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Abstract

Learning or memory formation are associated with the strengthening of the synaptic connections
between neurons according to a pattern reflected by the input. According to this theory a retained
memory sequence is associated to a dynamic pattern of the associated neural circuit. In this work we
consider a class of network neuron models, known as Hopfield networks, with a learning rule which
consists of transforming an information string to a coupling pattern. Within this class of models
we study dynamic patterns, known as robust heteroclinic cycles, and establish a tight connection
between their existence and the structure of the coupling.
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1 Introduction

A simplest example of a heteroclinic cycle is a sequence of saddle type equilibrium points joined in
a circle by connecting orbits. Generically heteroclinic cycles are not robust under perturbations of the
system (changes of parameters), but for special classes of systems they may occur robustly, typically due
to the presence of invariant hyperplanes. Examples of special structures leading to robust heteroclinic
cycles are symmetry, the existence of invariant planes corresponding to extinction of some species in
Lotka-Volterra systems or existence of synchrony subspaces in coupled cell systems. Heteroclinic net-
works are a generalization of heteroclinic cycles to sets of equilibria with more complicated connection
structure. More generally, heteroclinic sets may consist of invariant sets connecting periodic or more
complicated saddle type dynamics. The study of heteroclinic cycles was motivated by examples in fluid
mechanics (systems with symmetry) [3] and in population biology [10]. See [12] for an introduction to
the subject.
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More recently, Rabinovich and co-workers have proposed applications of robust heteroclinic cycles
in neuroscience, see [14] for an early review. Among the contexts proposed in [14] where heteroclinic
dynamics could be relevant were central pattern generators (CPGs) and memory formation. These two
applications were validated by some more detailed biological studies [15] [2]. The CPGs are circuits
controlling the motoric function, and are known to support a variety of complex oscillations corre-
sponding to different movements of the body. As shown in this paper, by slightly changing the coupling
structure in the model one can obtain a variety of heteroclinic cycles and thereby complex periodic so-
lutions. The idea of the memory application is similar – modifications of the coupling, arising from the
action of the input, lead to the occurrence of periodic orbits, existing near heteroclinic cycles whose
properties reflect the structure of the input.

The focus of this work is to study Hopfield networks, which are the simplest models of memory
circuits, with the goal of investigating the presence of heteroclinic cycles.
Hopfield introduced thirty years ago [11] this model for learning sequences and associative memory in
neural networks, in their simplest possible form. In the continuous time version, for each neuron i in a
network of N neurons, the activity is modeled by the following equation (activity model):

u̇i = −ui −
N∑
i=1

Jijg(uj) + Ii, i = 1, . . . N. (1)

where uj is the activity variable (membrane potential) of neuron j and Ii is a constant external input on
neuron i. The function g : R → (0, 1) is strictly increasing and invertible, for example a sigmoid. The
quantity vj = g(uj) is the firing rate of neuron j, that is the time rate of spikes which are emitted by
the neuron. Classically the function g(u) = (1 + e−u)−1 is used. The coupling coefficients Jij define
a N × N matrix J called the connectivity matrix. A positive (resp. negative) coefficient corresponds
to an inhibitory (resp. excitatory) input from j to i. When J = 0 all neurons have the same state of
rest ui = Ii. When coupling is switched on, other equilibria may exist depending on the coefficients
Jij . It is often assumed that J is a symmetric matrix, implying that the dynamics of the network always
converges to an equilibrium. Each equilibrium is defined by a sequence of values (u1, . . . , uN ) called
a pattern. Depending upon the inputs Ii, one or another equilibrium will be reached, a process that is
interpreted as retrieving a pattern which has been earlier memorized through a tuning of the coupling
coefficients in the network (Hebbian rule).
The assumption that J is symmetric is unnecessary to storing information, and besides experiments
have shown that dynamical patterns are often present in neural circuits and seem to play an important
role in various aspects, in particular generating periodic oscillations in CPG. In a recent work Chuan
et al. [4] developed a method of converting strings of information, in the form of sequences of vectors
with entries±1, into coupling matrices so the Hopfield network with the resulting coupling architecture
would have storing cycles, i.e. periodic orbits carrying the information of the underlying sequence of
vectors. The defining feature of a storing cycle associated to such sequence is that it visits the vicinity
of each of its vector, preserving their order in the sequence. In another study Chuan et al. [5] used Hopf
bifurcation analysis to find storing cycles.
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A natural observation is that heteroclinic cycles between equilibria given by the elements of the sequence
provide a natural approximation to storing cycles. However the simulations of [4] and [5] gave no
evidence of the existence of heteroclinic cycles.

In this work we show that after a small modification the systems studied in [4] support heteroclinic
cycles. Our approach draws on the work of Fukai and Tanaka [8], who observed that by of replacing a
non-differentiable term in the firing rate equations by a constant one obtains a Lotka-Volterra system,
which supports robust heteroclinic cycles [10]. This approach was subsequently used by [14] and [1]
in their study robust heteroclinic cycles in firing rate models. In this work we continue the approach of
[8], introducing some refinements to their approximation of the firing rate equations. We point out that
the original firing rate equations cannot support hateroclinic cycles due to the presence of non-smooth
terms and introduce two methods of regularizing the equations. When the systems studied in [4] are
modified using either of our approaches heteroclinic cycles do exist and there is a direct correspondence
between the input string/vector sequence/coupling structure and the resulting heteroclinic cycle. In this
work we carry out a detailed study of this correspondence.

2 Hopfield networks

2.1 Storing cycles and network architecture

System (1) is often transformed to the firing rate formulation, by letting the firing rates xi = g(ui) be
the dependent variables. In this section we make the same choice of g as the authors of [4], namely

g(u) = tanh(λu), λ is a parameter controlling the steepness of g. (2)

In Section 2.2, where we review some of the work of [1], [2] and [8], we make a brief switch to a
different but equivalent choice of g used by these authors. System (1) transformed to the firing rate
variables with g given by (2) has the form

ẋj = (1− x2j ) (λ(Jx)j − f(xj)) ,x = (x1, . . . , xn) ∈ [−1, 1]n (3)

where

f(x) = g−1(x) = arctanh(x) =
1

2
ln

(
1 + x

1− x

)
(4)

and J is the coupling matrix. We further decompose J as follows:

J = c0I + c1J1 (5)

where I is the identity matrix, c0 and c1 are non negative coefficients and c1 = 1− c0.
Provided that λc0 > 1 the equation λc0β = arctanh(β) has a couple of non zero solutions ±βλ with
0 < βλ < 1. Therefore when c1 = 0, any vector of the form βλ(ξ1, . . . , ξn) with ξj = ±1 is a stable
steady-state of (3). If we think of vectors of the form (ξ1, . . . , ξn) as information strings in a neural
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network, then the above steady-states represent stored memory states. However it is well-known that
memory states need not be steady (see [9] and references therein). If c1 > 0 the steady-states may
become unstable or even disappear, but nevertheless information may still be dynamically stored.

We now explain the idea of information storage by means of limit cycles of (3) (storing cycles), as
explored in [4] and then we introduce our idea to use robust heteroclinic cycles instead.
The basic question adressed in [4] is the following: given an information string, can it be stored by a
Hopfield network in the form of dynamic information, more specifically a limit cycle? Concretely, the
information is given in the form of a string of binary n-vectors (with components equal to ±1). The
learning rule, consistent with Hebbian learning, is an algorithm specifying how the information string
structures the coupling matrix c0I + c1J (we forget from now on the subscript 1 in J1). This learning
rule will be described in detail in Section 3.1. The main research question of [4] is whether the system
with the coupling structure resulting from applying the learning rule supports stable limit cycles that
code the original information string in the sense that the periodic orbit passes through the quadrants of
Rn corresponding to the elements of the information string, following its order.

In this article we focus on a different version of such encoding by the dynamics, choosing a robust
heteroclinic cycle as the invariant object encoding the information string. The condition we impose is
that the cycle should connect equilibrium points located at vertices of the cube [−1, 1]n corresponding
to the elements of the information string, following its order. This is a rather natural condition, yet the
first obstacle we must overcome is that with f as given by (4) the RHS of (3) is not C1 on the cube
[−1, 1]n, so that heteroclinic cycles cannot exist. We discuss this problem in more detail and propose a
solution in the next section, which also relates to the work of [1], [2] and [8].

2.2 The Lokta-Volterra approximation to Hopfield equations

The articles [1], [2] and [8] consider the question of the existence of robust heteroclinic cycles in the
firing rate version of (1) and show that such cycles exist for a Lotka-Volterra approximation of the
system. In this section we use a different combination of g and f = g−1 consistent with choice made in
these articles. Specifically we will use the functions:

g(u) =
1

1 + e−u
and f(x) = ln

(
x

1− x

)
. (6)

The coefficients Jij are assumed to be all positive so that the synaptic couplings are all of inhibitory
type. We define the firing rate by xj = g(λ−1uj) and transform (1) to the firing rate formulation. After
applying a time rescaling we obtain the following system.

ẋi = xi(1− xi)

(
−λf(xi)−

n∑
i=1

Jijxj + I

)
, i = 1, . . . n. (7)

Note that system (7) is well defined and continuous on the cube [0, 1]n, but it is not smooth on the faces,
with the term

xi(1− xi)f(xi) (8)
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being the source of non-smootheness. As we are interested in heteroclinic cyles that lie on the edges,
with connections in the faces, this becomes a problem for the existence and stability of the cycle.

Since our purpose is merely to illustrate the problem of the lack of smoothness we restrict our
attention to the simplest case n = 3. Then (7) has the form

ẋ1 = x1(1− x1) (−λf(x1)− J11x1 − J12x2 − J13x3 + I)

ẋ2 = x2(1− x2) (−λf(x2)− J21x1 − J22x2 − J23x3 + I)

ẋ3 = x3(1− x3) (−λf(x3)− J31x1 − J32x2 − J33x3 + I) .

(9)

For simplicity we assume Jjj = 1. The goal is to construct heteroclinic cycles connecting equilibria of
the form:

(ρ, 0, 0), (0, ρ, 0) and (0, 0, ρ) where − λf(ρ)− ρ+ I = 0.

The Jacobian matrix at such equilibria is given as follows: −ρ(1− ρ)− λ −J12(1− ρ)ρ −J13(1− ρ)ρ
0 −λf(0)− J21ρ+ I − λ 0
0 0 −λf(0)− J31ρ+ I − λ

 .

Since f blows up at 0 the Jacobian is undefined. If the term (8) is neglected in the RHS of each equation
of (9) then a heteroclinic cycle can be easily found, with

J =

 1 1.25 0
0.875 1 1.25

3 0.625 1

 (10)

giving an example [1].

2.3 Regularization

We propose two approaches to regularize the function f . First approach, which we use in this paper, is
to replace f defined in (6) by its Taylor polynomial at x = 0.5. We denote such Taylor polynomial of
degree q as fq. Note that the sequence {fq} diverges at 0 and 1 when q →∞, but converges uniformly
to f on any compact subinterval in (0, 1).

Another approach is to replace f by

fε(x) = ln

(
x+ ε

1 + ε− x

)
, (11)

where ε is a small parameter. The function fε is well defined on the interval [0, 1], yet its properties are
similar to f , in particular its derivative at 0 and 1 equals 1/(ε(1 + ε), thus is very large. If we replace f
by fq or fε in (9) then, depending on the relative size of λ and q or ε, any of the three possibilities can
arise:
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1. the cycle does not exist,

2. the cycle exists and is unstable,

3. the cycle exists and is stable.

Fig. 1 shows simulations of (9) with f replaced by fε. The matrix J is as given in (10), I = 0.8 and
λ = 0.01. The value of ε is varied showing an example of each of the possible cases.

3 Hopfield networks with coupling given by the learning rule of [13]

3.1 The equations and network architecture

We now return to the formulation (3) with f replaced by its q-th order polynomial expansion fq at x = 0
as described in Section 2.3. The equation now reads

ẋ = (I − diag x · x) (λ(c0x + c1Jx)− fq(x)) ,x ∈ [−1, 1]n, (12)

with fq(x) = (fq(x1), . . . , fq(xn)) and

fq(x) = x+
x3

3
+ · · ·+ xq

q
.

The power series f∞ has a radius of convergence equal to 1. It follows that given any interval (−1 +
ε, 1− ε), the approximation of f by fq can be as good as we wish provided that q is large enough.

We now give a formal description of the information string and introduce the learning rule.
A binary pattern (or simply a pattern) is a vector ξ of binary states of n neurons: ξ = (x1, . . . , xn)t

with xj = ±1. Let
Σ =

(
ξ1, ξ2, . . . , ξp

)
(13)

be a sequence of p patterns. This matrix is called a cycle if there exists a connectivity matrix J such that
the corresponding network of n neurons visits sequentially and cyclically the patterns defined by Σ. In
other words each column ξj can be associated with a state of the system such that the signs of the cell
variables are equal to the signs of the corresponding components of ξj . We shall always assume p ≥ n.
Let P be the matrix of the cyclic permutation (x1, x2, . . . , xp−1, xp)→ (x2, x3, . . . , xp, x1). The cycle
Σ is called admissible if there exists J such that

JΣ = ΣP, (14)

has a solution [13]. This relation expresses a necessary condition for the network (3) to possess a
solution that periodically takes the signs defined by the patterns ξ1, . . . , ξp. Note that, if Σ is admissible
then a solution exists in the form

J = ΣPΣ+ (15)
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Figure 1: Simulations with J is as given in (10), I = 0.8 and λ = 0.01 illustrate the three possible cases
for the regularized system corresponding to three different values of ε. Panel A shows a heteroclinic
cycle, with ε = 0.12, panel B shows a periodic orbit close to an unstable cycle, with ε = 0.07, panel C
shows the dynamics attracted to an equilibrium for the case when no cycle exists, with ε = 0.02.
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where Σ+ is the Moore-Penrose pseudo-inverse of Σ, and if Σ has full rank it is unique.
A cycle Σ is called simple [4] if there exists a vector η ∈ Rp such that each row of Σ equals ηP lj ,

for some p > lj ≥ 0. We define

Wη = span {ηP j : j = 0, . . . , p− 1}. (16)

By Theorem 2 in [4] a simple cycle is admissible if and only if dim Wη = Rank(Σ).
If in addition we can write

Σ =
(
ηt, (ηP )t, . . . , (ηPn−1)t

)t (17)

then the simple cycle is called consecutive. The following proposition is essentially contained in Sec.
5.1.1 of [4].

Proposition 1. If a simple consecutive cycle is admissible, then there exists a J satisfying (14) of the
form

J =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . . . . .
0 0 0 . . . 0
a0 a1 a1 . . . an−2 an−1

 . (18)

where a0, . . . , an−1 are rational coefficients. If Σ has full rank then J is uniquely defined and a0 6= 0
(in this case the cycle is minimal in the sense of [4]).

Proof. By construction we can write

Σ =


η
ηP
...
ηPn−1

 and ΣP =


ηP
ηP 2

...
ηPn

 .

By admissibility ΣP = JΣ and moreover ηPn must be a linear combination of the ηP j’s. Hence (18)
follows. The aj’s are rational because the vectors ηP j have integer coordinates. If Rank(Σ) = n then
J is non singular, hence a0 6= 0.

Example 1. We consider Σ as follows, with p = 6:

Σ =

 1 1 1 −1 −1 −1
1 1 −1 −1 −1 1
1 −1 −1 −1 1 1

 , (19)
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Let η = (1, 1, 1,−1,−1,−1). Note that the rows of Σ are η, ηP and ηP 2. Note also that ηP 3 = −η. It
follows that the rows of ΣP are ηP , ηP 2 and −η, i.e. the second, the third and the negative of the first
row of Σ. Hence  0 1 0

0 0 1
−1 0 0

Σ = ΣP. (20)

Since the rows of Σ are independent the matrix ΣΣT is invertible. Hence (14) has a unique solution
which, by (20), must be given by:

J =

 0 1 0
0 0 1
−1 0 0

 . (21)

Note that Σ+ = ΣT (ΣΣT )−1 and J satisfies (15).
This matrix provides a simple example of heteroclinic cycle, which we illustrate in Fig. 2: the reader

can check on this numerical simulation that indeed trajectories follow the pattern defined by Σ. Observe
that the trajectory closely follows the edges of the cube connecting the equilibria in the pattern. The
analysis is easy but it follows directly from Proposition (??) in Section 4.2 (see Example ??).

Figure 2: A trajectory of (3) with J given by (21) and with c0 = 0.6, λ = 8. Initial conditions close to
(1, 1, 1).
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3.2 Classification of simple consecutive cycles

Suppose that p is fixed and note that every consecutive cycle is uniquely determined by the choice of η
and n. If n ≥ p then such a cycle is always admissible. If n < p then there are only very special choices
of η and n such that the cycle is admissible. In this section we will address the question of finding the
conditions on η so that there exists an n < p such that the cycle determined by η and n is admissible. In
order to avoid confusion with prime numbers we will, throughout this section, use the letterm instead of
p to denote the dimension of η. We will return to the original notation of [4] in the subsequent sections.
Consider a simple cycle as defined in Section 3.1, with η corresponding to the first row of Σ. If Σ is
admissible the there exists J in the form given by (18) such that (14) is satisfied. Let (a0, a1, . . . , an−1)
be the last row of J (see (18)) and let

ψ(x) = xn − an−1xn−1 − . . .− a1x− a0. (22)

It follows from (14) that η ∈ ker(ψ(P )). In this section we use the following result:

Theorem 1. Let V be a non-trivial invariant subspace of the action of P on Rm. Then there exists a
polynomial φ(x), which is a divisor of xm − 1, such that V = ker(φ(P )). Moreover, for any φ̃ the
inclusion V ⊂ ker(φ̃(P )) holds if and only if φ is a divisor of φ̃.

Theorem 1 follows from some classical results of algebra, which we will review in the appendix, thereby
providing the proof. We now state two corollaries of Theorem 1 which we will use to characterize the
possible choices of η for which dim(Wη) < m.

Corollary 1. If n = dim (Wη) < m then Wη = ker(ψ(P )) and ψ is a divisor of xm − 1.

Proof. It is easy to see that Wη ⊂ ker(ψ(P )). We will prove that the opposite inclusion holds and that
ψ is a divisor of xm − 1. By Theorem 1 there exists φ a divisor of xm − 1 such that ker(φ(P )) = Wη

and φ divides ψ. Suppose that φ is a proper divisor of ψ. Then

n = dim (Wη) ≤ deg(φ) < n,

which is a contradiction. It follows that ψ = φ. Hence the corollary holds.

For φ a minimal divisor of xm − 1 (over Q) let ψ = (xm − 1)/φ and let Wφ = ker(ψ). The following
result leads to a characterization of ηs such that n = dim(Wη) < m.

Corollary 2. If n = dim(Wη) < m then η ∈Wφ, for some φ a minimal divisor of xm − 1 (over Q).

Proof By Corollary 1 there exists ψ̃, a divisor of xm − 1, such that Wη = ker(ψ̃). By unique decom-
position into prime factors over Q there exists a minimal divisor φ of xm − 1 which divides ψ̃. Let
ψ = (xm − 1)/φ. Clearly ψ̃ divides ψ. It follows from Theorem 1 that η ∈ ker(ψ) = Wφ.

In the remainder of this section we will derive the conditions on η needed for η ∈ Wφ for some (the
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simplest) choices of φ, where φ is a minimal divisor of xn−1. We begin by recalling the decomposition
of xn − 1 into irreducible polynomials over Q. For a positive integer k let

φk(x) =
k−1∑
i=0

xi.

The polynomials φp, where p is a prime number, are irreducible over Q. For a prime number p and a
non-negative integer j we define

φp,j(x) =

p−1∑
i=0

xip
j
.

Note that φp,1 = φp. The polynomials φp,j(x) are the irreducible factors over Q of the polynomial φpk .

Suppose m = m1m2 . . .ml, with mj = p
kj
j , j = 1, . . . , l, and let

Φm(x) = φm
/ l∏
j=1

φmj (x).

The polynomial Φm(x) is called the cyclotomic polynomial of degree m and is irreducible. It now
follows that the decomposition of xm − 1 into irreducible factors over Q given by

xm − 1 = (x− 1)Φm(x)
l∏

j=1

kj−1∏
i=0

φpj ,i(x)

 . (23)

All the possible factors of xm−1 over Q are products of the irreducible factors appearing in (23), hence
all the possible choices of Wφ are obtained that way. As announced above we now describe some of the
spaces Wφ by simple conditions on the components of η.

Proposition 2. If φ = φpj , for some prime number pj then Wφ consists of vectors η = (b0, . . . , bm−1)
satisfying

m/pl−1∑
i=0

bipj =

m/pl−1∑
i=0

bipj+1 = . . .

m/pl−1∑
i=0

bipj+pj−1. (24)

Proof we use the following identity:

ψ(x) = (x− 1)φm/pj (x
pj ).

Hence

Ψ(P )η = (P − I)

m/pl−1∑
i=0

bipl ,

m/pl−1∑
i=0

bipl+1, . . . ,

m/pl−1∑
i=0

bipl+m−1

 . (25)
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(The indexing of the components of b in (25) must be understood modulo m.) It follows that the RHS
of (25) is equal to the 0 vector if (24) holds.

We now state the condition on η for φ = Φm(x). We begin with the following elementary lemma (the
proof is left to the reader).

Lemma 1. If k divides m then

ker(P k − I) = {η : there exists v ∈ {−1, 1}k such that η = (v, v, . . . , v)}. (26)

Proposition 3. Suppose φ = Φm(x). Then

η ∈ ker(Pm1 − I) + . . .+ ker(Pml − I). (27)

Proof Note that

ψ(x) = (xm − 1)
/

Φm(x) = (x− 1)
l∏

j=1

φmj (x).

Further note that, for each j, (x− 1)φmj (x) = xmj − 1. Hence, for each j,

ker(Pmj − I) ⊂ ker(ψ(P )).

Moreover, for j 6= j′

ker(Pmj − I) ∩ ker(Pmj′ − I) = span{1m}.

The result follows.

Remark 1. Since the coordinates of η are ±1, it follows that η must be contained in one of the spaces
ker(Pml − I).

Remark 2. The conditions for the other minimal factors of xm − 1 are slightly more complicated and
we will not state them here. They are, however, not hard to derive.

Example 2. We consider η = (b0, b1, . . . , b14) = (1, 1, 1, 1, 1, 1, 1 − 1,−1,−1, 1, 1, 1, 1, 1) with m =
15 = 3 · 5. Note that η satisfies (24) with p = 3. Hence, by Proposition 2, η ∈Wφ = ker(ψ) with

φ = 1+x+x2; ψ = (x−1)(1+x3+x6+x9+x12) = −1+x−x3+x4−x6+x7−x9+x10−x12+x13

Hence
ηP 13 = η − ηP + ηP 3 − ηP 4 + ηP 6 − ηP 7 + ηP 9 − ηP 10 + ηP 12. (28)

Note that the last row of ΣP is equal to the LHS of (28). If we define J as in (18) with (a0, . . . , a12) =
(1,−1, 0, 1,−1, 0, 1,−1, 0, 1,−1, 0, 1) then the RHS of (28) equals JΣ. Hence, by (28), identity (14)
holds with J as specified.
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Example 3. We consider η = (b0, b1, . . . , b14) = (1, 1, 1,−1,−1, 1, 1, 1,−1,−1, 1, 1, 1,−1,−1) with
m = 15 = 3 · 5. Note that η ∈ ker(P 5 − I), or, in other words,

ηP 5 = η. (29)

Arguing as in Example 3 we conclude that Σ generated by η and n = 5 is admissible with J whose last
row equals (1, 0, 0, 0, 0).

Example 4. An interesting class of admissible cycles exists for m even with n = m/2. Note that in this
case xm − 1 = (xn + 1)(xn − 1), i.e. xn + 1 divides xm − 1. Further note that

ker (Pn + I) = {η ∈ Rm = (ν,−ν), ν ∈ Rn}. (30)

Let Σ be a cycle constructed with some η ∈ ker (Pn + I), n = m/2. Then Σ is admissible. Moreover,
by a similar argument as in Example 2 we conclude that the last row of J equals (−1, 0, . . . , 0). In
particular Example 1 of Section 3.1 is a special case of this construction. This type of admissible cycle
is called antisymmetric in [4].

Example 5. Since (1+x+ . . .+xm−1)(x−1) = xm−1 the space ker(I+P . . .+Pm−1) corresponds
to vectors η for which Σ with n = m− 1 is admissible. Moreover

ker(I + P . . .+ Pm−1) = {η :
∑

ηi = 0}.

Note that for η’s whose entries are ±1 this means that the number of coordinates equal to 1 is the same
as the number of coordinates equal to −1. Hence m must be even. In this case the last row of J is
(−1,−1, . . . ,−1).

4 Consecutive Hopfield cycles and their heteroclinic cycles

We now come to the study of heteroclinic cycles for admissible consecutive simple cycles governed by
equation (3), hence with J as in (18). Then the equation reads as a system

ẋ1 = (1− x21) (λc0x1 + λc1x2 − fq(x1))
ẋ2 = (1− x22) (λc0x2 + λc1x3 − fq(x2))

...

ẋn = (1− x2n) (λc0xn + λc1(a1x1 + · · ·+ anxn)− fq(xn))

(31)

Following [4], we also assume that the two coefficients which control the relative contributions of J0
and J to each neuron satisfy

(H) 0 ≤ c0 < 1 and c0 + c1 = 1.

13



We aim at studying the existence and stability of heteroclinic cycles connecting vertex equilibria,
i.e. equilibria with entries ±1, for this system. By construction, the edges, faces and simplices of the
hypercube {(±1, . . . ,±1)} are invariant under the dynamics of 31.
Let ξ = (x1, . . . , xn) be a vertex equilibrium: xk = ±1 for all k. Linearizing (31) at ξ leads to a system
of equations u̇k = σkuk where: we can express the eigenvalues as follows:

σk = 2(fq(1)− λ) if xkxk+1 = 1, k < n
σk = 2(fq(1)− λ(c0 − c1)) if xkxk+1 = −1, k < n

σn = 2
(
fq(1)− λ(c0 + c1xn

∑n
j=1 ajxj)

)
,

(32)

Note that under the above conditions on c0 and c1, which we assume from now on, a necessary and
sufficient condition for the existence of negative and positive eigenvalues with k < n is that

λ(c0 − c1) < fq(1) < λ (33)

This is always possible to realize since |c0 − c1| < 1. Then σk < 0 if xkxk+1 = 1 and > 0 otherwise.

Remark 3. The equation (12) (hence (31)) is invariant by the symmetry S : x → −x. Therefore any
time a cycle Σ admits a heteroclinic cycle, the cycle−Σ admits the opposite heteroclinic cycle obtained
by applying S.
In the following we shall always consider Σ’s up to this symmetry.

4.1 Heteroclinic edge cycles

Definition 1. A heteroclinic cycle is called an ”edge cycle” if it connects a cyclic sequence of vertex
equilibria through heteroclinic orbits lying on the edges of the hypercube {(±1, . . . ,±1)}. We also re-
quest that the unstable manifold at each equilibrium in the cycle has dimension 1 (therefore is contained
in an edge).

The condition about the unstable manifolds is necessary for asymptotic stability of the edge cycles.
If σ−k and σ+k denote respectively the contracting and expanding eigenvalues along the heteroclinic
trajectories, the edge cycle is asymptotically stable if (see [12])

|Πσ−k | > Πσ+k (34)

The example 1 provides a simple case of an asymptotically stable edge cycle, see Fig. 2. We show
below that all asymptotically stable edge cycles have the same simple structure.

Theorem 2. Let hypothesis (H) hold. An edge cycle exists for (31) if and only if condition (33) holds as
well as the following:

λ(c0 + c1(a1 + · · ·+ an) < fq(1) < λ(c0 + c1(−a1 + · · · − an−1 + an).

This edge cycle connects the sequence of 2n equilibria

(1, 1, . . . , 1)→ (1, 1, . . . ,−1)→ . . . (−1,−1, . . . ,−1)→ · · · → (−1, 1, . . . , 1). (35)
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Proof. Let ξ = (x1, . . . , xn) be an equilibrium in the cycle. Note first that according to (32), in order to
have one unique positive eigenvalue σk with k < n, the following must be true: (33) holds and (i) all xj
with j ≤ k have the same sign, (ii) xkxk+1 = −1 and (iii) xj has the sign of xk+1 for k+ 1 < j. Let ξ′

be the next equilibrium in the cycle, then we must have x′j = xj for all j 6= k and x′k = −xk. Observe
that we then have σ′k < 0. It is straightforward to check that under (33), there is no equilibrium point
lying on the edge joining ξ to ξ′ and therefore that a heteroclinic connection exists on this edge.
Now let’s assume that the positive eigenvalue is σn. Then all xj’s, j = 1, . . . n, must be equal and the
condition σn > 0 can be written fq(1)−λ(c0 + c1(a1 + · · ·+ an) > 0. Also we request x′n = −xn and
σ′n < 0, which can be written fq(1)− λ(c0 + c1(−a1 + · · · − an−1 + an) < 0. As for the case k < n
we can check that if these inequalities are satisfied a heteroclinic orbit joins ξ to ξ′.
From the above construction we deduce that the edge cycle must connect the equilibria in the sequence
(35).

Corollary 3. Edge cycles are in one-to-one correspondance with connectivity matrices (18) with a1 =
−1 and aj = 0 for j > 1. Moreover, under hypothesis (H), they are asymptotically stable iff λ <
c0/fq(1).

Proof. It follows from the above theorem that the matrix Σ for an edge cycle is defined by

Σ = (η, ηP, . . . , ηPn−1)T

where η is the vector (v,−v) with v = (1, . . . , 1) (n times). Note that ηPn = −η. It follows that the
rows of ΣP are ηP, . . . , ηPn−1 and −η. Hence J with a1 = −1 and aj = 0 is solution of

JΣ = ΣP.

Since the rows of Σ are independant the matrix ΣΣT is invertible, hence the solution is unique.
It is straightforward to check that (34) is true in this case iff λ < c0/fq(1).

Note that Example 1 provides the simplest case of an edge cycle.

4.2 Heteroclinic non-edge cycles

We have seen in the previous section that in order for a vertex equilibrium ξ = (x1, . . . , xn) of (31)
to have a unique positive eigenvalue, a necessary condition was that a change of sign in the sequence
of coordinates xj occurs at most once. The sign of σn is a special case, it depends on the coefficients
a1, . . . , an. Suppose now that ξ has two positive eigenvalues, along directions xk and xl. The corre-
sponding two dimensional unstable manifold lies in the face defined by the fixed coordinates xj when
j 6= k, l. Assuming k < l < n, the four vertices on this face are ξ, ξ′ = (x1, . . . ,−xk, . . . , xn),
ξ′′ = (x1, . . . ,−xl, . . . , xn) and ξ̃ = (x1, . . . ,−xk, . . . ,−xl, . . . , xn). The question which we address
now is whether there can exist stable heteroclinic cycles which involve saddle-sink connecting trajecto-
ries from ξ to ξ̃. This situation can of course be generalized to more than two unstable eigenvalues, if
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there are more than two switches of sign in the xj’s. Let us first look at an example in low dimension.
In all the following we assume hypothesis (H) holds.

Example 6. Consider 3 neurons (n = 3) and 4 equilibria such that η = (1, 1,−1,−1). Defining P
as before and η = (1, 1,−1,−1), we build Σ to form a consecutive cycle with n = 3 and p = 4:
{η, ηP, ηP 2}. Hence

Σ =

 1 1 −1 −1
1 −1 −1 1
−1 −1 1 1

 . (36)

Clearly the third row is the opposite of the first one, hence this matrix has rank 2. Nevertheless the cycle
is admissible because rank(Σ) = rank(η) where rank(η) is the rank of the matrix [ηT , (ηP )T , (ηP 2)T , (ηP 3)T ]T

(Theorem 2 of [4]). Since ηP 3 = −η − ηP − ηP 2, it follows that

J =

 0 1 0
0 0 1
−1 −1 −1

 . (37)

Note that this example illustrates the criterion derived in Section 3.2, Example 5. The equations read

ẋ1 = (1− x21) (λc0x1 + λc1x2 − fq(x1))
ẋ2 = (1− x22) (λc0x2 + λc1x3 − fq(x2))
ẋ3 = (1− x23) (λc0x3 − λc1(x1 + x2 + x3)− fq(x1))

(38)

Numerical simulations exhibit a heteroclinic cycle for (3) with J given above, see Fig. 3. Observe
that after short transient time x1 and x3 are opposite and move (in opposite directions) while x2 is
fixed at ±1. This indicates that a heteroclinic orbit (if it exists) connects opposite vertices in the faces
x2 = ±1. Now if we set x3 = −x1 in (39) with x2 = ±1, we see that the first and third equations are
identical. Therefore the diagonal axis joining the vertices (1,±1,−1) to (−1,±1, 1) is flow-invariant.
Moreover the eigenvalues at opposite vertices along each of these axes have opposite signs as in the
previous sections, showing that a saddle-sink connection exists on these diagonal axes. A more detailed
calculation shows that on each of these faces, the dynamics looks like in Fig. 4. Let us explain why the
dynamics aligns itself on the diagonal connection (in black in Fig. 4). The unstable eigenvalue at the
point (−1,−1,−1) is given by σn (n = 3) in (32): σ3 = 2λ(−c0 + 3c1) + 2fq(1).

We now come back to the general problem.

Lemma 2. Let ξ = (x1, . . . , xk, . . . , xl, . . . , xn) be a vertex equilibrium for (31). If there are m
switches of sign in the sequence x1, . . . , xn, then ξ has eitherm orm+1 unstable directions. The latter
case occurs if σn > 0 in (32). The unstable manifold of ξ is contained in the hyperface generated by its
unstable eigenvectors.
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Figure 3: Simulations of (3) with c0 = 0.6, λ = 2.5, random initial conditions close to origin. Colour
code: blue= x1, red= x2, green= x3.

Proof. One already knows that if j < n, then σj > 0 iff xjxj+1 < 0. However when j = n, the
sign of the eigenvalue depends upon the coefficients a1, . . . , an. The last claim is straightforward from
(31).

Lemma 3. An equilibrium ξ possesses a 2-dimensional unstable manifold if and only if the two con-
ditions are satisfied: (i) either the sequence of coordinates in ξ undergoes two switches of signs and
σn < 0, or one switch of signs and σn > 0; (ii) if xk and xl are the unstable directions, then xkxl < 0.

Proof. Condition (i) is clear from Lemma 2. If condition (ii) is not satisfied, then an additional change
of sign must occur somewhere between xk and xl and therefore an additional positive eigenvalue must
exist.

The next lemma characterizes when σn > 0 when ξ is a column vector of a consecutive cycle Σ.

Lemma 4. Let ξ = (x1, . . . , xn) be an equilibrium in a consecutive cycle. We write ξ′ = Jξ =
(x′1, . . . , x

′
n)T where J is the connectivity matrix (18). Then under the condition (33), σn > 0 if and

only if xnx′n < 0.

Proof. Recall that σn = −2
(
λ(c0 + c1

∑n
j=1 ajxj)− fq(1)

)
. By construction

∑n
j=1 ajxj = x′n,

therefore by (32), σn = −2 (λ(c0 + c1xnx
′
n)− fq(1)). The claim follows by (33).

Lemma 5. Let ξ = (x1, . . . , xn) be a vertex equilibrium in a simple consecutive cycle with connectivity
matrix J and ξ′ = Jξ = (x′1, . . . , x

′
n). Suppose that ξ possesses a 2-dimensional unstable manifold

along directions xk and xl, which by construction implies x′k = −xk and x′l = −xl. Then a heteroclinic
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Figure 4: Sketch of phase portrait on the face x2 = −1 for (39). The cross indicates an equilibrium
lying on the edge off vertices.

saddle-sink connection ξ → ξ′ exists in the face of coordinates (xk, xl) if and only if l 6= k±1. Moreover
in this case the diagonal segment joining ξ to ξ′ is flow-invariant.

Proof. The face Fkl = {(x1, . . . , xk−1, u, xk+1, . . . , xl−1, v, xl+1 . . . , xn) , − 1 ≤ u, v ≤ 1} is flow-
invariant. Suppose first that k + 1 < l (the case l < k + 1 is of course similar). Then equations in F
are

u̇ = (1− u2)
(
λc0u+ λc1x

′
k − fq(u)

)
v̇ = (1− v2)

(
λc0v + λc1x

′
l − fq(v)

) (39)

Set v = −u. Then the two above equations are identical because by Lemma 3 we have xkxl = −1,
which also implies x′kx

′
l = −1. The saddle-sink connection along this segment follows from the same

analysis as in the ”edge” case.
Suppose now that l = k + 1. Then in ξ′ the coordinates of indices k, k + 1 have opposite signs, which
implies that the eigenvalue σ′k of ξ′ is positive. Therefore ξ′ is a saddle or a source in the face joining ξ
to ξ′, which proves that no saddle-sink connection ξ → ξ′ can exist.

This lemma can be generalized in a straightforward way to more that two unstable eigenvalues.

Definition 2. Let Σ = (ξ1, . . . , ξp) be a simple, admissible consecutive cycle. Σ has adjacent switches
if in one column (at least), the sign of the entries change two or more times consecutively.

The following theorem summarizes the previous results.
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Theorem 3. Let hypothesis (H) hold. For the admissible simple consecutive cycle Σ = (ξ1, . . . , ξp) with
Hopfield equations (31), the equilibria ξ1, . . . , ξp are connected by a robust heteroclinic cycle if and only
if: (i) condition (33) is satisfied; (ii) Σ has no adjacent switches. The heteroclinic connections ξi → ξi+1

lie either along the corresponding edge of the unit cube in phase space, or inside the corresponding face,
the dimension of which is equal to the number q of switches of sign of coordinates from ξi to ξi+1. In
the latter case these connections form a q-dimensional manifold, and in this manifold one of them is the
diagonal segment joining ξi to ξi+1.

The example 1 above illustrates this theorem for a network of three neurons. The first column in
(36) contains one switch of sign but the second column contains 2 non adjacent switches. The resulting
dynamics close to the heteroclinic cycle is shown in Fig. 3.
The next example also concerns a network with three neurons, however it is a counter-example to
existence of a heteroclinic cycle.

Example 7. Let’s take Σ in the following form:

Σ =

 −1 1 1
1 1 −1
1 −1 1

 . (40)

This matrix defines a simple minimal consecutive cycle: it is 3 × 3 and invertible. Since P 3 = Id, it is
easy to find that

J =

 0 1 0
0 0 1
1 0 0

 . (41)

Observe that in Σ the third row has two adjacent switches of sign. The numerical simulation shows a
dynamics converging to the equilibrium (1, 1, 1) (Fig. 5).

We can’t rule out the possibility that condition (ii) in Theorem 3 is not satisfied, but the network still
possesses a heteroclinic cycle. However in this case the cycle will be different from the one defined by
Σ. Two different Σ’s can give the same connectivity matrix. Next is an example of this kind.

Example 8. This example shows that the assumption of Theorem 3 concerning the absence of adjacent
switches is essential. Lets consider the following minimal consecutive cycle, which was introduced in
[4] (Example 6).

Σ̃ =


1 1 −1 1 −1 −1
1 −1 1 −1 −1 1
−1 1 −1 −1 1 1

1 −1 −1 1 1 −1
−1 −1 1 1 −1 1

 . (42)
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Figure 5: Time series for the network with connectivity matrix (41), c0 = 0.6, λ = 2, initial condition
close to the first equilibrium (−1, 1, 1). Colour code: blue= x1, red= x2, green= x3.

By Example 5 of Section 3.2 the connectivity matrix is

J =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
−1 −1 −1 −1 −1

 . (43)

Observe that Σ̃ possesses two adjacent sign switches in the first column. The simulation of the dynamics
in this case shows a heteroclinic cycle, however not the one which would correspond to the cycle formed
by the columns of Σ̃ (Fig. (6)), which is consistent with Theorem 3. In the figure we see that x3 moves
first from +1 to −1 while x1 = x2 = +1 and x4 = x5 = −1, then x1 moves from +1 to −1 and
simultaneously x5 moves from −1 to +1, then x2 and x4 do the same, and the process repeats itself.
The corresponding cycle is given by the following matrix (see also Section 4.3.2):

Σ =


1 1 1 −1 −1 −1
1 1 −1 −1 −1 1
1 −1 −1 −1 1 1
−1 −1 −1 1 1 1
−1 −1 1 1 1 −1

 . (44)

In the following example the rank of Σ is not maximal.
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Figure 6: Time series (after transients) for the network with connectivity matrix (43), c0 = 0.6, λ = 2.5,
random initial conditions. Colour code: blue= x1, red= x2, green= x3, black= x4, yellow= x5.

Example 9. Let’s take

Σ =


1 1 −1 −1 −1 1
1 −1 −1 −1 1 1
−1 −1 −1 1 1 1
−1 −1 1 1 1 −1

 . (45)

Observe that the last row is opposite to the first one, which we call η, and rank(Σ) = 3. The cycle is
admissible and since ηP 4 = −ηP , we have that

J =


0 1 0 0
0 0 1 0
0 0 0 1
0 −1 0 0

 . (46)

A numerical simulation is shown in Fig. 7.

4.3 Some classes of simple consecutive cycles with non-edge heteroclinic cycles

4.3.1 Simple consecutive cycles with p = n

Therefore Σ is a square matrix. By construction, if η denotes the first row of Σ, then Σ =
(
ηT , (ηP )T , . . . , (ηPn−1)T

)
.

Then it follows from Theorem 2 in [4] that the cycle is admissible. Moreover ηPn = η, which implies
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Figure 7: Time series (after transients) for the network with connectivity matrix (46), c0 = 0.6, λ = 2.5,
random initial conditions. Colour code: blue= x1, red= x2, green= x3, black= x4.

that in (31), a1 = 1 and aj = 0 for j > 1. Hence

J =


0 1 0 . . . 0
0 0 1 . . . 0
... . . . . . .

. . .
...

0 . . . . . . 0 1
1 0 . . . . . . 0

 . (47)

Observe that for n = 3 adjacent switches always exist in this case (see Example 2). However for all
square simple consecutive cycles of a given dimension n > 3 and such that no adjacent switches occurs,
we can conclude that several non-edge heteroclinic cycles can coexist and their number increases with
n.

Example 10. n = 4. The only square consecutive cycle with non adjacent switches is generated by
η = (1, 1,−1,−1). Time series of the heteroclinic cycle shown in Fig.8.

Example 11. n = 6. Then the following square consecutive cycles have no adjacent switches: η1 =
(1, 1, 1,−1,−1,−1) and η2 = (1, 1, 1, 1,−1,−1). The first heteroclinic cycle has connections on three
different faces while the second cycle has connections on six different faces.
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Figure 8: Time series (after transients) for the consecutive cycle with p = n = 4, c0 = 0.6, λ = 3.4,
random initial conditions. Colour code: blue= x1, red= x2, green= x3, black= x4.

4.3.2 Antisymmetric simple consecutive cycles with p even and n = p− 1

An antisymmetric cycle is generated by a row vector η = (v,−v), so that p is even and v has p/2 entries.
In this case the conditions of Example 5 of Section 3.2 hold and

J =


0 1 0 . . . 0
0 0 1 . . . 0
... . . . . . .

. . .
...

0 . . . . . . 0 1
−1 −1 . . . . . . −1

 . (48)

Moreover by construction Σ does not contain adjacent switches. Hence a heteroclinic cycle exists for
this matrix. Two such examples have already been discussed: with p = 4 and n = 3 (Example 6), and
with p = 6 and n = 5 (Example 8) (see Fig. (3) and (6), respectively).

4.3.3 Simple consecutive cycles with n < p odd given by Propositions 2 and 3

Example 2 shows the construction of J for η satisfying (24) with p = 15 and n = 13. We leave the
obvious generalization of this construction to the reader. Figure 9 shows a heteroclinic cycle obtained
for η = (1, 1, 1, 1, 1, 1, 1,−1,−1,−1, 1, 1, 1, 1, 1), p = 15 and n = 13.

For η ∈ ker(Pn − I), as stipulated by Proposition 3 and Remark 1 the heteroclinic cycles which
arise are the same as for η truncated to a single block. Multiple blocks simply correspond to repeated
passages through the same heteroclinic cycle. For example, if we use, as in Example 2 of Section 3.2,
η = (1, 1, 1,−1,−1, 1, 1, 1,−1,−1, 1, 1, 1,−1,−1), with n = 5, we obtain a heteroclinic cycle in R5

corresponding to η = (1, 1, 1,−1,−1). A triple passage through this cycle gives η as stated above.
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Figure 9: Time series (after transients) for the consecutive cycle with p = 15, n = 13, c0 = 0.6, λ = 3.4,
random initial conditions. Top picture = time series of x1, . . . , x6, bottom picture = time series of
x7, . . . , x13. Color code: blue= x1, x7, red= x2, x8, green= x3, x9, black= x4, x10, yellow= x5, x11,
cyan= x6, x12, magenta= x13.

5 Conclusion

In this work we have studied robust heteroclinic cycles in Hopfield networks with coupling given by
by the learning rule of [13]. We gave an extensive classification of heteroclinic cycles for couplings
of a simple consecutive type. In particular we established a tight relation between the structure of
the coupling and the heteroclinic cycles supported by the resulting network. This work is a part of
the general program of establishing connections between heteroclinic/homoclinic dynamics and neural
processing (see [14] for an outline of this program).

An interesting direction for continuing this work is to determine if a correspondence between cycles
in the coupling and robust heteroclinic cycles carries over to more realistic settings. As a first attempt of
such a generalization we intend to introduce delays, as delays arise naturally in neural coupling and can
play a functional role [7]. Other generalizations include considering systems with noise, more realistic
models of neurons, or generalizations of the learning rule.
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A Appendix on invariant spaces for linear actions

The material presented here is standard in algebra and is related to the rational or Frobenius normal form
for matrices, see for example [6]. We have not found a reference that presents the necessary results in a
concise fashion, thus we feel that there is a need for this appendix.

Fix a linear transformation T : Rn → Rn. We are interested in understanding the (T -)invariant sub-
spaces of Rn, that is, those subspaces W with T (W ) ⊆W , and in particular in identifying the maximal
proper invariant subspaces. Here we will argue that invariant subspaces are very closely linked to the
action of the polynomial ring R[x] on the linear transformations on Rn given by (f, T ) 7→ f(T ). Rather
than studying specifically the permutation P we consider a more general context of cyclic transforma-
tions. A transformation T is cyclic if there exists a vector v ∈ Rn such that

Rn = span{T jv, j = 0, 1, . . .}.

We will prove the following result.

Theorem 4. Let TRn → Rn be a cyclic transformation. There exists an polynomial fT of degree n (the
minimal polynomial) with the following property. The invariant spaces for the action of T on Rn are
in one to one correspondence with non-trivial factors of the polynomial fT . If f is such a factor then
ker(f(T )) is the corresponding invariant space.

It will be clear from the arguments below that fP = xn−1. Hence Theorem 1 is a direct consequence
of Theorem 4.

Generalities on the correspondence between invariant subspaces and polynomials

For each invariant subspace W ⊆ Rn, we get a map

R[x]→ L(W,W ), f 7→ f(T ) �W

whose kernel is an ideal of R[x]. Since R[x] is a Principal Ideal Domain (PID) it is a principal ideal.
We denote the monic generator of this ideal by fW . Note that W = ker(fW (T )). Note also that for
W = Rn, the polynomial fRn is the minimal polynomial of T , and we will denote it by fT . A few
observations in this setting will be useful.

Lemma 6. If f ∈ R[x], then both ker(f(T )) and =(f(T )) are invariant subspaces.

Proof. This is a consequence of the fact that, for any h ∈ R[x], the linear transformations h(T ) and f(T )
commute so that: w ∈ ker(f(T )) implies f(T )(T (w)) = T (f(T )(w)) = T (0) = 0 and w = f(T )(v)
implies T (w) = T (f(T )(v)) = f(T )(T (v)) ∈ =(f(T )).

Lemma 7. If f ∈ R[x] and f ′ = gcd(f, fT ), then

ker(f(T )) = ker(f ′(T )) and =(f(T )) = =(f ′(T )).
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Proof. To see this, first we can write f ′ = gf + hfT with g, h ∈ R[x] by the Euclidean Algorithm.
It follows that f ′(T ) = g(T ) ◦ f(T ) = f(T ) ◦ g(T ) since fT (T ) = 0 by definition of the minimal
polynomial. Also, since f ′ divides f , there is k ∈ R[x] so that f = kf ′ and thus f(T ) = k(T )◦f ′(T ) =
f ′(T ) ◦ k(T ). For the statement about images we have

f(T ) = f ′(T ) ◦ k(T ) =⇒ =(f(T )) ⊆ =(f ′(T ))

f ′(T ) = f(T ) ◦ g(T ) =⇒ =(f ′(T )) ⊆ =(f(T )),

and thus f(T ) and f ′(T ) have equal images. The proof for kernels is similar.

Corollary 4. If gcd(f, g) = 1, then ker(f(T )) ∩ ker(g(T )) = {0}.

Proof. Suppose v ∈ ker(f(T )) ∩ ker(g(T ). We write 1 = hf + kg and thus

v = h(T )(f(T )(v)) + k(T )(g(T )(v)) = h(T )(0) + k(T )(0) = 0

Cyclic subspaces

For v ∈ Rn let
[v]T = span {v, TV, T 2v, . . .}.

We refer to [v]T as the cyclic subspace generated by v. Clearly, every minimal subspace must be of this
form. We will prove in Lemma 10 that every invariant subspace has this form.

Now let v ∈ Rn and, again from the action of the polynomial ring, we obtain a map

R[x]→ Rn, f 7→ f(T )(v).

Again, this map is linear, and its kernel is a principal ideal of R[x], the monic generator of which we
will denote by fv. The image of this map is [v]T .

Lemma 8. Let v ∈ Rn, then fv = f[v]T and dim([v]T ) = deg(fv).

Proof. The first statement follows as if f(T ) annihilates v then it also annihilates g(T )(v) for any
g ∈ R[x]. The second statement follows since, by the first isomorphism theorem, we have

[v]T ∼= R[x]/Idl(fv)

and the dimension of R[x]/Idl(fv) is equal to deg(fv).

Lemma 9. . Let v ∈ Rn and f, g ∈ R[x] with fg = fv. Then fw = f for w = g(T )(v).
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Proof. Since f(T )(w) = fv(v) = 0, it follows that fw divides f . We prove that if h is a monic divisor
of f satisfying h(w) = 0 then f = h. Since h(w) = 0 is equivalent to hg(T )(v) = 0 it follows that
fv = fg divides hg and thus deg(f) ≤ deg(h). Since h is monic it follows that f = h.

In the proof of the next lemma, we need the fact that R[x] is a Unique Factorization Domain (UFD),
which means that each non-zero polynomial f ∈ R[x] may be written as f = afn1

1 . . . fnk
k where a is a

real number and each fi is an irreducible divisor of f which is also prime (that is, for all h, k ∈ R[x], if
fi divides hk then fi divides h or fi divides k).

Lemma 10. Let W be an invariant subspace. Then there is w ∈W with fw = fW .

Proof. To see this, first note that fW = lcm(fw | w ∈ W ). (lcm denotes the least common multiple).
Thus, for any irreducible divisor f of fW and for k the largest power of f that divides fW , there must
be a w ∈ W so that fk divides fw. Now taking g = fw/f

k, we see by Lemma 9 that fw′ = fk where
w′ = g(T )(w). Doing this for each irreducible divisor of fW , the sum of the resultingw′s is the required
element by Corollary 4, since fw′ = fk implies w′ ∈ ker(fk(T )).

Cyclic transformations

Recall that a linear transformation T : Rn → Rn is cyclic if there is a v ∈ Rn so that [v]T = Rn. We
call v a cyclic generator.

Lemma 11. If T is cyclic and fg = xn − 1, then dim(=(g(T ))) = deg(f).

Proof. This follows from Lemmas 8 and 9: Take v ∈ Rn with [v]T = Rn. Then fv = fT is the
minimal polynomial and thus f = fw for w = g(T )(v) and dim([w]T ) = deg(f). Finally note that
[w]T = span(T i(g(T )(v)) = g(T )(T i(v)) | i ∈ N) = g(T )(Rn) = =(g(T )).

Lemma 12. If T is cyclic and fg = fT , then =(g(T ))) = ker(f(T )).

Proof. For any w with w = g(T )(w′) we have f(T )(w) = f(T )(g(T )(w′)) = 0, so =(g(T )) ⊆
ker(f(T )) and we have

n = deg(f) + deg(g) = dim(=(g(T ))) + dim(=(f(T )))

≤ dim(ker(f(T ))) + dim(=(f(T ))) = n.

Thus =(g(T ))) = ker(f(T )).

The following result now follows.
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Theorem 5. If T is a cyclic linear operator on Rn and v ∈ Rn is a cyclic generator, then the invariant
subspaces of Rn for T are in one-to-one correspondence with the pairs (f, g) such that fg = fT . The
space corresponding to such a pair (f, g) is

[g(T )(v)] = Im(g(T )) = ker(f(T )).

In particular, the minimal invariant subspaces correspond to the pairs (f, g) where f is an irreducible
factor of fT in R[x] and the maximal invariant subspaces correspond to the pairs (f, g) where g is an
irreducible factor of fT in R[x] .

Note that Theorem 5 implies Theorem 4.

Acknowledgement

This work was partially supported by the European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement no. 269921 (BrainScaleS), no. 318723 (Mathemacs), and by the ERC
advanced grant NerVi no. 227747.

28



References

[1] P. Ashwin, O. Karabacak and T. Nowotny , Criteria for robustness of heteroclinic cycles in neural
microcircuits, J. Math. Neurosci. 1:13 (2011)

[2] C. Bick C, M. I. Rabinovich. Dynamical origin of the effective storage capacity in the brain’s
working memory. Phys Rev Lett. 103(21): 218101, 2009

[3] P. Chossat, R. Lauterbach. Methods in Equivariant Bifurcation and Dynamical Systems, Advanced
Series in Nonlinear Dynamics 15, World Scientific, Singapour (2000)

[4] Chuan Zhang, G. Dangelmayr, I. Oprea. Storing cycles in Hopfield-type networks with pseudo
inverse learning rule: Admissibility and network topology. Neural Networks 46, 283-298 (2013).

[5] Chuan Zhang, G. Dangelmayr, I. Oprea. Storing cycles in Hopfield-type networks with pseudoin-
verse learning rule: retrievability and bifurcation analysis. Submitted (2013)

[6] David S. Dummit and Richard M. Foote. Abstract Algebra 3rd Edition, John Wiley & Sons (2003).

[7] B. G. Ermentrout, D. H. Terman. Mathematical Foundations of Neuroscience. Interdisciplinary
Applied Mathematics, Vol. 35, Springer (2010).

[8] T. Fukai, S. Tanaka. A Simple Neural Network Exhibiting Selective Activation of Neuronal En-
sembles: From Winner-Take-All to Winners-Share-All. Neural Comput. 9: 77-97 (1997).

[9] T. Gencic, M. Lappe, G. Dangelmayr and W. Guettinger. Storing cycles in analog neural networks.
Parallel processing in neural systems and computers, R. Eckmiller, G. Hartmann & G. Hause (Eds),
445-450, North Holland (1990).

[10] J. Hofbauer, K. Sigmund. Evolutionary Games and Population Dynamics , Cambridge University
Press (1998).

[11] J. J. Hopfield, Neural networks and physical systems with emergent collective computational abil-
ities, Proc. Natl. Acad. Sci. USA 79(8): 2554–2558, 1982.

[12] M. Krupa. Robust heteroclinic cycles. J. of Nonl. Sci. 7, 129–176 (1997).

[13] L. Personnaz, I. Guyon & G. Dreyfus. Collective computational properties of neural networks:
new learning mechanisms. Physical Review A, 34(5) 4217-4228 (1986).

[14] M. P. Rabinovich, P. Varona, A. I. Selverston, H. D. I. Abarbanel. Dynamical Principles in Neuro-
science. Reviews of Modern Physics 78(4): 1213-1265 (2006).

[15] A. Szucs, R. Huerta, M. I. Rabinovich, A. I. Selverston. Robust Microcircuit Synchronization by
Inhibitory Connections. Neuron, 61: 439-453 (2009).

29


	1 Introduction
	2 Hopfield networks
	2.1 Storing cycles and network architecture
	2.2 The Lokta-Volterra approximation to Hopfield equations
	2.3 Regularization

	3 Hopfield networks with coupling given by the learning rule of personnazetal
	3.1 The equations and network architecture
	3.2 Classification of simple consecutive cycles

	4 Consecutive Hopfield cycles and their heteroclinic cycles
	4.1 Heteroclinic edge cycles
	4.2 Heteroclinic non-edge cycles
	4.3 Some classes of simple consecutive cycles with non-edge heteroclinic cycles
	4.3.1 Simple consecutive cycles with p=n
	4.3.2 Antisymmetric simple consecutive cycles with p even and n=p-1
	4.3.3 Simple consecutive cycles with n<p odd given by Propositions 2 and 3


	5 Conclusion
	A Appendix on invariant spaces for linear actions

