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Abstract

Recent experimental and numerical observations have shown the significance of the Basset–
Boussinesq memory term on the dynamics of small spherical rigid particles (or inertial particles)
suspended in an ambient fluid flow. These observations suggest an algebraic decay to an asymptotic
state, as opposed to the exponential convergence in the absence of the memory term. Here, we prove
that the observed algebraic decay is a universal property of the Maxey–Riley equation. Specifically,
the particle velocity decays algebraically in time to a limit that is O(ε)-close to the fluid velocity,
where 0 < ε � 1 is proportional to the square of the ratio of the particle radius to the fluid
characteristic length-scale. These results follows from a sharp analytic upper bound that we derive
for the particle velocity. For completeness, we also present a first proof of existence and uniqueness
of global solutions to the Maxey–Riley equation, a nonlinear system of fractional-order differential
equations.

1 Introduction

The motion of a solid body transported by an ambient Newtonian fluid flow can, in principle, be
determined by solving the Navier–Stokes equations with appropriate moving boundary conditions
[1, 2]. The resulting partial differential equations are, however, too complicated for mathematical
analysis. Their numerical solutions are computationally expensive and yield little insight.

For the motion of a small spherical rigid body (or inertial particle), however, one can derive
a reliable model by accounting for all the forces exerted on the particle due to the solid-fluid
interaction. Stokes [3] made the first attempt to obtain such a model for the oscillatory motion of
an inertial particle. Later, Basset [4], Boussinesq [5] and Oseen [6] studied the settling of a solid
sphere under gravity in a quiescent fluid. The resulting equation is known as the BBO equation.
To study the motion of inertial particles in non-uniform unsteady flow, Tchen [7] wrote the BBO
equation in a frame of reference moving with the fluid, accounting for various inertial forces that
arise in this frame.

The exact form of the forces exerted on the particle has been debated and corrected by several
authors (see, e.g., Corrsin and Lumley [8]). A widely accepted form of the forces was derived by
Maxey and Riley [9] from first principles. The resulting equation, with the later correction of Auton
et al. [10] to the added mass term, is usually referred to as the Maxey–Riley (MR) equation.

To describe the MR equation, let u : D × R+ → Rn denote a known velocity field describing
the flow of a fluid in an open spatial domain D ⊆ Rn. Here, n = 2 or n = 3 for two- and three-
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dimensional flows, respectively. A fluid trajectory is then the solution of the differential equation
ẋ = u(x, t) with some initial condition x(t0) = x0. An inertial particle, however, follows a different
trajectory y(t) ∈ D. The particle velocity v(t) = ẏ(t) satisfies the Maxey–Riley equation

ρpv̇ =ρf
Du

Dt
+ (ρp − ρf )g

−
9νρf
2a2

(
v − u− a2

6
∆u

)
−
ρf
2

[
v̇ − D

Dt

(
u +

a2

10
∆u

)]
−

9ρf
2a

√
ν

π

[ˆ t

t0

ẇ(s)√
t− s

ds+
w(t0)√
t− t0

]
,

(1)

where

w (t) = v (t)− u (y(t), t)− a2

6
∆u(y(t), t).

Here, ρp and ρf are, respectively, the particle and fluid densities; ν is the kinematic viscosity of the
fluid; a is the particle radius and g is the constant gravitational acceleration vector. The initial
conditions for the inertial particle are given as y(t0) = y0 and v(t0) = v0, for some t0 ∈ R+. The

material derivative D
Dt

:= ∂t + u · ∇ denotes the time derivative along a fluid trajectory.

The right-hand side in (1) contains the various forces exerted on the particle. The terms written
on separate lines are the force exerted by the undisturbed flow on the particle; the buoyancy force;
the Stokes drag; the added mass term and the Basset–Boussinesq memory term.

These forces have varying orders of magnitude. In particular, the Basset–Bousinesq memory
term, accounting for the lagging boundary layer developed around the sphere, is routinely neglected
on the grounds that it is insignificant compared to the Stokes drag and added mass [see, e.g., 11, 12].
Recent experimental and numerical studies, however, point to the contrary [13–18].

The numerical simulations of [16, 17], in particular, show the position of the particle to con-
verge to its asymptotic limit algebraically. This is fundamentally different from the exponential
convergence arising in the absence of the memory term [19–21]. In the present paper, we prove that
the observations of [16, 17] are a universal and generic property of the MR equation with memory,
irrespective of the fluid flow carrying the particles.

The MR equation was originally derived under the assumption w(t0) = 0. Later, Maxey [22]
modified the original formulation to lift this unphysical restriction, obtaining equation (1) above.
This equation can be written as a system of nonlinear fractional-order differential equations [23, 24]
in terms of the particle position y and relative velocity w (see equation (7) below). While there
exist fundamental results for special classes of fractional-order differential equations (see, e.g., [25]),
the MR equation does not fit in any of these classes and requires separate treatment.

Even the existence and uniqueness of solutions to the MR equation is unclear. Only recently
have Farazmand and Haller [24] proved the existence, uniqueness and regularity of its local solutions
in a weak sense. They also showed that only under the unphysical assumption w(t0) = 0 does the
MR equation admit strong solutions.

Here, we prove global existence and uniqueness of weak solutions to the MR equation. We also
prove that the velocity v of a small particle of radius a decays algebraically to an asymptotic state
that is O( a

2

L2 )-close to the fluid velocity u, where L is a characteristic length scale of the fluid flow.
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2 Preliminaries

2.1 The MR equation in dimensionless variables

We rewrite the Maxey–Riley equation (1) in a form more appropriate for mathematical analysis.
First, we rescale space, velocities and time using the characteristic length scale L, the characteristic
velocity U and the characteristic time scale T = L/U . Using the resulting dimensionless variables
y 7→ y/L, u 7→ u/U , v 7→ v/U and t 7→ t/T and rearranging various terms, we write (1) as a
system of first-order integro-differential equations

dy

dt
= w + Au(y, t),

dw

dt
+ κµ1/2

d

dt

(
1√
π

ˆ t

t0

w(s)√
t− s

ds

)
+ µw = −Mu(y, t)w + Bu(y, t),

y(t0) = y0, w(t0) = w0,

(2)

with

w(t) = v(t)− u(y(t), t)− γ

6
µ−1∆u(y(t), t), (3a)

Au = u +
γ

6
µ−1∆u,

Bu =

(
3R

2
− 1

)(
Du

Dt
− g

)
+

(
R

20
− 1

6

)
γµ−1

D

Dt
∆u (3b)

− γ

6
µ−1

[
∇u +

γ

6
µ−1∇∆u

]
∆u,

Mu =∇u +
γ

6
µ−1∇∆u.

In deriving (2), we used the identity

d

dt

ˆ t

t0

w(s)√
t− s

ds =

ˆ t

t0

ẇ(s)√
t− s

ds+
w(t0)√
t− t0

,

obtained from carrying out the differentiation and then integrating by parts (see, e.g., [25, Chapter
2]).

The dimensionless parameters in (3) are defined as

R =
2ρf

ρf + 2ρp
, µ =

R

St
, κ =

√
9R

2
, γ =

9R

2Re
, (4)

where the Stokes (St) and the fluid Reynolds (Re) numbers are defined as

St =
2

9

( a
L

)2
Re, Re =

UL

ν
. (5)

Note that the vector fields Au,Bu : D × R+ → Rn and the tensor field Mu : D × R+ → Rn×n are
known functions of the fluid velocity field u.

Equation (3a) defines a simple one-to-one correspondence between the particle velocity v and
the variable w. Once a solution (y,w) of (2) is known, the particle velocity can readily be obtained
as v(t) = w(t) + u(y(t), t) + (γµ−1/6)∆u(y(t), t). In the absence of the Faxén correction term
(γµ−1/6)∆u, the variable w = v − u is the relative velocity between the particle and the fluid.

The integral term in (2) is proportional to the Riemann-Liouville fractional derivative of order
1/2, which is defined as

d1/2w

dt1/2
=

d

dt

(
1√
π

ˆ t

t0

w(s)√
t− s

ds

)
, (6)
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with t ≥ t0 [25]. Using this notation, we write the initial value problem (2) in the more compact
form

dy

dt
= w + Au(y, t),

dw

dt
+ κµ1/2

d1/2w

dt1/2
+ µw = −Mu(y, t)w + Bu(y, t),

y(t0) = y0, w(t0) = w0.

(7)

2.2 Set-up and assumptions

We use |·| to denote the Euclidean norm on Rm. The induced operator norm of a square matrix
acting on Rm is denoted by ‖·‖. We denote the supremum norm of functions by ‖·‖∞.

For future use, we also define the function space

Xt,h
K = {f ∈ C ([t, t+ h] ;Rm) : ‖f‖∞ ≤ K}. (8)

Since Xt,h
K is a closed subset of C([t, t+ h];Rm), the metric space (Xt,h

K , ‖·‖∞) is a Banach space.
For the MR equation (2) (or its original form (1)) to make sense, the partial derivatives of the

fluid velocity ∂αxu(x, t) and ∂t∂
β
xu(x, t), with |α| ≤ 3 and |β| ≤ 2 must exist.

The Faxén corrections (the terms involving ∆u) are routinely neglected in practice [11, 12].
Upon neglecting the Faxén terms, the regularity assumption for the fluid velocity relaxes to the
existence of the first order partial derivative with respect to space and time, i.e. |α| ≤ 1 and β = 0.

For proving the global existence and uniqueness of solutions of the MR equation, we need the
above partial derivatives to be uniformly bounded and Lipschitz continuous in space and time. In
particular, we assume the following.

(H1) The velocity field u(x, t) is smooth enough such that the partial derivatives ∂αxu with |α| ≤ 3

and the mixed partial derivatives ∂t∂
β
xu with |β| ≤ 2 defined over the domain D × R+ are

uniformly bounded.
(H2) The velocity field u(x, t) is smooth enough such that the partial derivatives ∂αxu with |α| ≤ 3

and the mixed partial derivatives ∂t∂
β
xu with |β| ≤ 2 defined over the domain D × R+ are

uniformly Lipschitz continuous.

Remark. Neglecting the Faxén terms, assumptions (H1) and (H2) relax, respectively, to the uni-
form boundedness and uniform Lipschitz continuity of the fluid velocity u and acceleration Du/Dt.

Assumption (H1) implies the existence of constants LA, LB, LM > 0 such that

‖Au‖∞ ≤ LA, ‖Bu‖∞ ≤ LB, ‖Mu‖∞ ≤ LM . (9)

Assumption (H2), on the other hand, implies the existence of a constant Lc > 0 such that

|Au(y1, τ)−Au(y2, τ)| ≤ Lc|y1 − y2|,
|Bu(y1, τ)−Bu(y2, τ)| ≤ Lc|y1 − y2|,
‖Mu(y1, τ)−Mu(y2, τ)‖ ≤ Lc|y1 − y2|,

(10)

for all y1, y2 ∈ D and all τ ∈ R+. The supremum norms in (9) are taken over all (y, τ) ∈ D×R+.
Farazmand and Haller [24] proved the following local existence and uniqueness result.

Theorem 1 (Farazmand & Haller, [24]). Assume that (H1) and (H2) hold. For any (y0,w0) ∈
D×Rn, there exists ∆ > 0 such that, over the time interval [t0, t0 + ∆), the Maxey–Riley equation
(7) has a unique solution (y(t),w(t)) satisfying (y(t0),w(t0)) = (y0,w0).
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2.3 The MR equation does not generate a dynamical system

For ordinary differential equations, one may construct global solutions by continuation. In partic-
ular, given a local solution (y(t),w(t)) existing on a time interval [t0, t0 + ∆1), one shows that the
solution does not blow up at t = t0 + ∆1. Then initializing the ordinary differential equation from
time t = t0 + ∆1 with initial condition (y(t0 + ∆1),w(t0 + ∆1)), the local existence and uniqueness
result is reapplied to show that the solution can be extended to an interval [t0, t0 + ∆1 + ∆2). Re-
peating the above steps, the solution can be extended to a time interval [t0, t0+∆1+∆2+∆3+ · · · ).
Finally, one shows that the infinite series ∆1 + ∆2 + ∆3 + · · · diverges and infers global existence
and uniqueness.

This continuation argument assumes that the flow map Ft
t0 : (y0,w0) 7→ (y(t),w(t)) has the

semi-group property Ft
t0 = Ft

t1 ◦ Ft1
t0

for all t0 < t1 < t. Due to the fractional derivative, however,
the flow map of the MR equation (7) is not a semi-group.

To see this, consider the solution (y(t),w(t)) starting from (y0,w0) at time t0. Due to the Basset
history force (i.e., fractional derivative in (7)), the trajectory (y(t),w(t)) for t > t1 is influenced
by its entire past history. A trajectory initialized from (y(t1),w(t1)) is, however, ignorant of this
history and therefore will follow a different path (see Fig. 1, for an illustration).

(y(t
1
),w(t

1
))

(y
0
,w
0
)y

w

Figure 1: A trajectory (y(t),w(t)) of the MR equation (7) initialized from (y0,w0) and passing through
(y(t1),w(t1)) at time t1 (green curve). A trajectory initialized from (y(t1),w(t1)) at time t1 (red curve)
does not follow the trajectory (y(t),w(t)).

As a result, the usual continuation methods for ODEs do not apply here. In Section 4.1, we
construct a particular continuation suitable for the MR equation.

2.4 Rescaling time

We introduce a rescaling of time that further simplifies the forthcoming analysis. Dividing the w
component of equation (2) by µ and letting ε := 1

µ , we get

dy

dt
= w + Au(y, t),

ε
dw

dt
+ ε1/2κ

d1/2w

dt1/2
+ w = −εMu(y, t)w + εBu(y, t),

y(t0) = y0, w(t0) = w0.

(11)

Note that by (5), ε = St
R = 2

9R

(
a
L

)2
Re. Since the MR equation is valid for small particles, i.e.

a� L, we find that ε is a small parameter: 0 ≤ ε� 1.
Rescaling time as t = t0 + ετ , we have

dỹ

dτ
= ε
[
w̃ + Ãu(ỹ, τ)

]
,

dw̃

dτ
+ κ

d1/2w̃

dτ1/2
+ w̃ =ε

[
−M̃u(ỹ, τ)w̃ + B̃u(ỹ, τ)

]
,

ỹ(0) = y0, w̃(0) = w0,

(12)
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where
ỹ(τ) = y(t0 + ετ), w̃(τ) = w(t0 + ετ),

Ãu(ỹ, τ) = Au(y, t0 + ετ), B̃u(ỹ, τ) = Bu(y, t0 + ετ), M̃u(ỹ, τ) = Mu(y, t0 + ετ),

and
d1/2w̃

dτ1/2
=

d

dτ

(
1√
π

ˆ τ

0

w̃(s)√
τ − s

ds

)
.

The above rescaling of time has been previously used [19–21] for the asymptotic analysis of the
MR equation without memory. While this rescaling is not necessary for the forthcoming results, it
greatly simplifies the algebra.

Note that a unique solution of the IVP (12) over the time interval [0, δ) exists if and only if
the unscaled IVP (7) has a unique solution over the time interval [t0, t0 + εδ). Therefore, in the
following, we study the IVP (12). For notational simplicity, we omit the tilde signs from all the
variables.

3 Asymptotic behavior

3.1 ε = 0 limit

We start with the fictitious limit ε = 0. In this limit, y(τ) = y0 is constant for all times and w
satisfies

dw

dτ
+ κ

d1/2w

dτ1/2
+ w = 0, w(0) = w0, (14)

a linear equation tractable by Laplace transforms [26, 25]. This leads to the following result.

Theorem 2. The general solution of (14) is given by w(τ ; w0) = ψκ(τ)w0, where the positive,
scalar function ψκ : [0,∞)→ R+ has the following properties.

1. ψκ is given by the inverse Laplace transform

ψκ(τ) = L−1
[

1

(
√
s+ λ+) (

√
s+ λ−)

]
(τ), (15)

where

λ± =
κ±
√
κ2 − 4

2
.

2. ψκ obeys the asymptotic decay rate

ψκ(τ) ∼ κ

2
√
π
τ−3/2 +O

(
τ−5/2

)
as τ →∞. (16)

3. There is a differentiable function φκ : [0,∞)→ R+ such that ψκ = −φ′κ.
4. The functions ψκ and φκ are smooth over ∈ (0,∞) and completely monotonic decreasing, i.e.,

(−1)jψ(j)
κ (τ) ≥ 0, (−1)jφ(j)κ (τ) ≥ 0, j = 0, 1, 2, · · · , ∀τ > 0

5. ψκ(0) = 1 and φκ(0) = 1.

Proof. See Appendix A for the proof of 1 and 2 and the explicit calculation of ψκ. For the proof of
3, 4 and 5, see the properties demonstrated for uδ(t)(ψκ(τ)) and u0(t)(φκ(τ)) in [26, Section 4].

Figure 2 shows the functions φκ and ψκ computed by numerically inverting their Laplace trans-
forms. It follows from properties 2 and 3 from Theorem 2 that φκ decays asymptotically as τ−1/2,
as confirmed by the numerics.

Since the properties of Theorem 2 hold for any κ > 0, we omit the dependence of ψκ and φκ on
κ and write ψ and φ, respectively.
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10
−2

10
0

10
2

10
−2

10
−1

10
0

τ

φκ

τ −1/2

10
−2

10
0

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

τ

ψκ

τ −3/2

Figure 2: The functions φκ and ψκ = −φ′κ. The functions are evaluated for κ = 0.5 (blue), κ = 1
(green), κ = 1.5 (red), κ = 2 (cyan) and κ = 2.5 (magenta).

3.2 ε > 0 case

Now we analyze the general case of ε > 0, i.e.,

dy

dτ
= ε [w + Au(y, τ)]

dw

dτ
+ κ

d1/2w

dτ1/2
+ w = ε [−Mu(y, τ)w + Bu(y, τ)] ,

y(0) = y0, w(0) = w0,

(17)

which is equation (12) with tilde signs omitted. Solutions of (17) satisfy the integral equations

y(τ) = y0 + ε

ˆ τ

0
w(s) + Au(y(s), s) ds,

w(τ) = ψ(τ)w0 + ε

ˆ τ

0
ψ(τ − s) [−Mu(y(s), s)w(s) + Bu(y(s), s)] ds,

(18)

where ψ(τ) is given by (15) and satisfies the properties listed in Theorem 2.
This integral equation is essentially a variation-of-constants formula. The y-equation in (18) is

obtained by formal integration of the dy/dτ equation of (17). For the w-equation, let W(s) denote
the Laplace transform of w(τ). Taking the Laplace transform of (17) yields

W(s) =
w0

(
√
s+ λ+) (

√
s+ λ−)

+
L [−Mu(y(τ), τ)w(τ) + Bu(y(τ), τ)] (s)

(
√
s+ λ+) (

√
s+ λ−)

.

Taking the inverse Laplace transform, we obtain the w-component of equation (18) where ψ(τ) is
given by (15).

Definition 1. A mild (or weak) solution of the IVP (17) is a function (y,w) : [0, δ) → R2n that
solves the integral equation (18). The existence time δ > 0 can potentially be infinity.

Using the integral equation (18), we find an upper bound for |w(τ ; y0,w0)| and its asymptotic
limit.

Theorem 3. Assume that (H1) holds and ε < 1/LM . Let (y,w) : [0, δ)→ R2n be a mild solution
of (17) where [0, δ) is the maximal interval of existence of such solutions.
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(i) An explicit envelope for |w(τ ; y0,w0)| is given by

|w(τ ; y0,w0)| ≤ |w0|

 ∞∑
j=1

(εLM )j−1ψ∗j(τ)

+ εLB (1− φ(τ)) +
ε2LMLB
1− εLM

, (19)

where ψ∗j is the j-fold convolution of ψ. Moreover, the series converges uniformly and is
bounded for all τ .

(ii) |w(τ ; y0,w0)| is bounded for all τ ∈ [0, δ). Specifically,

sup
0≤τ<δ

|w(τ ; y0,w0)| ≤
|w0|+ εLB

1− εLM
. (20)

(iii) If δ =∞, the asymptotic limit of w satisfies

lim sup
τ→∞

|w(τ ; y0,w0)| ≤
εLB

1− εLM
. (21)

Proof. See Appendix B.

In deriving the upper envelope (19) and the subsequent upper bounds (20) and (21), we have
made several upper estimates. The natural question arising is how sharp these estimates are. In
the following section, among other things, we show with a numerical example that these bounds
are sharp by showing that they can be saturated.

3.3 Numerical verification

We illustrate the results of Theorem 3 with an example. For the fluid flow, we use the double gyre
model of Shadden et al. [27]. It is a two-dimensional velocity field with the stream function

H(x, y, t) = A sin(πf(x, t)) sin(πy), (22)

where
f(x, t) = α sin(ωt)x2 + (1− 2α sin(ωt))x.

We let A = 0.1, ω = π and α = 0.01.
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Figure 3: The decay of the relative velocity magnitude |w(t)| for R = 2/3 (a), R = 1/3 (b) and R = 1
(c). The dashed red lines mark the analytic envelope from Theorem 3 part (i). The dashed black lines
mark the asymptotic upper bound of |w|, i.e., εLB/(1− εLM).

The Hamiltonian H defines the velocity field u = (−∂yH, ∂xH)> which we use to solve the
initial value problem (7) using the numerical scheme developed in [28]. We will neglect the Faxén

corrections, such that Au = u, Bu =
(
3R
2 − 1

) Du
Dt

and Mu =∇∇∇u.
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10
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10
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10
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10
−1

10
0

10
1

t = ετ

|w
0
|[
ψ
+

ε
L

M
ψ
∗
ψ
]
+

ε
L
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(1

−
φ
)
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R

Figure 4: The upper envelope (19), neglecting O(ε2)-terms, for R = 1/10 (blue), R = 1/3 (black),
R = 2/3 (red), R = 1 (magenta) and R = 19/10 (green).

For the parameters of the inertial particle, we let St = R/100 resulting in µ = 100 (or ε = 0.01).
Three values of R are considered here: R = 2/3 (neutrally buoyant particle, ρf = ρp), R = 1/3
(aerosol, ρf < ρp) and R = 1 (bubble, ρf > ρp). In each case, we release 15 trajectories with initial
conditions y0 uniformly distributed in the domain [0.2×1.8]× [0.2, 0.8] and identical initial relative
velocities w0 = (10, 10)>.

We take the most conservative choices of the upper bounds LB and LM , i.e., LB = ‖Bu‖∞ and
LM = ‖Mu‖∞. For the neutrally buoyant particle, i.e. R = 2/3, Bu vanishes identically, resulting
in LB = 0. The norm ‖Mu‖∞ is, however, independent of R and we have LM ' 1.4237. Theorem
3 therefore implies that for a neutrally buoyant particle, |w(t)| must decay to zero asymptotically
which is in agreement with our numerical result (see Fig. 3a). Physically, this implies that the
inertial particle trajectory converges to a fluid trajectory. In the case of neutrally buoyant particles,
the theoretical envelope and the numerical solutions almost coincide. A close-up view is shown in
the inset of Fig. 3a.

Interestingly, for the neutrally buoyant particle, the evolution of the relative velocity magnitude
|w| seems to be independent of the initial positions y0 as all 15 curves coincide in Fig. 3a.

For the bubble (R = 1) and the aerosol (R = 1/3), we have LB ' 0.1207 and LM ' 1.4237.
The resulting envelope (19) and the asymptotic upper bound εLB/(1 − εLM ) are also shown (red
and black dashed curves, respectively) which shows a perfect agreement with the numerical results.
In plotting the envelopes, O(ε2)-terms are neglected. The numerical solutions come very close to
the analytic envelope of Theorem 3 (part (i)), indicating the tightness of the estimates.

The upper envelope (19) depends on functions φ and ψ which in turn depend on the parameter
κ =

√
9R/2. The parameter R is governed by the ratio between the particle density ρp and the fluid

density ρf . As this ratio varies the upper envelope also changes. Owing to the algebraic transient
decay of φ and ψ (see Fig. 2), however, the envelope exhibits an algebraic decay regardless of
the value of R. Fig. 4 shows the behavior of the upper envelope (neglecting O(ε2)-terms) for the
double gyre parameters and various values of R. For neutrally buoyant particle (R = 2/3) there is
a monotonic decay with the algebraic rate t−3/2. For other values of R the envelope decays to the
asymptotic upper bound. There is still a transient algebraic decay whose rate varies, depending on
the parameter R, between t−1.7 and t−1.2.
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4 Global existence and uniqueness

In this section, we prove the global existence and uniqueness of mild solutions of the Maxey–Riley
equation (1). In particular, we show that the equivalent reformulation (17) admits unique mild
solutions for all times, i.e., the integral equations (18) have a unique solution over R+.

The existence of a unique local solution follows from Theorem 1. Specifically, there exists
δ = ∆/ε > 0 such that the integral equation (18) has a unique solution over the time interval [0, δ).
Here, ∆ is the same as the time window in Theorem 1 and the identity δ = ∆/ε follows from the
rescaling t = t0 + ετ introduced in Section 2.4.

As discussed in Section 2.3, the usual continuation methods used for ODEs does not apply
to fractional order differential equations. Therefore, we construct a specific continuation method
suitable for the MR equation, which is based on the continuation method presented in the work
of Kou et al. [29] for a different class of fractional differential equations. We then show that this
continuation can be repeated indefinitely to extend the solutions to the time interval [0,∞). Our
approach can be summarized in the following steps.
Step 1. Showing that the local solution of the integral equation (18), defined on [0, δ), is well

defined at time τ = δ.
Step 2. Defining a suitable integral operator F over an appropriate Banach space whose fixed

points extend the local solution of (18) from [0, δ) to [0, δ + h), for a suitable constant h > 0.
Step 3. Showing that the operator F has at least one fixed point.
Step 4. Showing that this continuation is unique.
Step 5. Showing that one can repeat steps 1 to 4 indefinitely with the same continuation window

h. That is the local solution of (18) can be continued uniquely to R+.
The above steps prove the following global existence and uniqueness theorem.

Theorem 4. Assume that (H1) and (H2) hold and ε < 1/LM . The MR equation has unique,
continuous, mild solutions. That is for any (y0,w0) ∈ R2n, there exists a unique, continuous
function (y,w) : [0,∞)→ R2n satisfying (18) and (y(0),w(0)) = (y0,w0).

4.1 Continuation of the local solution

Let’s denote the local solution of the MR equation, whose existence and uniqueness is guaranteed
by Theorem 1, by zloc = (yloc,wloc). We first begin by showing that this local solution defined on
[0, δ) is well defined at τ = δ.

Lemma 1. The local solution zloc : [0, δ) → R2n of the MR equation is well-defined at τ = δ and
the limit limτ→δ− zloc(τ) is given by

zloc(δ) =

(
y0 + ε

´ δ
0 wloc(s) + Au(yloc(s), s) ds

ψ(δ)w0 + ε
´ δ
0 ψ(δ − s) [−Mu(yloc(s), s)wloc(s) + Bu(yloc(s), s)] ds

)
. (23)

Proof. See Appendix C.

Let (yloc,wloc) : [0, δ) → R2n be the local solution of (18) whose existence and uniqueness is
guaranteed by Theorem 1. Define

y(τ) = 1[0,δ)(τ)yloc(τ) + 1[δ,δ+h)(τ)ξξξ(τ), (24a)

w(τ) = 1[0,δ)(τ)wloc(τ) + 1[δ,δ+h)(τ)ηηη(τ), (24b)

where 1A : R → {0, 1} is the indicator function of the set A ⊂ R. Note that for τ ∈ [0, δ), (y,w)
coincides with the local solution (yloc,wloc). Assuming (y,w) is a continuation of this local solution
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to [0, δ + h), upon substitution in (18), we have

ηηη(τ) =y0 + ε

ˆ δ

0
wloc(s) + Au(yloc(s), s) ds+ ε

ˆ τ

δ
ηηη(s) + Au(ξξξ(s), s) ds,

ξξξ(τ) =ψ(τ)w0 + ε

ˆ δ

0
ψ(τ − s) [−Mu(yloc(s), s)wloc(s) + Bu(yloc(s), s)] ds

+ ε

ˆ τ

δ
ψ(τ − s) [−Mu(ξξξ(s), s)ηηη(s) + Bu(ξξξ(s), s)] ds,

(25)

for τ ∈ [δ, δ + h).
Therefore, (y,w) solves the integral equation (18) and hence is a mild solution of the MR

equation if and only if the integral equation (25) has a solution. To show that such a solution

exists, we solve the following fixed point problem. Let Φ = (ξξξ,ηηη) ∈ Xδ,h
K . Define the operator

F : Xδ,h
K → C([δ, δ + h);R2n) by

(FΦ) (τ) = Φ0 (τ) +

(
ε
´ τ
δ ηηη(s) + Au(ξξξ(s), s) ds

ε
´ τ
δ ψ(τ − s) [−Mu(ξξξ(s), s)ηηη(s) + Bu(ξξξ(s), s)] ds

)
, (26)

where

Φ0 (τ) =

(
y0 + ε

´ δ
0 wloc(s) + Au(yloc(s), s) ds

ψ(τ)w0 + ε
´ δ
0 ψ(τ − s) [−Mu(yloc(s), s)wloc(s) + Bu(yloc(s), s)] ds

)
. (27)

Note that Φ0 depends only on the local solution (yloc,wloc) of the Maxey–Riley equation and

hence is independent of Φ. We show that the operator F maps Xδ,h
K to itself (with K and h to be

determined) and has a unique fixed point.

4.2 Existence of the continuation

Proposition 1. Assume that (H1) holds. There exist constants h,K > 0 such that the operator

F defined in (26) maps Xδ,h
K to itself and has at least one fixed point.

Proof. For any h,K > 0 and Φ ∈ Xδ,h
K the function FΦ : [δ, δ+h)→ R2n is clearly continuous, i.e.

FΦ ∈ C([δ, δ + h);R2n. We choose h,K > 0 such that FΦ ∈ Xδ,h
K , i.e., ‖FΦ‖∞ ≤ K. To this end,

note that for any h > 0 and τ ∈ [δ, δ + h), we have

|(FΦ)(τ)| ≤|Φ0(τ)|+ ε

ˆ δ+h

δ
|ηηη(s)|+ |Au(ξξξ(s), s)| ds

+ ε

ˆ δ+h

δ
ψ(τ − s) [|Mu(ξξξ(s), s)ηηη(s)|+ |Bu(ξξξ(s), s)|] ds.

Take the supremum over τ ∈ [δ, δ + h) and use the bounds on ‖Mu‖∞, ‖Bu‖∞, ‖Au‖∞, |w(τ)|,
‖ψ‖∞, and ‖ηηη‖∞ to get

‖FΦ‖∞ ≤ ‖Φ0‖∞ + ε

ˆ δ+h

δ
‖ηηη‖∞ + ‖Au‖∞ ds

+ ε

ˆ δ+h

δ

[
‖Mu‖∞‖ηηη‖∞ + ‖Bu‖∞

]
ds

≤ ‖Φ0‖∞ + εh (K + LA) + εh (LMK + LB) .

For

h ≤ 1

ε (LM + 1)
,
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we have

‖FΦ‖∞ ≤ ‖Φ0‖∞ +
K

2
+

LB + LA
2 (LM + 1)

.

Since Φ0 : [0,∞)→ R2n is a continuous function, there exists 0 < K ′ <∞ such that

‖Φ0‖∞ := sup
δ≤τ<δ+h

|Φ0(τ)| = K ′

Choosing

K ≥
[
K ′ +

LB + LA
2 (LM + 1)

]
,

we have ‖FΦ‖∞ ≤ K.
In short, with any h,K > 0 satisfying

h ≤ 1

ε (LM + 1)
, K = K ′ +

LB + LA
2 (LM + 1)

, (28)

the operator F maps Xδ,h
K to itself.

To prove the existence of a fixed point for the operator F : Xδ,h
K → Xδ,h

K , we use Schauder’s
fixed point theorem:

Theorem 5 (Schauder’s Fixed Point Theorem). Let X be a real Banach space, D ⊂ X nonempty,
closed, bounded, and convex. Let F : D → D be a continuous, compact operator. Then F has a
fixed point.

The space Xδ,h
K is nonempty, closed, bounded and convex. Therefore, to apply Schauder’s fixed

point theorem, it remains to show that F : Xδ,h
K → Xδ,h

K is continuous and compact. For this, we
need the following lemma.

Lemma 2. The operator F is continuous and maps Xδ,h
K to a family of equi-continuous functions

in Xδ,h
K .

Proof. The proof of the continuity of F : Xδ,h
K → Xδ,h

K is straightforward and is therefore omitted
here. We prove the equicontinuity of its range in Appendix D.

By Arzela-Ascoli theorem, therefore, the operator F : Xδ,h
K → Xδ,h

K is compact. Hence, F
satisfies all the conditions of Schauder’s theorem and has at least one fixed point. This concludes
the proof of Proposition 1.

4.3 Uniqueness of the continuation

We now show that the continuation constructed in sections 4.1 and 4.2 is unique.

Proposition 2. Assume that (H1) and (H2) hold and ε < 1/LM . There exists h > 0 such that
the continuation (24) of the local solution of the MR equation is unique.

Proof. Suppose (y1,w1) and (y2,w2) are two different continuations of the local solution of (18)
from [0, δ) to [δ, δ + h). That is

y1(τ) = 1[0,δ)(τ)yloc(τ) + 1[δ,δ+h)(τ)ξξξ1(τ), w1(τ) = 1[0,δ)(τ)wloc(τ) + 1[δ,δ+h)(τ)ηηη1(τ),

and

y2(τ) = 1[0,δ)(τ)yloc(τ) + 1[δ,δ+h)(τ)ξξξ2(τ), w2(τ) = 1[0,δ)(τ)wloc(τ) + 1[δ,δ+h)(τ)ηηη2(τ),

where, as discussed in Section 4.1, (ξi, ηi) solve the integral equations(
ξi(τ)
ηi(τ)

)
= Φ0(τ) + ε

( ´ τ
δ ηηηi(s) + Au(ξξξi(s), s) ds´ τ
δ ψ(τ − s) [−Mu(ξξξi(s), s)ηηηi(s) + Bu(ξξξi(s), s)] ds

)
, (29)
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for i ∈ {1, 2}.
Define Φi = (ξξξi, ηηηi) and bound |Φ1 −Φ2| by

|Φ1(τ)−Φ2(τ)| ≤ε
ˆ δ+h

δ
|ηηη1(s)− ηηη2(s)|+ |Au(ξξξ1(s), s)−Au(ξξξ2(s), s)| ds

+ ε

ˆ δ+h

δ
|ψ(τ − s)| (|Mu(ξξξ1(s), s)(ηηη1(s)− ηηη2(s))|

+ |ηηη2(s)||Mu(ξξξ1(s), s)−Mu(ξξξ2(s), s)|) ds,

+ ε

ˆ δ+h

δ
|ψ(τ − s)||Bu(ξξξ1(s), s)−Bu(ξξξ2(s), s)| ds,

(30)

where we wrote |Mu(ξξξ1(s), s)ηηη1(s)−Mu(ξξξ2(s), s)ηηη2(s)| as

|Mu(ξξξ1(s), s)(ηηη1(s)− ηηη2(s)) + (Mu(ξξξ1(s), s)−Mu(ξξξ2(s), s))ηηη2(s)|.

Since (yi,wi) solves the MR equation [0, δ + h), inequality (20) applies and we have

‖ηηηi‖∞ := sup
δ≤τ<δ+h

|ηηηi(τ)| ≤ sup
0≤τ<δ+h

|wi(τ)| ≤ |w0|+ εLB
1− εLM

, i ∈ {0, 1}.

Taking the supremum over τ ∈ [δ, δ + h) on both sides of (30) and using the above upper bound
on ‖ηηηi‖∞, we get

‖Φ1 −Φ2‖∞ ≤ εh [Lc‖ηηη1 − ηηη2‖∞ + Lc‖ξξξ1 − ξξξ2‖∞]

+ εh

[
LM‖ηηη1 − ηηη2‖∞ + Lc

(
|w0|+ εLB

1− εLM

)
‖ξξξ1 − ξ2‖∞ + Lc‖ξξξ1 − ξξξ2‖∞

]
,

≤ 2hε

[
3Lc + LM + Lc

(
|w0|+ εLB

1− εLM

)]
‖Φ1 −Φ2‖∞.

Taking h > 0 small enough, one obtains ‖Φ1 −Φ2‖∞ ≤ 1
2‖Φ1 −Φ2‖∞ which, in turn, implies

the uniqueness of the solution: Φ1 = Φ2. The time window h can for instance be chosen as

h =
1

2
min

 1

ε(LM + 1)
,

1

2ε
[
3Lc + LM + Lc

(
|w0|+εLB

1−εLM

)]
 , (31)

which also respects the inequality (28). With this h, therefore, the continuation (24) is unique.

Remark. The above analysis is a contraction mapping argument. It is, therefore, tempting to use
the Banach fixed point theorem (instead of the Schauder’s fixed point theorem) in order to obtain
the existence and uniqueness of the continuation (24) at once. The Banach fixed point theorem,
however, does not apply here. This is because in proving the above contraction property, we made
use of inequality (20) which applies to the mild solutions of the MR equation. As a result, it was
necessary to show the existence of continuation (24) first. Otherwise, inequality (20) does not apply
and the estimates used in the above contraction argument fail.

So far we have proved the existence of a unique mild solution to the MR equation over the time
interval [0, δ + h) with h given in (31). The steps taken in sections 4.1, 4.2 and 4.3 can be applied
to this extended local solution to prove the existence and uniqueness of a mild solution over the
time interval [0, δ+2h). This is because the continuation window h is independent of the constants

K and δ from the Banach space Xδ,h
K .

Applying this argument repeatedly extends the mild solution of the Maxey–Riley equation from
its local interval of existence and uniqueness [0, δ) to [0, δ + nh], for any n ∈ N. Thus the solution
can be extended uniquely to [0,∞). This proves Theorem 4.
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5 Summary and discussion

Motivated by the recent observations on the relevance of the memory effects on inertial particle dy-
namics, we have derived global existence and asympotic decay results for the Maxey–Riley equation
in the presence of the Basset–Boussinesq memory term. This memory term, a fractional derivative
of order 1/2 [28, 24], greatly complicates the analytical and numerical treatment of the equation.
While the behavior of the solutions has been well-understood in the absence of the memory term
[19–21, 30], no global analytic results have been available for the full equation with memory.

We have proved that the solutions converge asymptotically to a trapping region where the
particle velocity is O(ε)-close to the fluid velocity. Here, ε is proportional to (a/L)2 where a is
the particle radius and L is the characteristic length-scale of the fluid flow. This result holds for
0 < ε � 1 small enough which translates into a � L (See Theorem 3, for the exact statement of
the assumption). This assumption is not restrictive since the MR equation is only valid under the
very same condition a� L [9].

We also derived an upper envelope for the transient dynamics. This envelope exhibits an
algebraic decay to the asymptotic state, hence confirming the numerical observations of [16–18] in
a more general framework. We showed with an example that this envelope can be saturated and
therefore our upper estimates are sharp.

Upon neglecting the memory term, the convergence to the asymptotic limit is exponential [19–
21]. Therefore, the Basset–Boussinesq memory fundamentally alters the behavior of the inertial
particles and cannot be readily neglected. From a mathematical point of view, the memory term
also fundamentally changes the structure of the equation. In the absence of memory, the Maxey–
Riley equation is an ordinary differential equation, generating a dynamical system. The memory
term turns the equation into an integro-differential equation that does not generate a dynamical
system.

Our asymptotic results are only applicable if the Maxey–Riley equation possesses global so-
lutions. Because of the particular coupling and nonlinearity of the equation, available results on
fractional-order differential equations do not guarantee the existence and uniqueness of global so-
lutions to the Maxey–Riley equation. To this end, we have included here the first proof of the
existence and uniqueness of global solutions to the Maxey–Riley equation. As already pointed out
by [24], the particle velocity is only guaranteed to be continuous for all times.
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Appendix A Proof of Theorem 2

Consider the fractional differential equation

dw

dτ
+ κ

d1/2w

dτ1/2
+ w = 0, (32)

with w(0) = w0 as initial condition. Let W(s) = (L [w]) (s) denote the Laplace transform of w (τ).
Since (

L
[
dw

dτ

])
(s) = sW(s)−w0

and (
L
[

1√
τ

])
(s) =

√
π

s
,
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the Laplace transform of the Riemann-Liouville derivative in (32) has the expression(
L

[
d1/2w

dτ1/2

])
(s) =

1√
π

(
L
[ˆ τ

0

dw

dτ

1√
τ − s

ds

])
(s) +

1√
π

(
L
[

w0√
τ

])
(s),

=
1√
π

(
L
[
dw

dτ

])
(s)

(
L
[

1√
τ

])
(s) +

w0√
s
,

= (sW(s)−w0)
1√
s

+
w0√
s
,

=
√
sW(s),

where we used the identity

d

dτ

ˆ τ

0

w(s)√
τ − s

ds =

ˆ τ

0

dw

dτ

1√
τ − s

ds+
w(0)√
τ
.

Now we use the Laplace transform on (32) and solve for W(s) to get

W (s) =
w0

s+ κ
√
s+ 1

.

The denominator can be factorized as

W (s) =
w0

(
√
s+ λ+) (

√
s+ λ−)

,

where

λ± =

(
κ±
√
κ2 − 4

)
2

.

Hence the general solution of (32) is

w(τ ; w0) = w0

(
L−1

[
1

(
√
s+ λ+) (

√
s+ λ−)

])
(τ) (33)

The function w(τ ; w0) is proportional to the Mittag-Leffler function of order 1/2, which is defined
as

E1/2 (−z) = ez
2

erfc z (34)

for any complex number z ∈ C (see, e.g., [31], Section 18.1). The Laplace transform of E1/2 is given
by (see [32], Eq. 11.13): (

L
[
E1/2

(
−a
√
z
)])

(s) =
1√

s (
√
s+ a)

(35)

for any a ∈ C.
To study the behavior of E1/2 (−z) as z →∞, we will make use of the asymptotic expansion of

the complementary error function ([33], Eq. 7.1.23):

erfc z ∼ e−z
2

z
√
π

(
1− 1

2z2
+

3

4z4
+O

(
1

z6

))
. (36)

Substituing in (34), we obtain

E1/2 (−z) ∼ 1

z
√
π

(
1− 1

2z2
+

3

z4
+O

(
1

z6

))
. (37)

The asymptotic expansion of erfc z is valid only if |arg (z)| < 3π
4 [33]. It also diverges for any finite

value of z; its sole purpose is to give the rate of decay as z →∞.
The general solution will depend on whether the discriminant of λ±, i.e. κ2 − 4, is positive,

zero, or negative.
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A.1 Case 1: κ > 2 (i.e., R > 16/9)

We have
W (s) =

w0

(
√
s+ λ+) (

√
s+ λ−)

or, after some algebra,

W (s) =
w0

λ+ − λ−

[
λ+√

s (
√
s+ λ+)

− λ−√
s (
√
s+ λ−)

]
.

Invert the two terms in the above expression with the rule (35) to get

w(τ ; w0) =
w0

λ+ − λ−
[
λ+E1/2

(
−λ+

√
τ
)
− λ−E1/2

(
−λ−

√
τ
)]
. (38)

Since κ−
√
κ2 − 4 is always greater than zero, we can use the asymptotic expansion (37) to find

that in the limit τ →∞,

w(τ ; w0) ∼
w0

λ+ − λ−

[
1√
πτ

(
1− 1

2λ2+τ

)
− 1√

πτ

(
1− 1

2λ2−τ

)
+O

(
τ−5/2

)]
,

∼ w0

2
√
π (λ+ − λ−)

(
λ2+ − λ2−
λ2+λ

2
−

)
τ−3/2 +O

(
τ−5/2

)
,

∼
(
κw0

2
√
π

)
τ−3/2 +O

(
τ−5/2

)
,

(39)

where we used that λ+ + λ− = κ and λ+λ− = 1.

A.2 Case 2: κ = 2 (i.e., R = 16/9)

We have
W(s) =

w0

(
√
s+ 1)

2 (40)

or, after a bit of algebra,

W(s) = w0

(
1√

s (
√
s+ 1)

− 1
√
s (
√
s+ 1)

2

)

= w0

(
1√

s (
√
s+ 1)

+ 2
d

ds

(
1√
s+ 1

))
.

(41)

We can invert the first term in (41) with (35). The second term can be inverted by using the
Laplace transforms [26, Equations A.27, A.28, and A.35.](

L
[

1√
πτ
− E1/2

(
−
√
τ
)])

(s) =
1√
s+ 1

(42)

and

(L [−τf(τ)]) (s) =
d

ds
(L [f(τ)])(s). (43)

Thus the inverse Laplace transform of (40) is

w(τ ; w0) = w0

[
E1/2

(
−
√
τ
)

(1 + 2τ)− 2
√
τ√
π

]
. (44)
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With the asymptotic expansion (37) we find that in the limit τ →∞,

w(τ ; w0) ∼ w0

[
1√
πτ

(
1− 1

2τ
+

3

4τ2
+O

(
τ−3

))
+

2
√
τ√
π

(
1− 1

2τ
+

3

4τ2
+O

(
τ−3

))
− 2
√
τ√
π

]
∼
(

w0√
π

)
τ−3/2 +O

(
τ−5/2

) (45)

A.3 Case 3: 0 < κ < 2 (i.e., R < 16/9)

We have
W (s) =

w0

(
√
s+ λ+) (

√
s+ λ−)

This is the same Laplace transform as in the case κ > 2, except that λ+ and λ− are now complex
conjugate numbers. The inverse Laplace transform is the same as (38):

w(τ ; w0) =
w0

λ+ − λ−
[
λ+E1/2

(
−λ+

√
τ
)
− λ−E1/2

(
−λ−

√
τ
)]
. (46)

The quotients
λ+

λ+ − λ−
=

1

2

(
1− i κ√

4− κ2

)
and

− λ−
λ+ − λ−

=
1

2

(
1 + i

κ√
4− κ2

)
in (46) are also complex conjugates. Since

(
ew
)

= (ew) and erfcw = erfcw for every w ∈ C, it

follows also that E1/2 (w) = E1/2 (w). Thus

w(τ ; w0) = w0

[(
λ+

λ+ − λ−
E1/2

(
−λ+

√
τ
))

+

(
λ+

λ+ − λ−
E1/2

(
−λ+

√
τ
))]

or simply twice the real part of w(τ ;w0).

w(τ ; w0) = 2w0 Re

(
λ+

λ+ − λ−
E1/2(−λ+

√
τ)

)
,

= 2w0

[
Re

(
λ+

λ+ − λ−

)
Re
(
E1/2

(
−λ+

√
τ
))

+ Im

(
λ+

λ+ − λ−

)
Im
(
E1/2

(
−λ+

√
τ
))]

.

(47)

It is possible to further simplify (46). It turns out that the Mittag-Leffler function E1/2 (−z) may
be written as ([34], section 7.19)

E1/2 (−z) =

√
4t

π
[U (x, t) + iV (x, t)] , (48)

where

U (x, t) =
1√
4πt

ˆ ∞
−∞

e−(x+s)
2/(4t)

1 + s2
ds, (49)

V (x, t) =
1√
4πt

ˆ ∞
−∞

se−(x+s)
2/(4t)

1 + s2
ds, (50)
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z = 1−ix
2
√
t

, x ∈ R, and t > 0. The functions U (x, t) and V (x, t) are known as the Voigt functions

([34], section 7.19). If we set

z =
1− ix
2
√
t

= λ+
√
τ =

(
κ

2
+ i

√
4− κ2

2

)
√
τ ,

then we can solve for x and t to get

t =
1

κ2τ
and

x = −
√

4− κ2
κ

.

Thus

E1/2

(
−λ+

√
τ
)

=
2

κ
√
πτ

[
U

(
−
√

4− κ2
κ

,
1

κ2τ

)

− iV

(
−
√

4− κ2
κ

,
1

κ2τ

)]
.

(51)

Hence (47) can be written as

w (τ ; w0) =
2w0

κ
√
πτ

[
U

(
−
√

4− κ2
a

,
1

κ2τ

)

− κ√
4− κ2

V

(
−
√

4− κ2
κ

,
1

κ2τ

)]
.

(52)

For the asymptotic behaviour of w(τ ; w0) as τ → ∞, we can repeat the steps as in the case
κ > 2 and obtain

w(τ ; w0) ∼
(
κw0

2
√
π

)
τ−3/2 +O

(
τ−5/2

)
. (53)

This asymptotic expansion, however, is justified only if |arg (λ+
√
τ)| and |arg (λ+

√
τ)| are smaller

than 3π
4 . Since λ± =

(
κ± i

√
4− κ2

)
/2 we see that this will be the case whenever κ > 0, since then

0 < arg (λ+
√
τ) < π

2 and −π
2 < arg (λ−

√
τ) < 0 (to see this, note that the two complex numbers

λ+ and λ− lie to the right of the imaginary axis, so that the argument cannot be greater than π/2).
Note that since κ =

√
9R/2, the required condition κ > 0 is always satisfied.

Appendix B Proof of Theorem 3

We will use the following Gronwall-type inequality.

Lemma 3 (Chu & Metcalf [35]). Let the functions α, β : R+ → R be continuous and the function
K(τ, s) be continuous and nonnegative for 0 ≤ s ≤ τ . If

α(τ) ≤ β(τ) +

ˆ τ

0
K(τ, s)α(s) ds,

then

α(τ) ≤ β(τ) +

ˆ τ

0
H(τ, s)β(s) ds,

where H(τ, s) =
∑∞

j=1Kj(τ, s), K1(τ, s) = K(τ, s) and

Kj(τ, s) =

ˆ τ

s
Kj−1(τ, ξ)K(ξ, s) dξ, j ≥ 2.
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Corollary 1. If K(τ, s) = k(τ − s), then one can show that Kj(τ, s) = kj(τ − s) where

kj(τ) = (k ∗ k ∗ · · · ∗ k)(τ),

where the convolution is j-fold. As a result, H(τ, s) = h(τ − s) where

h(τ) =

∞∑
j=1

kj(τ).

Proof. We prove K2(τ, s) = k ∗ k(τ − s). The rest follows similarly by induction.

K2(τ, s) :=

ˆ τ

s
K(τ, ξ)K(ξ, s) dξ

=

ˆ τ

s
k(τ − ξ)k(ξ − s) dξ

=

ˆ τ−s

0
k(τ − s− η)k(η) dη

= k ∗ k(τ − s) =: k2(τ − s),

where we used the change of variable η = ξ − s.

Proof of Theorem 3. It follows from the integral equation (18) that

|w(τ ; y0,w0)| ≤ ψ(τ)|w0|+ εLB (1− φ(τ)) + εLM

ˆ τ

0
ψ(τ − s)|w(s; y0,w0)| ds (54)

where τ ∈ [0, δ). Using Lemma 3 with α(τ) = |w(τ ; y0,w0)|, β(τ) = ψ(τ)|w0|+ εLB (1− φ(τ)) and
K(τ, s) = εLMψ(τ − s), we get

|w(τ ; y0,w0)| ≤ ψ(τ)|w0|+ εLB (1− φ(τ)) +

ˆ τ

0
h(τ − s) [ψ(s)|w0|+ εLB (1− φ(τ))] ds

=

[
ψ(τ) +

ˆ τ

0
h(τ − s)ψ(s) ds

]
|w0|+ εLB (1− φ(τ))

+ εLB

ˆ τ

0
h(τ − s) (1− φ(s)) ds, (55)

where h(τ ; ε) =
∑∞

j=1 kj(τ) with k1 = εLMψ and kj = kj−1 ∗ k1. Induction on j leads to the
expression

kj = (εLM )jψ∗j .

Therefore we have the identity

ψ(τ) +

ˆ τ

0
h(τ − s)ψ(s) ds =

k1(τ)

εLM
+

ˆ τ

0

∞∑
j=1

kj(τ − s)
k1(s)

εLM
ds

=
k1(τ)

εLM
+

1

εLM

∞∑
j=1

ˆ τ

0
kj(τ − s)k1(s) ds

=
k1(τ)

εLM
+

1

εLM

∞∑
j=1

kj+1(τ)

=
1

εLM

∞∑
j=1

kj(τ)

=
1

εLM
h(τ),
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where we omitted the dependence of h on the parameter ε for notational simplicity.
This shows that

|w(τ ; y0,w0)| ≤
|w0|
εLM

h(τ) + εLB (1− φ(τ)) + εLB

ˆ τ

0
h(τ − s) (1− φ(s)) ds. (56)

Since 0 ≤ φ(τ) ≤ 1, we have that (1 − φ(τ)) ≤ 1 and therefore the inequality can be further
simplified to

|w(τ ; y0,w0)| ≤
|w0|
εLM

h(τ) + εLB [1− φ(τ)] + εLB

ˆ τ

0
h(s) ds. (57)

So far we have assumed that the series
∑∞

j=1 kj =
∑∞

j=1(εLM )jψ∗j converges uniformly to a

limit h. To prove this, we first show that for any j and τ ≥ 0, 0 ≤ ψ∗j(τ) ≤ 1. For j = 1, this
property holds since 0 ≤ ψ ≤ 1. For j = 2 we have

0 ≤ ψ∗2(τ) :=

ˆ τ

0
ψ(τ − s)ψ(s) ds ≤

ˆ τ

0
ψ(s) ds = 1− φ(τ) ≤ 1.

By induction on j, we get 0 ≤ ψ∗j(τ) ≤ 1. As a result, (εLM )jψ∗j ≤ (εLM )j . Since εLM < 1, the
series

∑∞
j=1(εLM )j converges. It follows that

|h(τ)| ≤
∞∑
j=1

(εLM )j =
εLM

1− εLM
(58)

by summing up the geometric series. By the dominated convergence theorem, the sequence
∑n

j=1(εLM )jψ∗j

converges uniformly to a function h as n→∞. Since for any n, the series
∑n

j=1(εLM )jψ∗j is con-
tinuous, so is the limiting function h. This shows that h : [0,∞)→ R is continuous and h ≥ 0.

Now, observe that

ˆ τ

0
h(ξ) dξ =

ˆ τ

0

∞∑
j=1

(εLM )jψ∗j(ξ) dξ

=
∞∑
j=1

(εLM )j
ˆ τ

0
ψ∗j(ξ) dξ

≤
∞∑
j=1

(εLM )j =
εLM

1− εLM
,

(59)

where we used the uniform convergence of the series and the fact that, for any j,

0 ≤
ˆ τ

0
ψ∗j(ξ) dξ ≤

(ˆ τ

0
ψ∗(j−1)(ξ) dξ

)(ˆ τ

0
ψ(ξ) dξ

)
≤ · · · ≤

(ˆ τ

0
ψ(ξ) dξ

)j
= (1− φ(τ))j ≤ 1,

by repeated application of Young’s inequality for convolutions. This also shows that h(τ) → 0 as
τ →∞, since |h|1 <∞ and h is uniformly continuous.

Using inequality (59) in (57) and the definition of h, we get

|w(τ ; y0,w0)| ≤
|w0|
εLM

h(τ) + εLB (1− φ(τ)) +
ε2LMLB
1− εLM

(60)

= |w0|

 ∞∑
j=1

(εLM )j−1ψ∗j(τ)

+ εLB (1− φ(τ)) +
ε2LMLB
1− εLM

. (61)
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This proves part (i) of the theorem.
Taking the sup of |w(τ ; y0,w0)| over [0, δ), we get

sup
0≤τ<δ

|w(τ ; y0,w0)| ≤
|w0|+ εLB

1− εLM
, (62)

which proves part (ii) of Theorem 3.
If δ = ∞, then we can take the limitsup of |w|. Using inequality (60) we get the asymptotic

estimate

lim sup
τ→∞

|w(τ ; y0,w0)| ≤
εLB

1− εLM
, (63)

which proves part (iii) of Theorem 3. Here, we used the fact that limτ→∞ h(τ) = 0 and limτ→∞ φ(τ) =
0.

Appendix C Proof of Lemma 1

Let τ1, τ2 ∈ [0, δ). Bound |zloc(τ2)− zloc(τ1)| by

|zloc(τ2)− zloc(τ1)| ≤ |yloc(τ2)− yloc(τ1)|+ |wloc(τ2)−wloc(τ1)|

≤ |w0||ψ(τ2)− ψ(τ1)|+ ε

ˆ τ2

τ1

|wloc(s)|+ |Au(yloc(s), s)| ds

+ ε

ˆ τ2

τ1

ψ(τ2 − s) [|Mu(yloc(s), s)||wloc(s)|+ |Bu(yloc(s), s)|] ds

+ ε

ˆ τ1

0
|ψ(τ2 − s)− ψ(τ1 − s)| [|Mu(yloc(s), s)||wloc(s)|+ |Bu(yloc(s), s)|] ds

Without loss of generality suppose τ1 ≤ τ2, so that |ψ(τ2−s)−ψ(τ1−s)| = ψ(τ2−s)−ψ(τ1−s). Tak-
ing the infinity norm over [0, δ) to bound ‖Mu(yloc(s), s)‖∞, ‖Bu(yloc(s), s)‖∞, ‖Au(yloc(s), s)‖∞,
and |wloc(s)| by Theorem 3, we get

|zloc(τ2)− zloc(τ1)| ≤ |w0||ψ(τ2)− ψ(τ1)|+ ε

(
LA +

|w0|+ εLB
1− εLM

)
|τ2 − τ1|

+ ε

[
LM |w0|+ LB

1− εLM

](
|τ2 − τ1|+

ˆ τ1

0
ψ(τ1 − s)− ψ(τ2 − s) ds

)
.

By the results of Theorem 2, ψ(τ1 − s) − ψ(τ2 − s) = φ′(τ2 − s) − φ′(τ1 − s) ≥ 0. Integrate and
rearrange to obtain

|zloc(τ2)− zloc(τ1)| ≤ |w0||ψ(τ2)− ψ(τ1)|+ ε

(
LA +

|w0|+ εLB
1− εLM

)
|τ2 − τ1|

+ ε

[
LM |w0|+ LB

1− εLM

]
(|τ2 − τ1|+ φ(τ2)− φ(τ1))

+ ε

[
L1|w0|+ L2

1− εL1

]
(φ(0)− φ(τ2 − τ1)) .

Since both ψ and φ are uniformly continuous over [0,∞) by Theorem 2, each of |ψ(τ2) − ψ(τ1)|,
|φ(τ2)− φ(τ1)|, and |φ(0)− φ(τ2 − τ1)| → 0 as |τ2 − τ1| → 0. Hence |zloc(τ2)− zloc(τ1)| → 0 as τ1,
τ2 → δ−.

Now, if we take a sequence {tn} tn ∈ [0, δ) such that limn→∞ tn → δ, then it follows that
{zloc(tn)} is a Cauchy sequence. The sequence is convergent in R2n since R2n is a complete metric
space. The limit is given by the integral equation (17) evaluated at τ = δ:

zloc(δ) =

(
y0 + ε

´ δ
0 wloc(s) + Au(yloc(s), s) ds

ψ(δ)w0 + ε
´ δ
0 ψ(τ − s) [−Mu(yloc(s), s)wloc(s) + Bu(yloc(s), s)] ds

)
.

This ends the proof.
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Appendix D Proof of Lemma 2

Let Φ = (ξξξ,ηηη) ∈ Xδ,h
K , and τ1, τ2 ∈ [δ, δ + h). Bound |(FΦ)(τ2)− (FΦ)(τ1)| by

|(FΦ)(τ2)− (FΦ)(τ1)| ≤ |Φ0(τ2)−Φ0(τ1)|+ ε

ˆ τ2

τ1

|ηηη(s)|+ |Au(ξξξ(s), s)| ds

+ ε

ˆ τ2

τ1

ψ(τ2 − s) [|Mu(ξξξ(s), s)||ηηη(s)|+ |Bu(ξξξ(s), s)|] ds

+ ε

ˆ τ1

δ
(ψ(τ2 − s)− ψ(τ1 − s)) [|Mu(ξξξ(s), s)||ηηη(s)|+ |Bu(ξξξ(s), s)|] ds,

where

|Φ0(τ2)−Φ0(τ1)| ≤ |w0||ψ(τ2)− ψ(τ1)|

+ ε

ˆ δ

0
|ψ(τ2 − s)− ψ(τ1 − s)| [|Mu(yloc(s), s)||wloc(s)|+ |Bu(yloc(s), s)|] ds.

Without loss of generality suppose τ1 ≤ τ2, so that |ψ(τ2 − s)− ψ(τ1 − s)| = ψ(τ2 − s)− ψ(τ1 − s).
Taking the infinity norm over [δ, δ+h) to bound ‖Mu(ξξξ(s), s)‖∞, ‖Bu(ξξξ(s), s)‖∞, ‖Au(ξξξ(s), s)‖∞,
‖ηηη(s)‖∞, and |wloc(s)| by inequality (20), we get

|(FΦ)(τ2)− (FΦ)(τ1)| ≤ |w0||ψ(τ2)− ψ(τ1)|

+ ε

(
LM |w0|+ LB

1− εLM

)ˆ δ

0
ψ(τ1 − s)− ψ(τ2 − s) ds

+ ε(K + LA)|τ2 − τ1|+ ε (LMK + LB) |τ2 − τ1|

+ ε (LMK + LB)

ˆ τ1

δ
ψ(τ1 − s)− ψ(τ2 − s) ds.

By the results of Theorem 2, ψ(τ1 − s)− ψ(τ2 − s) = φ′(τ2 − s)− φ′(τ1 − s) ≥ 0. Finally, integrate
and rearrange to obtain

|(FΦ)(τ2)− (FΦ)(τ1)| ≤ |w0||ψ(τ2)− ψ(τ1)|

+ ε

(
LM |w0|+ LB

1− εLM

)
[(φ(τ1 − δ)− φ(τ2 − δ)) + (φ(τ2)− φ(τ1))]

+ ε(K + LA)|τ2 − τ1|+ ε (LMK + LB) |τ2 − τ1|
+ ε (LMK + LB) [(φ(0)− φ(τ2 − τ1)) + (φ(τ2 − δ)− φ(τ1 − δ))] .

Since both ψ and φ are uniformly continuous over [0,∞) by Theorem 2, each of |ψ(τ2) − ψ(τ1)|,
|φ(τ2) − φ(τ1)|, |φ(τ1 − δ) − φ(τ2 − δ)|, and |φ(0) − φ(τ2 − τ1)| → 0 as |τ2 − τ1| → 0. Hence

|(FΦ)(τ2)− (FΦ)(τ1)| → 0 as |τ2− τ1| → 0. This shows that F maps Xδ,h
K to a family of uniformly

equicontinuous functions in C([δ, δ + h) ;R2n).
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