Skip to main content
Log in

Swimming Dynamics Near a Wall in a Weakly Elastic Fluid

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We present a fully resolved solution of a low-Reynolds-number two-dimensional microswimmer in a weakly elastic fluid near a no-slip surface. The results illustrate that elastic properties of the background fluid dramatically alter the swimming hydrodynamics and, depending on the initial position and orientation of the microswimmer, its residence time near the surface can increase by an order of magnitude. Elasticity of the extracellular polymeric substance secreted by microorganisms can therefore enhance their adhesion rate. The dynamical system is examined through a phase portrait in the swimming orientation and distance from the wall for four types of self-propulsion mechanisms, namely: neutral swimmers, pullers, pushers, and stirrers. The time-reversibility of the phase portraits breaks down in the presence of polymeric materials. The elasticity of the fluid leads to the emergence of a limit cycle for pullers and pushers and the change in type of fixed points from center to unstable foci for a microswimmer adjacent to a no-slip boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ardekani, A., Gore, E.: Emergence of a limit cycle for swimming microorganisms in a vortical flow of a viscoelastic fluid. Phys. Rev. E 85(5), 056309 (2012)

    Article  MATH  Google Scholar 

  • Berg, H.C., Turner, L.: Chemotaxis of bacteria in glass capillary arrays. Escherichia coli, motility, microchannel plate, and light scattering. Biophys. J. 58(4), 919 (1990)

    Article  Google Scholar 

  • Berke, A.P., Turner, L., Berg, H.C., Lauga, E.: Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101(3), 038102 (2008)

    Article  Google Scholar 

  • Bird, R.B., Armstrong, R.C., Hassager O.: Dynamics of Polymeric Liquids, vol. 1: Fluid Mechanics. Wiley, New York (1987)

  • Blake, J.: Self propulsion due to oscillations on the surface of a cylinder at low Reynolds number. Bull. Aust. Math. Soc. 3, 255 (1971)

    Article  Google Scholar 

  • Brennen, C., Winet, H.: Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9(1), 339 (1977)

    Article  Google Scholar 

  • Chaudhury, T.: On swimming in a visco-elastic liquid. J. Fluid Mech. 95(01), 189 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  • Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R., Lappin-Scott, H.M.: Microbial biofilms. Annu. Rev. Microbiol. 49(1), 711 (1995)

    Article  Google Scholar 

  • Crowdy, D.: Treadmilling swimmers near a no-slip wall at low Reynolds number. Int. J. Non-Linear Mech. 46(4), 577 (2011)

    Article  Google Scholar 

  • Crowdy, D.G.: Exact solutions for cylindrical ’slip-stick’ Janus swimmers in Stokes flow. J. Fluid Mech. 719, R2 (2013)

    Article  MathSciNet  Google Scholar 

  • Crowdy, D.G., Or, Y.: Two-dimensional point singularity model of a low-Reynolds-number swimmer near a wall. Phys. Rev. E 81(3), 036313 (2010)

    Article  MATH  Google Scholar 

  • Crowdy, D., Lee, S., Samson, O., Lauga, E., Hosoi, A.: A two-dimensional model of low-Reynolds number swimming beneath a free surface. J. Fluid Mech. 681, 24 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Dasgupta, M., Liu, B., Fu, H.C., Berhanu, M., Breuer, K.S., Powers, T.R., Kudrolli, A.: Speed of a swimming sheet in Newtonian and viscoelastic fluids. Phys. Rev. E 87(1), 013015 (2013)

    Article  MATH  Google Scholar 

  • Di Leonardo, R., DellArciprete, D., Angelani, L., Iebba, V.: Swimming with an image. Phys. Rev. Lett. 106(3), 038101 (2011)

    Article  Google Scholar 

  • Drescher, K., Dunkel, J., Cisneros, L.H., Ganguly, S., Goldstein, R.E.: Fluid dynamics and noise in bacterial cell–cell and cell-surface scattering. Proc. Natl. Acad. Sci. 108(27), 10940 (2011)

    Article  Google Scholar 

  • Elfring, G.J., Pak, O.S., Lauga, E.: Two-dimensional flagellar synchronization in viscoelastic fluids. J. Fluid Mech. 646, 505 (2010)

    Article  MathSciNet  Google Scholar 

  • Fauci, L.J., McDonald, A.: Sperm motility in the presence of boundaries. Bull. Math. Biol. 57(5), 679 (1995)

    Google Scholar 

  • Fu, H.C., Powers, T.R., Wolgemuth, C.W.: Theory of swimming filaments in viscoelastic media. Phys. Rev. Lett. 99(25), 258101 (2007)

    Article  Google Scholar 

  • Gagnon, D., Shen, X., Arratia, P.: Undulatory swimming in fluids with polymer networks. Europhys. Lett. 104(1), 14004 (2013)

    Article  Google Scholar 

  • Harshey, R.M.: Bacterial motility on a surface: many ways to a common goal. Annu. Rev. Microbiol. 57(1), 249 (2003)

    Article  Google Scholar 

  • Ishimoto, K., Gaffney, E.A.: Squirmer dynamics near a boundary. Phys. Rev. E 88(6), 062702 (2013)

    Article  MATH  Google Scholar 

  • Jeffrey, D., Onishi, Y.: The slow motion of a cylinder next to a plane wall. Q. J. Mech. Appl. Math. 34(2), 129 (1981)

    Article  MathSciNet  Google Scholar 

  • Katz, D.F.: On the propulsion of micro-organisms near solid boundaries. J. Fluid Mech. 64(01), 33 (1974)

    Article  MATH  Google Scholar 

  • Katz, D., Blake, J., Paveri-Fontana, S.: On the movement of slender bodies near plane boundaries at low Reynolds number. J. Fluid Mech. 72(3), 529 (1975)

    Article  Google Scholar 

  • Lauga, E.: Propulsion in a viscoelastic fluid. Phys. Fluids 19, 083104 (2007)

    Article  Google Scholar 

  • Lauga, E., Powers, T.R.: The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72(9), 096601 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Lauga, E., DiLuzio, W.R., Whitesides, G.M., Stone, H.A.: Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90(2), 400 (2006)

    Article  Google Scholar 

  • Leal, L.: Particle motions in a viscous fluid. Annu. Rev. Fluid Mech. 12(1), 435 (1980)

    Article  MathSciNet  Google Scholar 

  • Lemelle, L., Palierne, J.F., Chatre, E., Place, C.: Counterclockwise circular motion of bacteria swimming at the air-liquid interface. J. Bacteriol. 192(23), 6307 (2010)

    Article  Google Scholar 

  • Li, G.J., Ardekani, A.M.: Hydrodynamic interaction of microswimmers near a wall. Phys. Rev. E 90(1), 013010 (2014)

    Article  Google Scholar 

  • Li, G., Tang, J.X.: Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion. Phys. Rev. Lett. 103, 078101 (2009)

    Article  Google Scholar 

  • Li, G.J., Karimi, A., Ardekani, A.: Effect of solid boundaries on swimming dynamics of microorganisms in a viscoelastic fluid. Rheologica Acta 53 (2014)

  • Lighthill, M.: On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Math. 5(2), 109 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, B., Powers, T.R., Breuer, K.S.: Force-free swimming of a model helical flagellum in viscoelastic fluids. Proc. Natl. Acad. Sci. 108(49), 19516 (2011)

    Article  Google Scholar 

  • Lopez, D., Lauga, E.: Dynamics of swimming bacteria at complex interfaces. Phys. Fluids 26(7), 071902 (2014)

    Article  MATH  Google Scholar 

  • Maeda, K., Imae, Y., Shioi, J.I., Oosawa, F.: Effect of temperature on motility and chemotaxis of Escherichia coli. J. Bacteriol. 127(3), 1039 (1976)

    Google Scholar 

  • Nakamura, S., Adachi, Y., Goto, T., Magariyama, Y.: Improvement in motion efficiency of the spirochete Brachyspira pilosicoli in viscous environments. Biophys. J. 90(8), 3019 (2006)

    Article  Google Scholar 

  • Normand, T., Lauga, E.: Flapping motion and force generation in a viscoelastic fluid. Phys. Rev. E 78(6), 061907 (2008)

    Article  Google Scholar 

  • Or, Y., Murray, R.M.: Dynamics and stability of a class of low Reynolds number swimmers near a wall. Phys. Rev. E 79(4), 045302 (2009)

    Article  MATH  Google Scholar 

  • Or, Y., Zhang, S., Murray, R.M.: Dynamics and stability of low-Reynolds-number swimming near a wall. SIAM J. Appl. Dyn. Syst. 10(3), 1013 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Pak, O.S., Normand, T., Lauga, E.: Pumping by flapping in a viscoelastic fluid. Phys. Rev. E 81(3), 036312 (2010)

    Article  Google Scholar 

  • Pak, O.S., Zhu, L., Brandt, L., Lauga, E.: Micropropulsion and microrheology in complex fluids via symmetry breaking. Phys. Fluids 24(10), 103102 (2012)

    Article  Google Scholar 

  • Purcell, E.M.: Life at low Reynolds number. In: AIP Conference Proceedings, vol. 2, p. 49 (1976)

  • Rothschild, L.J.: Non-random distribution of bull spermatozoa in a drop of sperm suspension. Nature 198(488), 1221 (1963)

    Article  Google Scholar 

  • Shen, X., Arratia, P.E.: Undulatory swimming in viscoelastic fluids. Phys. Rev. Lett. 106(20), 208101 (2011)

    Article  Google Scholar 

  • Spagnolie, S.E., Lauga, E.: Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J. Fluid Mech. 700, 105 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Sturges, L.: Motion induced by a waving plate. J. Non-Newton. Fluid Mech. 8(3), 357 (1981)

    MATH  Google Scholar 

  • Suarez, S., Pacey, A.: Sperm transport in the female reproductive tract. Hum. Reprod. Update 12(1), 23 (2006)

    Article  Google Scholar 

  • Taylor, G.: Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 209(1099), 447 (1951)

    Article  Google Scholar 

  • Teran, J., Fauci, L., Shelley, M.: Viscoelastic fluid response can increase the speed and efficiency of a free swimmer. Phys. Rev. Lett. 104(3), 038101 (2010)

    Article  Google Scholar 

  • Thomases, B., Guy, R.D.: Mechanisms of elastic enhancement and hindrance for finite-length undulatory swimmers in viscoelastic fluids. Phys. Rev. Lett. 113(9), 098102 (2014)

    Article  Google Scholar 

  • Wang, S., Ardekani, A.: Swimming of a model ciliate near an air–liquid interface. Phys. Rev. E 87(6), 063010 (2013)

    Article  Google Scholar 

  • Winet, H., Bernstein, G., Head, J.: Observations on the response of human spermatozoa to gravity, boundaries and fluid shear. J. Reprod. Fertil. 70(2), 511 (1984)

    Article  Google Scholar 

  • Yazdi, S.: Confined Locomotion in Viscous and Viscoelastic Fluids at Low Reynolds Number. Ph.D. thesis, The Pennsylvania State University (2015)

  • Yazdi, S., Ardekani, A.M., Borhan, A.: Locomotion of microorganisms near a no-slip boundary in a viscoelastic fluid. Phys. Rev. E 90(4), 043002 (2014)

    Article  Google Scholar 

  • Zhang, S., Or, Y., Murray, R.M.: Experimental demonstration of the dynamics and stability of a low Reynolds number swimmer near a plane wall. In: Proceedings of the American Control Conference, pp. 4205–4210 (2010)

  • Zhu, L., Lauga, E., Brandt, L.: Self-propulsion in viscoelastic fluids: pushers vs. pullers. Phys. Fluids 24, 051902 (2012)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the NSF under Grant No. DMR-0820404 through the Penn State Center for Nanoscale Science. AMA acknowledges support from Grant No. CBET-1445955-CAREER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Ardekani.

Additional information

Communicated by Paul Newton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdi, S., Ardekani, A.M. & Borhan, A. Swimming Dynamics Near a Wall in a Weakly Elastic Fluid. J Nonlinear Sci 25, 1153–1167 (2015). https://doi.org/10.1007/s00332-015-9253-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-015-9253-x

Keywords

Mathematics Subject Classification

Navigation