Skip to main content
Log in

Stability of Traveling Pulses with Oscillatory Tails in the FitzHugh–Nagumo System

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The FitzHugh–Nagumo equations are known to admit fast traveling pulses that have monotone tails and arise as the concatenation of Nagumo fronts and backs in an appropriate singular limit, where a parameter \(\varepsilon \) goes to zero. These pulses are known to be nonlinearly stable with respect to the underlying PDE. Recently, the existence of fast pulses with oscillatory tails was proved for the FitzHugh–Nagumo equations. In this paper, we prove that the fast pulses with oscillatory tails are also nonlinearly stable. Similar to the case of monotone tails, stability is decided by the location of a nontrivial eigenvalue near the origin of the PDE linearization about the traveling pulse. We prove that this real eigenvalue is always negative. However, the expression that governs the sign of this eigenvalue for oscillatory pulses differs from that for monotone pulses, and we show indeed that the nontrivial eigenvalue in the monotone case scales with \(\varepsilon \), while the relevant scaling in the oscillatory case is \(\varepsilon ^{2/3}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Beck, M., Jones, C.K.R.T., Schaeffer, D., Wechselberger, M.: Electrical waves in a one-dimensional model of cardiac tissue. SIAM J. Appl. Dyn. Syst. 7(4), 1558–1581 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Carpenter, G.: A geometric approach to singular perturbation problems with applications to nerve impulse equations. J. Differ. Equ. 23(3), 335–367 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Carter, P., Sandstede, B.: Fast pulses with oscillatory tails in the FitzHugh–Nagumo system. SIAM J. Math. Anal. 47(5), 3393–3441 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Coppel, W.A.: Dichotomies and reducibility. J. Differ. Equ. 3, 500–521 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  • Coppel, W.A.: Dichotomies in Stability Theory, Volume 629 of Lecture Notes in Mathematics. Springer, Berlin (1978)

    Book  Google Scholar 

  • Eszter, E.G.: An Evans function analysis of the stability of periodic travelling wave solutions of the FitzHugh–Nagumo system. PhD thesis, University of Massachusetts (1999)

  • Evans, J.W.: Nerve axon equations. I. Linear approximations. Indiana Univ. Math. J. 21, 877–885 (1971/1972)

  • Evans, J.W.: Nerve axon equations. III. Stability of the nerve impulse. Indiana Univ. Math. J. 22, 577–593 (1972/1973)

  • Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31(1), 53–98 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445 (1961)

    Article  Google Scholar 

  • Flores, G.: Stability analysis for the slow travelling pulse of the FitzHugh–Nagumo system. SIAM J. Math. Anal. 22(2), 392–399 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Hastings, S.P.: On the existence of homoclinic and periodic orbits for the FitzHugh–Nagumo equations. Q. J. Math. 27(1), 123–134 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • Hastings, S.P.: Single and multiple pulse waves for the Fitzhugh–Nagumo. SIAM J. Appl. Math. 42(2), 247–260 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Holzer, M., Doelman, A., Kaper, T.J.: Existence and stability of traveling pulses in a reaction–diffusion-mechanics system. J. Nonlinear Sci. 23(1), 129–177 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Homburg, A.J., & Sandstede, B.: Homoclinic and heteroclinic bifurcations in vector fields. In: Broer, H., Takens, F., Hasselblatt, B. (eds.) Handbook of Dynamical Systems III, pp 379–524. Elsevier (2010)

  • Hupkes, H.J., Sandstede, B.: Stability of pulse solutions for the discrete FitzHugh–Nagumo system. Trans. Am. Math. Soc. 365(1), 251–301 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Jones, C.K.R.T.: Stability of the travelling wave solution of the FitzHugh–Nagumo system. Trans. Am. Math. Soc. 286(2), 431–469 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Jones, C.K.R.T., Kaper, T.J., Kopell, N.: Tracking invariant manifolds up to exponentially small errors. SIAM J. Math. Anal. 27(2), 558–577 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Jones, C.K.R.T., Kopell, N., Langer, R.: Construction of the FitzHugh–Nagumo pulse using differential forms. In: Patterns and Dynamics in Reactive Media, pp. 101–115. Springer (1991)

  • Kapitula, T., Promislow, K.: Spectral and Dynamical Stability of Nonlinear Waves, volume 185 of Applied Mathematical Sciences. Springer, New York (2013). With a foreword by C. K. R. T Jones

  • Krupa, M., Sandstede, B., Szmolyan, P.: Fast and slow waves in the FitzHugh–Nagumo equation. J. Differ. Equ. 133(1), 49–97 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic points—fold and canard points in two dimensions. SIAM J. Math. Anal. 33(2), 286–314 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equ. 174(2), 312–368 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Levinson, N.: The asymptotic nature of solutions of linear systems of differential equations. Duke Math. J. 15, 111–126 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, X.B.: Using Melnikov’s method to solve Šilnikov’s problems. Proc. R. Soc. Edinb. Sect. A 116(3–4), 295–325 (1990)

    Article  MATH  Google Scholar 

  • Mishchenko, E.: Differential Equations with Small Parameters and Relaxation Oscillations, vol. 13. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  • Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50(10), 2061–2070 (1962)

    Article  Google Scholar 

  • Palmer, K.J.: Exponential dichotomies and transversal homoclinic points. J. Differ. Equ. 55(2), 225–256 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Sandstede, B.: Verzweigungstheorie homokliner Verdopplungen. PhD thesis, University of Stuttgart (1993)

  • Sandstede, B.: Stability of multiple-pulse solutions. Trans. Am. Math. Soc. 350(2), 429–472 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Sandstede, B.: Stability of travelling waves. In: Fiedler, B.(ed.) Handbook of Dynamical Systems, vol. 2, pp. 983–1055. Elsevier (2002)

  • Sandstede, B., Scheel, A.: Absolute and convective instabilities of waves on unbounded and large bounded domains. Phys. D 145(3–4), 233–277 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Yanagida, E.: Stability of fast travelling pulse solutions of the FitzHugh–Nagumo equations. J. Math. Biol. 22(1), 81–104 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Carter was supported by the NSF under Grant DMS-1148284. De Rijk was supported by the Dutch science foundation (NWO) cluster NDNS+. Sandstede was partially supported by the NSF through Grant DMS-1409742.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Carter.

Additional information

Communicated by Michael Ward.

Appendices

Appendix 1: Corner Estimates

In this section, we provide a proof of Theorem 4.5, based on a theorem in Eszter (1999), regarding the nature of solutions upon entry to a neighborhood of a slow manifold.

Proof of Theorem 4.5

This proof is based on an argument in Eszter (1999). In the box

$$\begin{aligned} \mathcal {U}_E' := \left\{ (U,V,W): U,V\in [-\Delta ,\Delta ], W\in [-\Delta , W^*+\Delta ] \right\} , \end{aligned}$$

for sufficiently small \(\varepsilon >0\), there exist constants \(\alpha ^{u/s}_\pm >0\) such that

$$\begin{aligned} 0<\alpha ^s_-<\Lambda (U,V,W;c,a,\varepsilon )<\alpha ^s_+,\\ 0<\alpha ^u_-<\Gamma (U,V,W;c,a,\varepsilon )<\alpha ^u_+, \end{aligned}$$

We first consider the V-coordinate. For any \(\xi >\xi _1\), we have

$$\begin{aligned} \left| V(\xi )\right| \ge \left| V(\xi _1)\right| e^{\alpha ^u_-(\xi -\xi _1)}. \end{aligned}$$

Since \(V(\xi _2)\in N_2\), we also have

$$\begin{aligned} \left| V(\xi _1)\right| \le \Delta e^{-\alpha ^u_-(\xi _2-\xi _1)}. \end{aligned}$$

We note that since the solution enters \(\mathcal {U}_E'\) via \(N_1\) and reaches \(N_2\) at \(\xi _2(\varepsilon )\), using the equation for W in (3.9), we have that \(\xi _2(\varepsilon )\) satisfies \(\xi _2(\varepsilon )\ge (C\varepsilon )^{-1}\). Therefore, using the upper bound on \(\Gamma \) we have that

$$\begin{aligned} \left| V(\xi )\right| \le \Delta e^{-\alpha ^u_-\xi _2+\alpha ^u_+\xi -(\alpha ^u_+-\alpha ^u_-)\xi _1}\le Ce^{-\tfrac{1}{C\varepsilon }}, \end{aligned}$$

for \(\xi \in \left[ \xi _1,\Xi (\varepsilon )\right] \).

The solution in the slow W-component may be written as

$$\begin{aligned} W(\xi ) = W(\xi _1,\varepsilon )+\int _{\xi _1}^\xi \varepsilon (1+H(U(s),V(s),W(s),c,a,\varepsilon )U(s)V(s))\hbox {d}s, \end{aligned}$$

from which we infer that

$$\begin{aligned} |W(\xi ) -W(\xi _1,\varepsilon )|\le C\varepsilon (\xi -\xi _1)\le C\varepsilon \Xi (\varepsilon ),\quad \text {for } \xi \in \left[ \xi _1,\Xi (\varepsilon )\right] , \end{aligned}$$

and hence

$$\begin{aligned} |W(\xi )|\le C\varepsilon \Xi (\varepsilon )+|W(\xi _1,\varepsilon )|,\quad \text {for } \xi \in \left[ \xi _1,\Xi (\varepsilon )\right] . \end{aligned}$$

Finally, we consider the U-component. We have that the difference \((U(\xi )-U_0(\xi ))\) satisfies

$$\begin{aligned} U'-U_0'&=-(\Lambda (U,V,W,c,a,\varepsilon )U-\Lambda (U_0,0,0,c,a,0)U_0)\\&= -\Lambda (U_0,0,0,c,a,0)(U-U_0)+\mathcal {O}\left( \varepsilon + |U-U_0|+|V|+|W|\right) U. \end{aligned}$$

with \(U(\xi _1)-U_0(\xi _1)=\tilde{U}_0\) where \(|\tilde{U}_0|\ll \Delta \). By possibly taking \(\Delta \) smaller if necessary and using the fact that the rate of contraction in the U-component is stronger than \(\alpha ^s_-\), we deduce that \((U(\xi )-U_0(\xi ))\) satisfies a differential equation

$$\begin{aligned} X'&=b_1(\xi )X +b_2(\xi ), \quad X(\xi _1)=\tilde{U}_0, \end{aligned}$$

where \(b_1(\xi )<-\alpha ^s_-/2<0\) and

$$\begin{aligned} |b_2(\xi )|\le C\left( \varepsilon \Xi (\varepsilon )+|W(\xi _1,\varepsilon )|\right) e^{-\alpha ^s_-\xi } , \end{aligned}$$

for \(\xi \in \left[ \xi _1,\Xi (\varepsilon )\right] \). Hence, it holds

$$\begin{aligned} |U(\xi )-U_0(\xi )| \le C\left( \varepsilon \Xi (\varepsilon )+|\tilde{U}_0|+|W(\xi _1,\varepsilon )|\right) , \end{aligned}$$

for \(\xi \in \left[ \xi _1,\Xi (\varepsilon )\right] \), which completes the proof. \(\square \)

Appendix 2: Exponential Dichotomies and Trichotomies

It is well known that exponential separation is an important tool in studying spectral properties of traveling waves Sandstede (2002). Below we provide the definitions of exponential dichotomies and trichotomies to familiarize the reader with our notation. For an extensive introduction, we refer to Coppel (1978), Sandstede (1993).

Definition 9.1

Let \(n \in \mathbb {Z}_{> 0}\), \(J \subset \mathbb {R}\) an interval and \(A \in C(J,\mathrm {Mat}_{n \times n}(\mathbb {C}))\). Denote by T(xy) the evolution operator of

$$\begin{aligned} \varphi _x = A(x)\varphi . \end{aligned}$$
(9.2)

Equation (9.2) has an exponential dichotomy on J with constants \(K,\mu > 0\) and projections \(P^s(x), P^u(x) :\mathbb {C}^n \rightarrow \mathbb {C}^n, x \in J\) if for all \(x,y \in J\) it holds

  • \(P^u(x) + P^s(x) = 1\);

  • \(P^{u,s}(x)T(x,y) = T(x,y) P^{u,s}(y)\);

  • \(\Vert T(x,y)P^s(y)\Vert , \Vert T(y,x)P^u(x)\Vert \le Ke^{-\mu (x-y)}\) for \(x \ge y\).

Equation (9.2) has an exponential trichotomy on J with constants \(K,\mu ,\nu > 0\) and projections \(P^u(x),P^s(x),P^c(x):\mathbb {C}^n \rightarrow \mathbb {C}^n, x \in J\) if for all \(x,y \in J\) it holds

  • \(P^u(x) + P^s(x) + P^c(x) = 1\);

  • \(P^{u,s,c}(x)T(x,y) = T(x,y) P^{u,s,c}(y)\);

  • \(\Vert T(x,y)P^s(y)\Vert , \Vert T(y,x)P^u(x)\Vert \le Ke^{-\mu (x-y)}\) for \(x \ge y\);

  • \(\Vert T(x,y)P^c(y)\Vert \le Ke^{\nu |x-y|}\).

Often we use the abbreviations \(T^{u,s,c}(x,y) = T(x,y)P^{u,s,c}(y)\) leaving the associated projections of the dichotomy or trichotomy implicit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carter, P., de Rijk, B. & Sandstede, B. Stability of Traveling Pulses with Oscillatory Tails in the FitzHugh–Nagumo System. J Nonlinear Sci 26, 1369–1444 (2016). https://doi.org/10.1007/s00332-016-9308-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-016-9308-7

Keywords

Mathematics Subject Classification

Navigation