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Abstract

A new method is proposed to numerically integrate a dynamical system on a mani-
fold such that the trajectory stably remains on the manifold and preserves first integrals
of the system. The idea is that given an initial point in the manifold we extend the
dynamics from the manifold to its ambient Euclidean space and then modify the dy-
namics outside the intersection of the manifold and the level sets of the first integrals
containing the initial point such that the intersection becomes a unique local attractor
of the resultant dynamics. While the modified dynamics theoretically produces the
same trajectory as the original dynamics, it yields a numerical trajectory that sta-
bly remains on the manifold and preserves the first integrals. The big merit of our
method is that the modified dynamics can be integrated with any ordinary numerical
integrator such as Euler or Runge-Kutta. We illustrate this method by applying it
to three famous problems: the free rigid body, the Kepler problem and a perturbed
Kepler problem with rotational symmetry. We also carry out simulation studies to
demonstrate the excellence of our method and make comparisons with the standard
projection method, a splitting method and Störmer-Verlet schemes.
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1 Introduction

Given a dynamical system on a manifold with first integrals, it is important for a numerical
integrator to preserve the manifold structure and the first integrals of the equations of
motion. This has been the focus of much effort in the development of numerical integration
schemes [2]. In this paper we do not propose any specific numerical integration scheme,
but rather propose a new paradigm of integration that can faithfully preserve conserved
quantities with existing numerical integration schemes.

The main idea in our paradigm is as follows. Consider a dynamical system on a manifold
M with first integrals fi : M → R, i = 1, . . . , `. Assume that we can embed the manifold
M into Euclidean space Rn and extend the first integrals to a neighborhood U of M in Rn.
For an arbitrary point x0 ∈M , consider the set

Λ = {x ∈ U | x ∈M,fi(x) = fi(x0), i = 1, . . . , `}

which is the intersection of M with all the level sets of the first integrals containing the point
x0, and is an invariant set of the dynamical system. We then extend the dynamical system
from M to U and then modify the dynamics outside of Λ such that the set Λ becomes
a unique local attractor of the extended, modified system. Since the dynamics have not
changed on Λ by the extension and modification to U , both the original system on M and
the extended, modified system on U produce the same trajectory for the initial point x0 ∈ Λ.
Numerically, however, integrating the extended system has the following advantage: if the
trajectory deviates from Λ at some numerical integration step, then it will get pushed back
toward the attractor Λ in the extended, modified dynamics, thus remaining on the manifold
M and preserving all the first integrals. It can be rigorously shown that the discrete-time
dynamical system derived from any one-step numerical integrator with uniform step size h
for the extended, modified continuous-time system indeed has an attractor Λh that contains
the set Λ in its interior and converges to Λ as h→ 0+. In this paper we shall use the word,
preserve, in this sense. It is noteworthy that the numerical integration of the extended
dynamics can be carried out with any ordinary integrator and is done in one global Cartesian
coordinate system on Rn. We find conditions for applicability of this method and implement
the result on the following three examples: the free rigid body dynamics, the Kepler problem,
and a perturbed Kepler problem with rotational symmetry. We also carry out simulation
studies to show the excellence of our new paradigm of integration for numerical preservation
of conserved quantities in comparison with other well-known integration schemes, such as
projection and splitting methods and symplectic Störmer-Verlet integrators.

2 Theory

Consider a dynamical system on an open subset U of Rn:

ẋ = X(x), (1)

where X is a C1 vector field on U . Let us make the following assumptions:

A1. There is a C2 function V : U → R such that V (x) ≥ 0 for all x ∈ U , V −1(0) 6= ∅, and

∇V (x) ·X(x) = 0 (2)

for all x ∈ U .

A2. There is a positive number c such that V −1([0, c]) is a compact subset of U .
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A3. The set of all critical points of V in V −1([0, c]) is equal to V −1(0).

Adding the negative gradient of V to (1), let us consider the following dynamical system on
U :

ẋ = X(x)−∇V (x). (3)

Since 0 is the minimum value of V , ∇V (x) = 0 for all x ∈ V −1(0). Hence, the two vector
fields X and X −∇V coincide on V −1(0).

Theorem 2.1. Under assumptions A1 – A3, every trajectory of (3) starting from a point in
V −1([0, c]) stays in V −1([0, c]) for all t ≥ 0 and asymptotically converges to the set V −1(0)
as t→∞. Furthermore, V −1(0) is an invariant set of both (1) and (3).

Proof. Let x(t) be a trajectory of (3) starting from a point in V −1([0, c]). By A1

d

dt
V (x(t)) = ∇V (x(t)) · (X(x(t))−∇V (x(t))) = −|∇V (x)|2 ≤ 0 (4)

for all t. Hence, V −1([0, c]) is a positively invariant set of (3). From (4) and A3, it follows
that {x ∈ V −1([0, c]) | V̇ (x) = 0} = {x ∈ V −1([0, c]) | ∇V (x) = 0} = V −1(0). Hence, by
LaSalle’s invariance principle [5], x(t) converges asymptotically to V −1(0) as t→∞, where
A2 is used for compactness of V −1([0, c]). The invariance of V −1(0) follows from (2) and
the coincidence of (1) and (3) on V −1(0).

Let us find a higher-order condition than that in assumption A3 so that A3 can be
relaxed. For the function V and the vector field X in the statement of assumption A1,
which are now both assumed to be of C∞, let

S =

{
x ∈ U

∣∣∣∣Xk ∂V

∂xi
= 0 ∀ k ≥ 0, 1 ≤ i ≤ n

}
, (5)

where x = (x1, x2, . . . , xn), and Xk ∂V
∂xi denotes the k−th order directional derivative of

∂V/∂xi along X, i.e.,

X0 ∂V

∂xi
=
∂V

∂xi
; X

∂V

∂xi
= X · ∇ ∂V

∂xi
; Xk ∂V

∂xi
= X

(
Xk−1 ∂V

∂xi

)
, k ≥ 2.

Consider the following assumption in place of A3:

A3′. S ∩ V −1([0, c]) ⊂ V −1(0).

The following theorem generalizes Theorem 2.1:

Theorem 2.2. Under assumptions A1, A2 and A3′, every trajectory of (3) starting in
V −1([0, c]) stays in V −1([0, c]) for all t ≥ 0 and asymptotically converges to the set V −1(0)
as t→∞. Furthermore, V −1(0) is an invariant set of both (1) and (3).

Proof. Consider the dynamics (3). It is easy to show that V −1([0, c]) is a positively invariant
set of the dynamics. Let M be the largest invariant set in E = {x ∈ U | V̇ (x) = 0} ∩
V −1([0, c]). Let x(t) be an arbitrary trajectory in M. Since E = {x ∈ U | ∇V (x) =
0} ∩ V −1([0, c]) as shown in the proof of Theorem 2.1, the trajectory x(t) satisfies ∇V = 0,
i.e.,

∂V

∂xi
(x(t)) = 0 (6)

for all t ∈ R and 1 ≤ i ≤ n. Since ∇V = 0 along x(t), the trajectory x(t) satisfies

ẋ(t) = X(x(t)) (7)
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for all t ∈ R. By differentiating (6) repeatedly in t and using (7) on each differentiation, we
can show that the trajectory x(t) satisfies

Xk ∂V

∂xi
= 0

for all t ∈ R, k ≥ 0 and 1 ≤ i ≤ n. Thus, the entire trajectory x(t) is contained in the set
S defined in (5), implying M ⊂ S, from which and A3′ it follows M ⊂ V −1(0). Hence,
by LaSalle’s invariance principle, every trajectory starting in V −1([0, c]) asymptotically
converges to M and thus to V −1(0) as t→∞.

The invariance of V −1(0) follows from (2) and the coincidence of (1) and (3) on V −1(0).

Remark 2.3. 1. If condition (2) is replaced by ∇V (x) ·X(x) ≤ 0 in assumption A1, then
Theorems 2.1 and 2.2 still hold provided that the invariance of V −1(0) is replaced by positive
invariance in the statement of the theorems.

2.Theorems 2.1 and 2.2 still hold with the use of the following modified dynamics

ẋ = X(x)−A(x)∇V (x)

instead of (3), where A(x) is an n × n matrix-valued function with its symmetric part
(A(x) +AT (x)) positive definite at each x ∈ Rn.

3. From the control viewpoint, the added term −∇V (x) in (3) can be regarded as a
negative feedback control u(x) = −∇V (x) to asymptotically stabilize the set V −1(0) for the
control system ẋ = X(x) + u with control u.

Suppose that assumptions A1, A2 and A3 (or A3′ instead of A3) hold and that we want
to integrate the dynamics (1) for an initial point x(0) ∈ V −1(0). Since V −1(0) is positively
invariant, the trajectory must remain in V −1(0) for all t ≥ 0. Recall that the two dynamics
(1) and (3) coincide on V −1(0), so we can integrate (3) instead of (1) for the initial condition.
Though there is no theoretical difference between the two integrations, integrating (3) has a
numerical advantage over integrating (1). Suppose that the trajectory numerically deviates
from the positively invariant set V −1(0) during integration. Then the dynamics (3) will push
the trajectory back toward V −1(0) since V −1(0) is the attractor of (3) in V −1([0, c]) whereas
the dynamics (1) will leave the trajectory outside of V −1(0) which would not happen in the
exact solution. It is noteworthy that this integration strategy is independent of the choice
of integration schemes. In the Appendix we show that any one-step numerical integrator,
as a discrete-time dynamical system, with uniform step size h for (3) has an attractor Λh
that contains V −1(0) in its interior and converges to V −1(0) as h→ 0+.

Let us now apply this integration strategy to numerically integrate dynamics on a man-
ifold while preserving its first integrals and the domain manifold. Consider a manifold M
and dynamics

ẋ = X(x) (8)

on M that have ` first integrals fi : M → R, i = 1, . . . , `. Suppose that M is an embedded
manifold in Rn as a level set of a function f0 : Rn → Rr for some r, and that both the
dynamics (8) and the functions fi, i = 0, . . . , ` extend to an open neighborhood U of M in
Rn. Our goal is to numerically integrate (8) with an initial condition x(0) = x0 ∈M while
preserving the manifold M and the first integrals. Let

f = (f0, f1, . . . , f`) : Rn → Rr+` (9)

and define a function V : U ⊂ Rn → R by

V (x) =
1

2
(f(x)− f(x0))TK(f(x)− f(x0)), (10)
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where K is an (r + `)× (r + `) constant symmetric positive definite matrix. Notice that

V −1(0) = {x ∈ U | x ∈M,fi(x) = fi(x0), i = 1, . . . , `},

and that V −1(0) is invariant under the flow of (8). Or, more generally we can define a
function V (x) as V (x) = W (f0(x), f1(x), . . . , f`(x)) where W : Rr+` → R is a non-negative
function that takes the value of 0 only at (f0(x0), f1(x0), . . . , f`(x0)). If the function V
satisfies assumptions A1, A2 and A3 (or A3′ instead of A3), then by Theorem 2.1 (or
Theorem 2.2), V −1(0) is the local attractor of the modified dynamics

ẋ = X(x)−∇V (x) (11)

that coincide with the original dynamics (8) on V −1(0).
The following lemma provides a sufficient condition under which the function V defined

in (10) satisfies assumptions A2 and A3:

Lemma 2.4. Consider the functions f and V defined in (9) and (10). If V −1(0) is compact
and the Jacobian matrix Df(x) of f has rank (r + `) for all x ∈ V −1(0), then there is a
number c > 0 such that assumptions A2 and A3 hold.

Proof. By compactness of V −1(0) and the regularity of Df , there is a bounded open set X
such that V −1(0) ⊂ X ⊂ cl(X) ⊂ U , and Df(x) has rank r + ` for all x ∈ X, where cl(X)
denotes the closure of X. Consider now the gradient of V . An easy calculation shows that,

∇V (x) = Df(x)TK(f(x)− f(x0)).

Now, since for all x ∈ X, Df(x) is onto as a linear map, Df(x)T is therefore one to one. It
follows that, for x ∈ X,

∇V (x) = 0 ⇐⇒ f(x)− f(x0) = 0 ⇐⇒ x ∈ V −1(0). (12)

In other words, the set of all critical points of V in X is equal to V −1(0). Since the boundary
∂X of X, being closed and bounded, is compact and ∂X ∩V −1(0) = ∅, the minimum value,
denoted by d, of V on ∂X is positive. If necessary, restrict the function V to X, replacing
its original domain U with X. Then, there is a positive number c less than d such that
V −1([0, c]) ⊂ X. Therefore, assumption A3 holds for this number c. Since the closed set
V −1([0, c]) is contained in the bounded set X, it is compact, which implies that assumption
A2 holds.

Theorem 2.5. For the functions f and V defined in (9) and (10), if V satisfies (2) for all
x ∈ U , the set V −1(0) is compact and the Jacobian matrix Df(x) is onto for all x ∈ V −1(0),
then there is a number c > 0 such that every trajectory starting in V −1([0, c]) remains in
V −1([0, c]) for all t ≥ 0 and asymptotically converges to V −1(0) as t→∞.

Theorem 2.6. For the functions f and V defined in (9) and (10), if V satisfies (2) for all
x ∈ U , the set V −1(0) is compact and there is an open subset X of U containing V −1(0)
such that the Jacobian matrix Df(x) is onto for all x ∈ X\V −1(0), then there is a number
c > 0 such that every trajectory starting in V −1([0, c]) remains in V −1([0, c]) for all t ≥ 0
and asymptotically converges to V −1(0) as t→∞.

Proof. Modify the proof of Lemma 2.4 appropriately.
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As discussed above, we can integrate (11) instead of (8) for the initial condition x(0) =
x0 ∈ V −1(0), which will yield a trajectory that is expected to numerically well remain on
the manifold M and preserve the values of the first integrals fi, i = 1, . . . , `. It is noteworthy
that the integration is carried out in one Cartesian coordinate system on Rn rather than
over local charts on the manifold M which would take additional computational costs for
coordinate changes between local charts. In the following section, we will apply this strategy
to the free rigid body dynamics, the Kepler problem and a perturbed Kepler problem with
rotational symmetry to integrate the dynamics preserving their first integrals and domain
manifolds.

3 Applications

3.1 The Free Rigid Body

Consider the free rigid body dynamics:

Ṙ = R Ω̂, (13a)

Ω̇ = I−1 ((IΩ)× Ω) , (13b)

where (R,Ω) ∈ SO(3)× R3; I is the moment of inertia matrix; and

Ω̂ =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 (14)

for

Ω =

Ω1

Ω2

Ω3

 .
Since SO(3) ⊂ R3×3, from here on we assume that the rigid body dynamics are defined on
the Euclidean space R3×3×R3 and that the matrix R denotes a 3×3 matrix, not necessarily
in SO(3). This is the extension of the dynamics step.

Define two functions E : R3 → R and π : R3×3 × R3 → R3 by

E(Ω) =
1

2
ΩT IΩ, (15)

π(R,Ω) = R IΩ, (16)

where E represents the kinetic energy of the free rigid body and π the spatial angular
momentum vector when R ∈ SO(3). These quantities are first integrals of (13). Choose any

R0 ∈ SO(3), Ω0 ∈ R3\{(0, 0, 0)},

and let
E0 = E(Ω0) > 0, π0 = π(R0,Ω0) ∈ R3\{(0, 0, 0)}. (17)

Define an open set U by

U = {(R,Ω) ∈ R3×3 × R3 | det(R) > 0}

and a function V : U ⊂ R3×3 × R3 → R by

V (R,Ω) =
k0

4
‖RTR− I‖2 +

k1

2
|E(Ω)− E0|2 +

k2

2
|π(R,Ω)− π0|2 (18)
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for (R,Ω) ∈ U ⊂ R3×3 × R3, where ki > 0, i = 0, 1, 2 are constants, and ‖ · ‖ is the 2-norm
defined by ‖A‖ =

√
trace(ATA) for a matrix A. Observe that we are endowing the space

R3×3 × R3 with the standard inner product, and that the trace norm is precisely the norm
induced on R3×3 by this inner product. We compute all gradients that follow with respect
to this inner product. Notice that

V −1(0) = {(R,Ω) ∈ R3×3 × R3 | R ∈ SO(3), E(Ω) = E0, π(R,Ω) = π0}.

Lemma 3.1. The gradient (∇RV,∇ΩV ) ∈ R3×3 × R3 of the function V (18) is given by

∇RV = k0R(RTR− I) + k2(π(R,Ω)− π0)ΩT I, (19a)

∇ΩV = k1(E(Ω)− E0)IΩ + k2IRT (π(R,Ω)− π0). (19b)

Proof. Straightforward.

The following lemma shows that the function V satisfies assumption A1 stated in §2.

Lemma 3.2. The function V satisfies

〈(∇RV,∇ΩV ), (RΩ̂, I−1((IΩ)× Ω))〉 = 0. (20)

Proof. One can compute

〈∇RV, (RΩ̂)〉 = trace(Ω̂TRT (k0R(RTR− I) + k2(π(R,Ω)− π0)ΩT I))

= −k0 trace(Ω̂RTR(RTR− I))− k2 trace(Ω̂RT (π(R,Ω)− π0)ΩT I)

= −k2ΩT IΩ̂RT (π(R,Ω)− π0),

where, in the third equality we use the fact that for A symmetric and B antisymmetric,
trace(AB) = 0.

Next, we compute,

〈∇ΩV, I−1((IΩ)× Ω)〉 = 〈k1(E(Ω)− E0)IΩ + k2IRT (π(R,Ω)− π0), I−1((IΩ)× Ω)〉
= k1(E(Ω)− E0)〈(IΩ)× Ω,Ω〉+ k2〈RT (π(R,Ω)− π0), (IΩ)× Ω〉
= k2〈IΩ,Ω×RT (π(R,Ω)− π0)〉
= k2ΩT IΩ̂RT (π(R,Ω)− π0).

Hence,

〈(∇RV,∇ΩV ), (RΩ̂, I−1((IΩ)× Ω))〉 = 〈∇RV,RΩ̂〉+ 〈∇ΩV, I−1((IΩ)× Ω)〉 = 0.

The following lemma shows that the function V satisfies assumptions A2 and A3 stated
in §2.

Lemma 3.3. There is a number c satisfying

0 < c < min{k0/4, k1|E0|/2, k2|π0|2/2} (21)

such that V −1([0, c]) is a compact subset of U and the set of all critical points of V in
V −1([0, c]) is equal to V −1(0).
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Proof. It is obvious that there is a number c satisfying (21) such that V −1([0, c]) becomes
a compact set in U . For such a number c, the matrix R is invertible for every (R,Ω) ∈
V −1([0, c]). Since 0 is the minimum value of V , every point in V −1(0) is a critical point of
V .

Let (R,Ω) be a critical point of V in V −1([0, c])\V −1(0). By Lemma 3.1 it satisfies

k0R(RTR− I) + k2(π − π0)ΩT I = 0, (22a)

k1(E − E0)IΩ + k2IRT (π − π0) = 0, (22b)

where
π = π(R,Ω), E = E(R,Ω).

Post-multiplying (22a) by RT and pre-multiplying (22b) by R yield

k0R(RTR− I)RT + k2(π − π0)πT = 0, (23a)

k1(E − E0)π + k2RIRT (π − π0) = 0, (23b)

since π = RIΩ. Notice that Ω = 0 would imply V (R,Ω) ≥ k2
2 |π0|2 > c, contradicting

(R,Ω) ∈ V −1([0, c]). Hence, Ω 6= 0. It follows from (22) that if any of the three equations

RTR− I = 0, π − π0 = 0, E − E0 = 0

holds, then the three of them all hold. Thus

RTR 6= I, π 6= π0, E 6= E0 (24)

since (R,Ω) /∈ V −1(0). Since the matrix (π − π0)ΩT I in (22a) has rank 1 and the matrix
(RTR− I) is symmetric, there exist a unit vector u ∈ R3 and a number κ 6= 0 such that

RTR− I = κuuT . (25)

Substitution of (25) into (22a) and (23a) yields

k0κRuu
T + k2(π − π0)ΩT I = 0,

k0κRuu
TRT + k2(π − π0)πT = 0,

which implies
Ru ‖ π ‖ π0, u ‖ IΩ, (26)

where the symbol ‖ means ‘is parallel to.’ Hence, we can express R and π as

R = w1u
T
1 + w2u

T
2 + aeπ0

uT , (27)

π = bπ0, (28)

for some numbers a 6= 0, b 6= 1 and vectors u1, u2, w1, w2 ∈ R3, where eπ0 = π0/|π0| and the
vectors u1 and u2 can be any vectors such that {u1, u2, u} becomes an orthonormal basis
for R3. Substitution of (27) into (25) implies that {w1, w2, eπ0

} is an orthonormal basis for
R3. Substitution of (27) and (28) into (22b) implies IΩ ‖ Iu, which together with u ‖ IΩ in
(26), implies u ‖ Iu, i.e., u is an eigenvector of I. We can now choose or re-define the unit
vectors u1 and u2 such that they become eigenvectors of the symmetric matrix I, too. In
the orthonormal basis {u1, u2, u}, we can now write the moment of inertia matrix I as

I = I1u1u
T
1 + I2u2u

T
2 + I3uu

T ,

8



where I1, I2, I3 are the eigenvalues of I, which are all positive, corresponding to the eigen-
vectors u1, u2, u, respectively. It is then easy to see that equations (23) imply

k0a
2(a2 − 1) + k2|π0|2b(b− 1) = 0, (29a)

k1

(
|π0|2b2

2I3a2
− E0

)
b+ k2I3a

2(b− 1) = 0, (29b)

where we have used E = (1/2)ΩT IΩ = (1/2)πT (RIRT )−1π = |π0|2b2/2I3a2.
We consider the following two separate cases: E0 = |π0|2/2I3 and E0 6= |π0|2/2I3.

Suppose E0 = |π0|2/2I3. If b ≤ 0, then

V (R,Ω) ≥ k2

2
|π − π0|2 =

k2

2
(|b|+ 1)2|π0|2 > c

by (21), which contradicts (R,Ω) ∈ V −1([0, c]). Hence, b > 0. If b > 1, then equation
(29a) implies a2 < 1, but equation (29b) implies b2 < a2, implying b2 < 1. This cannot be
compatible with b > 1. Hence, b > 1 is ruled out. Similarly, 0 < b < 1 can be ruled out.
Hence, b = 1, which implies π = π0 contradicting (24). Thus, when E0 = |π0|2/2I3, there
are no critical points of V in V −1([0, c])\V −1(0).

Suppose E0 6= |π0|2/2I3. We analyze equations (29) using a continuity argument. At
a2 = 1, (29a) implies b = 0 or 1, neither of which satisfies (29b) at a2 = 1. Thus, by
continuity there exists a number δ with 0 < δ < 1 such that for any a with |a2 − 1| < δ
there is no number b satisfying both (29a) and (29b). Hence, |a2 − 1| ≥ δ. We now shrink
the number c such that it not only satisfies (21) but also c < k0δ

2/4. For such a number c,
we have

V (R,Ω) ≥ k0

4
‖RTR− I‖2 =

k0

4
‖(a2 − 1)uuT ‖2 ≥ k0

4
δ2 > c,

which contradicts (R,Ω) ∈ V −1([0, c]). Hence, when E0 6= |π0|2/2I3, there are no critical
points of V in V −1([0, c])\V −1(0) for some c > 0.

Therefore, there exists a number c > 0 such that V −1(0) is the set of all critical points
of V in V −1([0, c]).

Consider the dynamics

Ṙ = RΩ̂− k0R(RTR− I)− k2(π(R,Ω)− π0)ΩT I, (30a)

Ω̇ = I−1((IΩ)× Ω)− k1(E(Ω)− E0)IΩ− k2IRT (π(R,Ω)− π0), (30b)

which correspond to (3). From Theorem 2.1 and Lemmas 3.2 and 3.3 comes the following
theorem:

Theorem 3.4. There is a number c > 0 such that every trajectory of (30) starting from a
point in V −1([0, c]) stays in V −1([0, c]) for all t ≥ 0 and asymptotically converges to the set

V −1(0) = {(R,Ω) ∈ R3×3 × R3 | R ∈ SO(3), E(Ω) = E0, π(R,Ω) = π0}

as t → ∞, where the function V is defined in (18). Furthermore, V −1(0) is an invariant
set of both (13) and (30).

3.2 The Kepler Problem

The two-body dynamics in the Kepler problem are given in the usual barycentric coordinates
by

ẋ = v, (31a)

v̇ = −µ x

|x|3
, (31b)
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where x ∈ R3
0 := R3\{(0, 0, 0)} is the position vector, v ∈ R3 is the velocity vector and µ is

the gravitational parameter. Define two functions L : R3 ×R3 → R3 and A : R3
0 ×R3 → R3

by

L(x, v) = x× v, (32)

A(x, v) = v × (x× v)− µ x

|x|
, (33)

where L is called the angular momentum vector and A is called the Laplace-Runge-Lenz
vector. It is known that both L and A are first integrals of the two-body dynamics (31) and
they are orthogonal to each other, i.e.,

L(x, v) ⊥ A(x, v)

for all (x, v) ∈ R3
0 × R3. The energy function

E(x, v) =
1

2
|v|2 − µ

|x|
satisfies

|A(x, v)|2 = µ2 + 2E(x, v)|L(x, v)|2 (34)

for all (x, v) ∈ R3
0 × R3, implying that the energy E is also a first integral of the two-body

dynamics (31). It is also known that a non-degenerate elliptic Keplerian orbit is uniquely
determined by a pair (L,A) that satisfies L ⊥ A, |L| 6= 0 and |A| < µ [1].

Fix a non-degenerate elliptic Keplerian orbit, i.e., a pair of vectors (L0, A0) that satisfies

L0 ⊥ A0, |L0| 6= 0, |A0| < µ.

Define a function V : R3
0 × R3 → R by

V (x, v) =
k1

2
|L(x, v)− L0|2 +

k2

2
|A(x, v)−A0|2 (35)

for (x, v) ∈ R3
0 × R3, where k1 > 0 and k2 > 0. Notice that

V −1(0) = {(x, v) ∈ R3
0 × R3 | L(x, v) = L0, A(x, v) = A0},

which is the non-degenerate Keplerian elliptic orbit whose angular momentum vector and
Laplace-Runge-Lenz vector are L0 and A0, respectively.

Lemma 3.5. The gradient (∇xV,∇vV ) ∈ R3×R3 of the function V defined in (35) is given
by

∇xV = k1v ×∆L+ k2

(
v × (∆A× v)− µ

|x|
∆A+

µ

|x|3
xxT∆A

)
,

∇vV = k1∆L× x+ k2((x× v)×∆A+ x× (v ×∆A)),

where ∆L = L(x, v)− L0 and ∆A = A(x, v)−A0.

The following lemma shows that the function V defined in (35) satisfies assumptions A1
and A2 stated in §2.

Lemma 3.6. 1. The function V satisfies

〈(∇xV,∇vV ), (v,−µx/|x|3)〉 = 0.

2. For any number c satisfying

0 < c < min{k1|L0|2/2, k2(µ− |A0|)2/2}, (36)

the set V −1([0, c]) is a compact set in R3
0 × R3.
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Proof. The first fact is a straightforward calculation using the previous Lemma. For the
second, the essential idea is that the fibers of V are homeomorphic to circles, corresponding
to the elliptic orbits, and are therefore compact. For a detailed proof of the second statement,
refer to Corollary 2.2 in [1].

The following lemma shows that the function V defined in (35) satisfies assumption A3
stated in §2.

Lemma 3.7. For any number c satisfying (36) the set of all critical points of V in V −1([0, c])
is equal to V −1(0).

Proof. Choose an arbitrary number c satisfying (36). Let (x, v) be an arbitrary critical point
of V in V −1([0, c]). For notational convenience, let us write

L = L(x, v), A = A(x, v)

suppressing the dependence on (x, v). By Lemma 3.5, the critical point (x, v) satisfies

0 = k1v ×∆L+ k2

(
v × (∆A× v)− µ

|x|
∆A+

µ

|x|3
xxT∆A

)
, (37a)

0 = k1∆L× x+ k2((x× v)×∆A+ x× (v ×∆A)). (37b)

If |L| = 0, then V (x, v) ≥ k1|L0|2/2 > c, contradicting (x, v) ∈ V −1([0, c]). Hence, |L| 6= 0,
which together with (32) implies that the three vectors x, v, L form a basis for R3. The dot
product of (37b) with x yields

0 = x · ((x× v)×∆A) = ∆A · (x× L),

so there are numbers a and b such that

∆A = ax+ bL. (38)

Substitution of (38) into (37) gives

0 = v ×
(
k1∆L+ k2

(
aL− bv × L+

bµ

|x|
x

))
,

0 = (k1∆L+ k2(2aL− bv × L))× x.

It follows that there are numbers d and f such that

k1∆L+ k2

(
aL− bv × L+

bµ

|x|
x

)
=dv, (39a)

k1∆L+ k2(2aL− bv × L) =fx. (39b)

From (39), we obtain (
bk2µ

|x|
+ f

)
x− dv − ak2L = 0.

By linear independence of {x, v, L},

a = 0, d = 0, f = −bk2µ/|x|.

Substitution of these into (38) and (39b) gives

∆A = bL, ∆L =
bk2

k1
A,
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where we have used the definition of A given in (33). Hence,

A0 = A− bL, L0 = L− bk2

k1
A. (40)

From (40) and the orthogonality A0 ⊥ L0 and A ⊥ L, it follows that

0 = A0 · L0 = −b
(
|L|2 +

k2

k1
|A|2

)
.

Since |L| 6= 0, and recalling that k1 > 0 and k2 > 0, we have b = 0. Substitution of b = 0
into (40) yields

L = L0, A = A0,

which implies (x, v) ∈ V −1(0). Thus, every critical point of V in V −1([0, c]) is contained in
V −1(0).

Since 0 is the minimum value of V , every point in V −1(0) is a critical point of V .
Therefore, the set of all critical points of V in V −1([0, c]) is V −1(0).

Choose a non-degenerate Keplerian elliptic orbit and let (x0, v0) be a point on the orbit.
Set

L0 = L(x0, v0), A0 = A(x0, v0)

to be the angular momentum vector and the Laplace-Runge-Lenz vector of the orbit, re-
spectively. Consider the dynamics:

ẋ = v − k1v ×∆L− k2

(
v × (∆A× v)− µ

|x|
∆A+

µ

|x|3
xxT∆A

)
, (41a)

v̇ = −µ x

|x|3
− k1∆L× x− k2((x× v)×∆A+ x× (v ×∆A)), (41b)

where ∆L = L(x, v)−L0 and ∆A = A(x, v)−A0, which correspond to (3). From Theorem
2.1 and Lemmas 3.6 and 3.7 comes the following theorem:

Theorem 3.8. For any c > 0 satisfying (36), every trajectory of (41) starting from a point
in V −1([0, c]) stays in V −1([0, c]) for all t ≥ 0 and asymptotically converges to the set

V −1(0) = {(x, v) ∈ R3
0 × R3 | L(x, v) = L0, A(x, v) = A0}

as t → ∞, where the function V is defined in (35). Furthermore, V −1(0) is an invariant
set of both (31) and (41).

3.3 A Perturbed Kepler Problem with Rotational Symmetry

Consider a perturbed Kepler problem with rotational symmetry whose equations of motion
are given by

ẋ = v, (42a)

v̇ = −U ′(|x|) x
|x|
, (42b)

where x ∈ R3
0 := R3\{(0, 0, 0)} is the position vector, v ∈ R3 is the velocity vector, and

U : (0,∞)→ R is the potential function that depends only on the radial distance from the
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origin. The total energy E : R3
0×R3 → R and the angular momentum vector L : R3

0×R3 →
R3 are defined by

E(x, v) =
1

2
|v|2 + U(|x|), (43)

L(x, v) = x× v (44)

and they are conserved quantities of the dynamics (42). Take any point (x0, v0) ∈ R3
0 × R3

such that
x0 × v0 6= 0.

Let
E0 = E(x0, v0), L0 = L(x0, v0) 6= 0.

Define a function V : R3
0 × R3 → R by

V (x, v) =
k1

2
|E(x, v)− E0|2 +

k2

2
|L(x, v)− L0|2

with k1 > 0 and k2 > 0. Then,

V −1(0) = {(x, v) ∈ R3
0 × R3 | E(x, v) = E0, L(x, v) = L0}.

The gradient (∇xV,∇vV ) of V is given by

∇xV = k1∆EU ′(|x|) x
|x|

+ k2v ×∆L,

∇vV = k1∆Ev + k2∆L× x,

where ∆E = E(x, v)− E0 and ∆L = L(x, v)− L0. Trivially, V satisfies (2), i.e.

〈(∇xV,∇vV ), (v,−U ′(|x|)x/|x|〉 = 0 (45)

for all (x, v) ∈ R3
0×R3. The modified dynamics, which correspond to (3), are computed as

ẋ = v − k1∆EU ′(|x|) x
|x|
− k2v ×∆L, (46a)

v̇ = −U ′(|x|) x
|x|
− k1∆Ev − k2∆L× x. (46b)

Theorem 3.9. Suppose that V −1(0) is compact and there is no common solution r > 0 to
the following two equations:

E0 =
1

2
rU ′(r) + U(r), (47)

|L0|2 = r3U ′(r). (48)

Then, assumptions A2 and A3 hold and there is a number c > 0 such that every trajectory of
(46) starting in V −1([0, c]) remains in V −1([0, c]) for all t ≥ 0 and asymptotically converges
to V −1(0) as t→∞.

Proof. Define a function f : R3
0 × R3 → R× R3 by

f(x, v) =

[
E(x, v)
L(x, v)

]
.
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Then,

Df(x, v)T =

[
U ′(|x|) x

|x| v̂

v −x̂

]
,

where the over-hat symbol ∧ denotes the hat map defined in (14). We want to show that
the 6 × 4 matrix Df(x, v)T is one-to-one for all (x, v) ∈ V −1(0). Fix an arbitrary point
(x, v) ∈ V −1(0). It follows

E0 =
1

2
|v|2 + U(|x|), (49)

L0 = x× v 6= 0. (50)

Take any point (a,w) ∈ R× R3 from the kernel of Df(x, v)T . Then,

0 = aU ′(|x|) x
|x|

+ v × w, (51a)

0 = av − x× w. (51b)

Suppose a 6= 0. Taking the inner product of (51a) with x and of (51b) with v, we obtain

0 = aU ′(|x|)|x|+ L0 · w,
0 = a|v|2 + L0 · w,

from which it follows that
|x|U ′(|x|) = |v|2. (52)

Taking the inner product of (51b) with x, we get x · v = 0 which implies

|L0| = |x| · |v|. (53)

From (49), (52) and (53), we obtain

E0 =
1

2
|x|U ′(|x|) + U(|x|), (54)

|L0|2 = |x|3U ′(|x|). (55)

By hypothesis, there cannot be any x ∈ R3
0 that satisfies both (54) and (55). Hence, we

cannot have a 6= 0.
Substitute a = 0 into (51). It follows that w is parallel to x × v. Hence, there is a

number b such that w = bL0. Substituting this in (51b) yields bx×L0 = 0. Taking the cross
product of this with x yields b|x|2L0 = 0 since x · L0 = 0. Since x 6= 0 and L0 6= 0, we have
b = 0, so w = 0. It follows that (a,w) = (0, 0), which implies that Df(x, v)T is one-to-one
for all (x, v) ∈ V −1(0). In other words, Df(x, v) is onto for all (x, v) ∈ V −1(0). Hence, the
conclusion of the theorem follows from Lemma 2.4, equation (45), and Theorem 2.5.

Remark 3.10. Consider a special case in which the potential function U(r) is of the form

U(r) = −µ
r
− δ

r3
, (56)

where µ > 0 and δ > 0. Then equations (47) and (48) become

E0 = − µ

2r
+

δ

2r3
, (57)

|L0|2 = µr +
3δ

r
. (58)

Given E0 and L0, it is then easy to check if there is no common solution r > 0 to (57) and
(58).
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4 Simulations

4.1 The Free Rigid Body

Consider the free rigid body dynamics in §3.1 with the moment of inertia matrix I =
diag(3, 2, 1) and the initial condition

R(0) = I, Ω(0) = (1, 1, 1). (59)

The values of the energy E and the spatial angular momentum vector π = (π1, π2, π3)
corresponding to the initial condition are

E(0) = 3, π(0) = (3, 2, 1).

The period TΩ of the trajectory of the body angular velocity vector Ω(t) is computed
approximately to be TΩ = 6.4227.

We integrate the dynamics over the time interval [0, 103] = [0, 155.7TΩ] with step size
∆t = 10−4, using the following four integration methods: a feedback integrator with the
Euler scheme, a projection method with the Euler scheme, a splitting method with three
rotations splitting, and the ordinary Euler method. The feedback integrator with the Euler
scheme denotes the Euler method applied to the modified free rigid dynamics (30) with the
following values of the parameters k0, k1, and k2

k0 = 50, k1 = 100, k2 = 50.

The projection method is the standard one explained on pp.110–111 in [2]. In order to solve
constraint equations for projection at each step of integration in the projection method, we
use the Matlab command fsolve with the parameter TolFun, which is termination tolerance
on the function value, set equal to 10−4, which is the same as the integration step size ∆t.
The splitting method is the one explained on pp.284–285 in [2]. The three of the projection
method, the splitting method and the ordinary Euler method are applied to the original
free rigid body dynamics (13).

The trajectories of the body angular velocity vector Ω(t), the energy error |∆E(t)| =
|E(t) − E(0)|, the error |∆π(t)| = |π(t) − π(0)| in spatial angular momentum, and the
deviation ‖R(t)TR(t)− I‖ of the rotation matrix R(t) from SO(3) are plotted in Figures 1,
2, 3 and 4, respectively. In Figure 1, it is observed that the trajectories of Ω(t) generated by
the feedback integrator and the projection method maintain a periodic shape well whereas
those by the splitting method and the Euler method drift away significantly from the periodic
shape. In Figure 2, it is observed that the feedback integrator and the projection method
keep the energy error sufficiently small whereas the energy errors by the other two methods
increase in time. Although the two trajectories of energy error by the splitting method
and the Euler method seem to coincide in Figure 2, an examination of the numerical data
shows that the energy of the Euler method gets larger than that of the splitting method
in time. For example, at t = 1000, the energy of the Euler method is bigger than that of
the splitting method by 1.767× 10−3. In Figures 3 and 4, it is observed that the feedback
method preserves the spatial angular momentum vector and the manifold SO(3) sufficiently
well. In terms of computation time, the projection method takes much more time than the
others, which is due to the steps of solving the constraint equations for projection. The
splitting method is symplectic and of order 2 whereas the other methods are of order 1.
All of these observations lead us to the conclusion that the feedback integrator overall has
produced the best outcome in the simulation of the free rigid body dynamics.
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4.2 The Kepler Problem

Consider the Kepler problem in §3.2 with µ = 1 and the initial condition

x(0) = (1, 0, 0), v(0) = (0,
√

1.8, 0).

The corresponding initial values of the angular momentum vector and the Laplace-Runge-
Lenz vector are

L(0) = (0, 0,
√

1.8), A(0) = (0.8, 0, 0).

The period T and the eccentricity e of the Kepler orbit containing the initial point are

T = 70.2481, e = 0.8.

We integrate the Kepler dynamics over the time interval [0, 1000T ] with step size ∆t = 0.005,
using the following four integration methods: a feedback integrator with the Euler scheme,
the standard projection method with the Euler scheme, and two Störmer-Verlet schemes.
The feedback integrator with the Euler scheme denotes the Euler method applied to (41)
with k1 = 4 and k2 = 2. The standard projection method is explained on pp.110–111 in
[2]. To solve the constraint equations for projection, we use the Matlab command fsolve
with the parameter TolFun set equal to 0.005, which is the same as the integration step
size ∆t. The two Störmer-Verlet schemes are those in (3.4) and (3.5) on pp. 189–190 in
[2], and we call them Störmer-Verlet-A and Störmer-Verlet-B, respectively, for convenience.
The Störmer-Verlet schemes are symplectic methods of order 2.

The trajectories of the planar orbit x(t) = (x1(t), x2(t), 0), the error of the Laplace-
Runge-Lenz vector, |∆A(t)| = |A(t) − A(0)|, and the error of the angular momentum vec-
tor, |∆L(t)| = |L(t) − L(0)|, are plotted in Figures 5, 6 and 7. In Figure 5 it is observed
that the planar trajectories x(t) = (x1(t), x2(t), 0) generated by the feedback integrator and
the projection method maintain the elliptic shape well whereas those by the Störmer-Verlet
schemes precess. This can be also verified in Figure 6, where the feedback integrator and
the projection method preserve the Laplace-Runge-Lenz vector well, but the Störmer-Verlet
schemes cause the Laplace-Runge-Lenz vector to noticeably precess. In Figure 7, it is ob-
served that the Störmer-Verlet schemes preserve the angular momentum vector exceptionally
well in comparison with the other two methods. In Figures 6 and 7, we can see that the
precision of the feedback integrator is comparable with that of the projection method. How-
ever, the feedback integrator takes much less computation time than the projection method.
The feedback integrator and the projection method used here are of order 1, whereas the
Störmer-Verlet schemes are of order 2. All of these observations lead us to conclude that
the feedback integrator has produced the best result overall.

4.3 A Perturbed Kepler Problem with Rotational Symmetry

Consider the perturbed Kepler problem in §3.3 with the potential function U given in (56)
with µ = 1 and δ = 0.0025, which is the one used in Example 4.3 on p. 111 in [2]. We use
the initial conditions

x(0) = (1− e, 0, 0), v(0) = (0,
√

(1 + e)/(1− e), 0)

with eccentricity e = 0.6 as in [2]. The corresponding values of the energy and the angular
momentum vector are

E(0) = −0.5390625, L(0) = (0, 0, 0.8).

We integrate the perturbed Kepler dynamics over the time interval [0, 200] with step size
∆t = 0.03, just as on p. 111 in [2], using the following four integration methods: a feedback
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integrator with the Euler scheme, the standard projection method with the Euler scheme,
the Störmer-Verlet scheme in (3.4) on p. 189 in [2], and the Matlab command, ode45. The
feedback integrator with the Euler scheme denotes the Euler method applied to (46) with
k1 = 2 and k2 = 3, and it is straightforward to verify that the hypotheses in Theorem 3.9
hold true. The other three methods are applied to (42). The Matlab command fsolve is
used in the projection method with the parameter TolFun set equal to 10−8. The options of
RelTol = AbsTol = 10−10 are used for the Matlab integrator, ode45, so the result generated
by ode45 can be used as a reference.

The trajectories of the planar orbit x(t) = (x1(t), x2(t), 0), the energy error |∆E(t)| =
|E(t) − E(0)| and the error |∆L(t)| = |L(t) − L(0)| in angular momentum are plotted in
Figures 8, 9 and 10. In Figure 8 it is observed that the orbits generated by the feedback
integrator and the Störmer-Verlet scheme are similar to that by ode45, but the orbit by the
projection method precesses too much which is a very poor result. The projection method
excels only at preserving the energy and the angular momentum as expected in view of the
nature of the projection method and the small tolerance parameter value, TolFun = 10−8,
used for the Matlab command, fsolve. In Figure 9, it is observed that the feedback inte-
grator is comparable with the Störmer-Verlet scheme in energy conservation. The feedback
integrator also preserves the angular momentum well in view of the step size ∆t = 0.03, as
can be seen in Figure 10. The feedback integrator and the projection method used here are
of order 1 whereas the Störmer-Verlet scheme is of order 2. From all of these observations,
we conclude that the feedback integrator has produced the best result overall.

5 Conclusions and Future Work

We have developed a theory to produce numerical trajectories of a dynamical system on
a manifold that stably remain on the manifold and preserve first integrals of the system.
Our theory is not a numerical integration scheme but rather a modification of the original
dynamics by feedback. The actual numerical integration in our framework can be done
with any usual integrator such as Euler and Runge-Kutta. Our method is successfully
applied to the free rigid body, the Kepler problem and a perturbed Kepler problem with
rotational symmetry, and its excellent performance is demonstrated by simulation studies
in comparison with the standard projection method, two Störmer-Verlet schemes and a
splitting method via three rotations splitting.

As future work, we plan to apply our theory to various mechanical systems with sym-
metry and non-holonomic systems. We also plan to carry out a quantitative study of the
effect of the parameters in the Lyapunov function on the performance of our method.

Appendix

We show, using results in [3], that any discrete-time dynamical system derived from a one-
step numerical integration scheme with uniform step size h for the modified dynamical
system (3) has an attractor Λh that contains V −1(0) in its interior and converges to V −1(0)
as h → 0+. Let us first review some definitions from [3]. Let A and B be nonempty,
compact subsets of Rn and x a point in Rn. The distance between x and A is defined by

dist(x,A) = inf{|x− a|, a ∈ A}.

The Hausdorff separation of A from B is defined by

H∗(A,B) = max{dist(a,B), a ∈ A}.
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The Hausdorff distance between A and B is defined by

H(A,B) = max{H∗(A,B), H∗(B,A)}.

The Hausdorff distance is a metric on the space of nonempty compact subsets of Rn. For
r > 0, let

S(A, r) = {x ∈ Rn | dist(x,A) < r}

denote an r-neighborhood of A.
We say that a nonempty, compact subset Λ of Rn is uniformly stable for an autonomous

dynamical system if for each ε > 0 there exists a δ = δ(ε) > 0 such that

[x0 ∈ S(Λ, δ) and t ≥ 0]⇒ x(t;x0) ∈ S(Λ, ε),

where x(t;x0) is the solution of the given dynamical system with initial condition x(0) = x0.
A set Λ is said to be positively invariant for an autonomous dynamical system if x(t;x0) ∈
Λ for all x0 ∈ Λ and t ≥ 0. A nonempty, compact subset Λ of Rn is called uniformly
asymptotically stable for an autonomous dynamical system if it is positively invariant and
uniformly stable for the dynamical system, and additionally satisfies the following property:
there is a δ0 > 0 and for each ε > 0 a time T (ε) > 0 such that

[x0 ∈ S(Λ, δ0) and t ≥ T (ε)]⇒ x(t;x0) ∈ S(Λ, ε).

Lemma 5.1. Suppose that assumptions A1, A2 and A3 (or A3′ instead of A3) stated in §2
hold true. Then, the set V −1(0) is uniformly asymptotically stable for the modified dynamical
system (3).

Proof. Since the three assumptions are satisfied, the conclusions of Theorem 2.1 (or, 2.2)
hold true. For convenience, let Λ = V −1(0), which is invariant under (3) by Theorem 2.1
(or, 2.2). Let c > 0 be the number c in assumption A2. Using compactness of V −1([0, c])
and continuity of V , it is easy to show that for any ε > 0 there is a b = b(ε) > 0 such that
V −1([0, b]) ⊂ S(Λ, ε). It is also easy to show that for any b > 0 there is an ε = ε(b) > 0 such
that S(Λ, ε) ⊂ V −1([0, b]). Hence, we can use the family of sets {V −1([0, b]), b > 0} instead
of the family of open sets {S(Λ, ε), ε > 0} to show uniform stability and uniform asymptotic
stability of Λ for (3).

Let us first show uniform stability of Λ for (3). Given any ε > 0, take any δ such that
0 < δ ≤ min{ε, c}. Then, for any x0 ∈ V −1([0, δ]), x(t;x0) ∈ V −1([0, δ]) ⊂ V −1([0, ε]) for
all t ≥ 0 since V is decreasing along the trajectory of x(t;x0) of (3). Hence, Λ is uniformly
stable for (3).

Let us now show uniform asymptotic stability of Λ for (3). Take any δ0 such that
0 < δ0 ≤ c. By continuous dependence of x(t;x0) on initial point x0, compactness of
V −1([0, δ0]), continuity of the function V , and the property that V (x(t;x0)) decreases to 0
as t → ∞ for any x0 ∈ V −1([0, c]), it is easy to show that for any ε > 0 there is a time
T (ε) > 0 such that for any x0 ∈ V −1([0, δ0]) we have x(t;x0) ∈ V −1([0, ε]) for all t ≥ T (ε).
Hence, Λ is uniformly asymptotically stable for (3).

Suppose the vector field X is Cp and the function V is Cp+1 in the modified dynamical
system (3). Consider a discrete analogue of (3) described by any one-step numerical method
of pth order

xk+1 = xk + hYh(xk) (60)

with uniform step size h > 0, where Yh : Rn → Rn for each h.
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Theorem 5.2. Suppose that the vector field X is Cp and the function V is Cp+1, and that
assumptions A1, A2 and A3 (or A3′ instead of A3) are satisfied. Then there is a number
h2 > 0 such that for each 0 < h < h2 the discrete-time dynamical system (60) has a compact,
uniformly asymptotically stable set Λh which contains V −1(0) in its interior and converges
to V −1(0) with respect to the Hausdorff metric as h → 0+. Moreover, there is a bounded,
open set U0, which is independent of h and contains Λh, and a time

T0(h) = A+Bp log
1

h
,

where A and B are constants depending on the stability characteristic of V −1(0), such that
the iterates of (60) satisfy

xk ∈ Λh

for all kh ≥ T0(h), x0 ∈ U0 and 0 < h < h2.

Proof. We have only to show that the hypotheses in Theorem 1.1 of [3] hold. Since X is
Cp and V is Cp+1, the vector field X −∇V of (3) and its derivatives of order up to p are
all continuous and bounded on the compact set V −1([0, c]). The set V −1(0) is uniformly
asymptotically stable for (3) by Lemma 5.1 in the above. Therefore, the conclusions of this
theorem follow from Theorem 1.1 and Lemma 3.3 of [3].

Refer to [3] to see how to obtain the set U0 and values of the parameters h2, A and B that
appear in the statement of the above theorem. The above theorem extends to multi-step
numerical integrators; refer to [4] for detail.
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Figure 1: The trajectories of the body angular velocity Ω(t) = (Ω1(t),Ω2(t),Ω3(t)), 0 ≤ t ≤
1000, of the free rigid body dynamics generated by four different methods with step size
∆t = 10−4: a feedback integrator with the Euler scheme, the standard projection method
with the Euler scheme, a three rotations splitting method and the usual Euler method.
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Figure 2: The trajectories of the energy error |∆E(t)| = |E(t) − E(0)|, 0 ≤ t ≤ 1000, of
the free rigid body dynamics generated by four different methods with step size ∆t = 10−4:
a feedback integrator with the Euler scheme (◦), the standard projection method with the
Euler scheme (�), a three rotations splitting method (�) and the usual Euler method (×).
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Figure 3: The trajectories of the spatial angular momentum error |∆π(t)| = |π(t) − π(0)|,
0 ≤ t ≤ 1000, of the free rigid body dynamics generated by four different methods with step
size ∆t = 10−4: a feedback integrator with the Euler scheme (◦), the standard projection
method with the Euler scheme (�), a three rotations splitting method (�) and the usual
Euler method (×).
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Figure 4: The trajectories of the deviation ‖R(t)TR(t)−I‖ of the rotation matrix R(t) from
SO(3), 0 ≤ t ≤ 1000, of the free rigid body dynamics generated by four different methods
with step size ∆t = 10−4: a feedback integrator with the Euler scheme (◦), the standard
projection method with the Euler scheme (�), a three rotations splitting method (�) and
the usual Euler method (×).
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Figure 5: The trajectories of the planar orbit x(t) = (x1(t), x2(t), 0), 0 ≤ t ≤ 70, 248, in the
Kepler problem generated by four different methods with step size ∆t = 0.005: a feedback
integrator with the Euler scheme, the standard projection method with the Euler scheme,
and two Störmer-Verlet schemes.
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Figure 6: The trajectories of the error |∆A(t)| = |A(t) − A(0)|, 0 ≤ t ≤ 70, 248, of the
Laplace-Runge-Lenz vector in the Kepler problem generated by four different methods with
step size ∆t = 0.005: a feedback integrator with the Euler scheme, the standard projection
method with the Euler scheme, and two Störmer-Verlet schemes.
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Figure 7: The trajectories of the angular momentum error |∆L(t)| = |L(t)− L(0)|, 0 ≤ t ≤
70, 248, in the Kepler problem generated by four different methods with step size ∆t = 0.005:
a feedback integrator with the Euler scheme, the standard projection method with the Euler
scheme, and two Störmer-Verlet schemes.
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Figure 8: The trajectories of the planar orbit x(t) = (x1(t), x2(t), 0), 0 ≤ t ≤ 200, in the
perturbed Kepler problem generated by four different methods: a feedback integrator with
the Euler scheme, the standard projection method with the Euler scheme, a Störmer-Verlet
scheme and the Matlab command ode45, where the step size ∆t = 0.03 is used for the first
three methods.
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Figure 9: The trajectories of the energy error |E(t)| = |E(t) − E(0)|, 0 ≤ t ≤ 200, in the
perturbed Kepler problem generated by four different methods: a feedback integrator with
the Euler scheme, the standard projection method with the Euler scheme, a Störmer-Verlet
scheme and the Matlab command ode45, where the step size ∆t = 0.03 is used for the first
three methods.
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Figure 10: The trajectories of the angular momentum error |∆L(t)| = |L(t) − L(0)|, 0 ≤
t ≤ 200, in the perturbed Kepler problem generated by four different methods: a feedback
integrator with the Euler scheme, the standard projection method with the Euler scheme,
and a Störmer-Verlet scheme and the Matlab command ode45, where the step size ∆t = 0.03
is used for the first three methods.
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