{(21)\;*}_{20}\,\kappa ^{(22)\;*}_{10}\big ), \end{aligned} \end{aligned}$$
(114)

and \(q_{1}\) gives the value of \(q\) at the bifurcation point; cf. (10). We remark that the coefficients \(\psi ^{(112)}_{21}\) and \(\psi ^{(121)}_{21}\) do not need to be evaluated individually since (83, 88) only include their sum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avedisov, S.S., Orosz, G. Nonlinear Network Modes in Cyclic Systems with Applications to Connected Vehicles. J Nonlinear Sci 25, 1015–1049 (2015). https://doi.org/10.1007/s00332-015-9249-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-015-9249-6

Keywords

Mathematics Subject Classification

Navigation