Skip to main content
Log in

Nonconstant Positive Steady States and Pattern Formation of 1D Prey-Taxis Systems

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Prey-taxis is the process that predators move preferentially toward patches with highest density of prey. It is well known to have an important role in biological control and the maintenance of biodiversity. To model the coexistence and spatial distributions of predator and prey species, this paper concerns nonconstant positive steady states of a wide class of prey-taxis systems with general functional responses over 1D domain. Linearized stability of the positive equilibrium is analyzed to show that prey-taxis destabilizes prey–predator homogeneity when prey repulsion (e.g., due to volume-filling effect in predator species or group defense in prey species) is present, and prey-taxis stabilizes the homogeneity otherwise. Then, we investigate the existence and stability of nonconstant positive steady states to the system through rigorous bifurcation analysis. Moreover, we provide detailed and thorough calculations to determine properties such as pitchfork and turning direction of the local branches. Our stability results also provide a stable wave mode selection mechanism for thee reaction–advection–diffusion systems including prey-taxis models considered in this paper. Finally, we provide numerical studies of prey-taxis systems with Holling–Tanner kinetics to illustrate and support our theoretical findings. Our numerical simulations demonstrate that the \(2\times 2\) prey-taxis system is able to model the formation and evolution of various striking patterns, such as spikes, periodic oscillations, and coarsening even when the domain is one-dimensional. These dynamics can model the coexistence and spatial distributions of interacting prey and predator species. We also give some insights on how system parameters influence pattern formation in these models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abrams, P., Matsuda, H.: Effects of adaptive predatory and anti-predator behaviour in a two-prey–one-predator system. Evol. Ecol. 7, 312–326 (1993)

    Article  Google Scholar 

  • Ainseba, B.E., Bendahmane, M., Noussair, A.: A reaction–diffusion system modeling predator–prey with prey-taxis. Nonlinear Anal. RWA 9, 2086–2105 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Braza, P.: The bifurcation structure of the Holling–Tanner model for predator–prey interactions using two-timing. SIAM J. Appl. Math. 63, 889–904 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, S., Shi, J.: Global stability in a diffusive Holling–Tanner predator–prey model. Appl. Math. Lett. 25, 614–618 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, S., Shi, J., Wei, J.: Global stability and Hopf bifurcation in a delayed diffusive Leslie–Gower predator–prey system. Int. J. Bifurc. Chaos Appl. Sci. Eng. 22, 11 (2012)

    MathSciNet  MATH  Google Scholar 

  • Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  • Crandall, M.G., Rabinowitz, P.H.: Bifurcation, perturbation of simple eigenvalues, and linearized stability. Arch. Ration. Mech. Anal. 52, 161–180 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Du, Y., Hsu, S.-B.: A diffusive predator–prey model in heterogeneous environment. J. Differ. Equ. 203, 331–364 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Ghazaryan, A., Manukian, V., Schecter, S.: Travelling waves in the Holling–Tanner model with weak diffusion. Proc. Roy. Soc. London Ser. A. 471, 20150045 (2015)

  • Gliwicz, Z.M., Maszczyk, P., Jablonski, J., Wrzosek, D.: Patch exploitation by planktivorous fish and the concept of aggregation as an antipredation defense in zooplankton. Limnol. Oceanogr. 58, 1621–1639 (2013)

    Article  Google Scholar 

  • He, X., Zheng, S.: Global boundedness of solutions in a reaction–diffusion system of predator–prey model with prey-taxis. Appl. Math. Lett. 49, 73–77 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen, T., Painter, K.J.: Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26, 280–301 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen, T., Painter, K.J.: A user’s guidance to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MATH  Google Scholar 

  • Holling, C.S.: The functional response of invertebrate predators to prey density. Mem. Entomol. Soc. Can. 45, 3–60 (1965)

    Google Scholar 

  • Horstmann, D.: From 1970 until now: The Keller–Segel model in chemotaxis and its consequences I. Jahresber. DMV 105(2003), 103–165 (1970)

    MathSciNet  MATH  Google Scholar 

  • Hsiao, L., De Mottoni, P.: Persistence in reacting–diffusing systems: interaction of two predators and one prey. Nonlinear Anal. TMA 11, 367–536 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Hsu, S.-B., Huang, T.-W.: Global stability for a class of predator–prey systems. SIAM J. Appl. Math. 55, 763–783 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Hsu, S.-B., Huang, T.-W.: Uniqueness of limit cycles for a predator–prey system of Holling and Leslie type. Can. Appl. Math. Q. 6, 91–117 (1998)

    MathSciNet  MATH  Google Scholar 

  • Kareiva, P., Odell, G.: Swarms of predators exhibit “preytaxis” if individual predators use area-restricted search. Am. Nat. 130, 233–270 (1987)

    Article  Google Scholar 

  • Kuto, K.: Stability of steady-state solutions to a prey–predator system with cross-diffusion. J. Differ. Equ. 197, 293–314 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Kuto, K., Yamada, Y.: Multiple coexistence states for a prey–predator system with cross-diffusion. J. Differ. Equ. 197, 315–348 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, J.M., Hilllen, T., Lewis, M.A.: Continuous traveling waves for prey-taxis. Bull. Math. Biol. 70, 654–676 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, J.M., Hilllen, T., Lewis, M.A.: Pattern formation in prey-taxis systems. J. Biol. Dyn. 3, 551–573 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, X., Jiang, W.H., Shi, J.-P.: Hopf bifurcation and turing instability in the reaction–diffusion Holling–Tanner predator–prey model. IMA J. Appl. Math. 78, 287–306 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, J.-J., Wang, W., Zhao, C., Yang, T.-H.: Global dynamics and traveling wave solutions of two predators–one prey models. Discrete Contin. Dyn. Syst. Ser. B 20, 1135–1154 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Loladze, I., Kuang, Y., Elser, J.-J., Fagan, W.-F.: Competition and stoichiometry: coexistence of two predators on one prey. Theor. Popul. Biol. 65, 1–15 (2004)

    Article  MATH  Google Scholar 

  • Ma, Z.-P., Li, W.-T.: Bifurcation analysis on a diffusive Holling–Tanner predator–prey model. Appl. Math. Model. 37, 4371–4384 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • May, R.M.: Stability and complexity in model ecosystems, 2nd edn. Princeton University Press, Princeton (1974)

    Google Scholar 

  • Painter, K., Hillen, T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Q. 10, 501–543 (2002)

    MathSciNet  MATH  Google Scholar 

  • Painter, K., Hillen, T.: Spatio-temporal chaos in a chemotaxis model. Phys. D 240, 363–375 (2011)

    Article  MATH  Google Scholar 

  • Peng, R., Shi, J.: Non-existence of non-constant positive steady states of two Holling type-II predator–prey systems: strong interaction case. J. Differ. Equ. 247, 866–886 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Peng, R., Wang, M.-X.: Positive steady states of the Holling–Tanner prey–predator model with diffusion. Proc. R. Soc. Edinb. Sect. A 135, 149–164 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Peng, R., Wang, M.-X.: Global stability of the equilibrium of a diffusive Holling–Tanner prey–predator model. Appl. Math. Lett. 20, 664–670 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Peng, R., Wang, M.-X., Yang, G.-Y.: Stationary patterns of the Holling–Tanner prey–predator model with diffusion and cross-diffusion. Appl. Math. Comput. 196, 570–577 (2008)

    MathSciNet  MATH  Google Scholar 

  • Potapov, A.B., Hillen, T.: Metastability in chemotaxis models. J. Dyn. Differ. Equ. 17, 293–330 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Sáez, E., González-Olivares, E.: Dynamics of a predator–prey model. SIAM J. Appl. Math. 59, 1867–1878 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Sapoukhina, N., Tyutyunov, Y., Arditi, R.: The role of prey taxis in biological control: a spatial theoretical model. Am. Nat. 162, 61–76 (2003)

    Article  Google Scholar 

  • Shi, H.-B., Ruan, S.: Spatial, temporal and spatiotemporal patterns of diffusive predator–prey models with mutual interference. IMA J. Appl. Math. 80, 1534–1568 (2015)

  • Shi, H.-B., Li, W.-T., Lina, G.: Positive steady states of a diffusive predator–prey system with modified Holling–Tanner functional response. Nonlinear Anal. RWA 11, 3711–3721 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Shi, J., Wang, X.: On global bifurcation for quasilinear elliptic systems on bounded domains. J. Differ. Equ. 246, 2788–2812 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Tanner, J.T.: The stability and the intrinsic growth rates of prey and predator populations. Ecology 56, 855–867 (1975)

    Article  Google Scholar 

  • Tao, Y.: Global existence of classical solutions to a predator–prey model with nonlinear prey-taxis. Nonlinear Anal. RWA 11, 2056–2064 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Tello, J.I., Winkler, M.: Stabilization in a two-species chemotaxis system with a logistic source. Nonlinearity 25, 1413–1425 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Ton, T., Hieu, N.: Dynamics of species in a model with two predators and one prey. Nonlinear Anal. TMA 74, 4868–4881 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, K., Wang, Q., Yu, F.: Stationary and time periodic patterns of two-predator and one-prey systems with prey-taxis (2015) (preprint). arxiv:1508.03909

  • Wang, Q., Gai, C., Yan, J.: Qualitative analysis of a Lotka–Volterra competition system with advection. Discrete Contin. Dyn. Syst. 35, 1239–1284 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Q., Yang, J., Zhang, L.: Time periodic and stable patterns of a two-competing-species Keller–Segel chemotaxis model effect of cellular growth (2015) (preprint). arxiv:1505.06463

  • Wang, Q., Zhang, L., Yang, J., Hu, J.: Global existence and steady states of a two competing species Keller–Segel chemotaxis model. Kinet. Relat. Models 8, 777–807 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, X., Wang, W., Zhang, G.: Global bifurcation of solutions for a predator–prey model with prey-taxis. Math. Methods Appl. Sci. 38, 431–443 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Y.-X., Li, W.-T.: Spatial patterns of the Holling–Tanner predator–prey model with nonlinear diffusion effects. Appl. Anal. 92, 2168–2181 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Wollkind, D.J., Collings, J.B., Logan, J.: Metastability in a temperature-dependent model system for predator–prey mite outbreak interactions on fruit trees. Bull. Math. Biol. 50, 379–409 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, J., Kim, C.-G., Shi, J.: Positive steady state solutions of a diffusive Leslie–Gower predator–prey model with Holling type II functional response and cross-diffusion. Discrete Contin. Dyn. Syst. 34, 3875–3899 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Qi Wang is partially supported by NSF-China (Grant No. 11501460) and the Project (No. 15ZA0382) from Department of Education, Sichuan China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Additional information

Communicated by Michael Ward.

Appendix

Appendix

In this Appendix, we determine the direction of the pitchfork branch \(\Gamma _{k}(s)\) for system (3.1) with general population kinetics. According to Theorem 4.2 and Corollary 1, the only stable local branch must be \(\Gamma _{k_0}(s)\), \(s\in (-\delta ,\delta )\), and its stability is determined by the turning direction, while all the rest are always unstable. We see that each bifurcation branch \(\Gamma _{k}\) turns to the right if \(\mathcal K_2>0\) and it turns to the left if \(\mathcal K_2<0\). Therefore, we shall need to evaluate the sign of \(\mathcal K_2\) in order to determine the stability of the stationary solution to (1.1).

Our calculations apply for each \(k\in \mathbb N^+\), and in order to evaluate \(\mathcal {K}_2\), we proceed as follows. By the asymptotic expansions (4.1)–(4.4), we equate \(s^3\)-terms in the second equation of (3.1)

$$\begin{aligned}&d_2\psi ''_2+\bar{g}_u\varphi _2+\bar{g}_v\psi _2\nonumber \\&\qquad +\left( \bar{g}_{uu}+\bar{g}_{uv} Q_k \right) \varphi _1\cos \frac{k\pi x}{L}+\left( \bar{g}_{uv}+\bar{g}_{vv} Q_k \right) \psi _1\cos \frac{k\pi x}{L}\nonumber \\&\qquad +\frac{1}{6}\left( \bar{g}_{uuu}+3\bar{g}_{uuv} Q_k+3\bar{g}_{uvv} Q^2_k+\bar{g}_{vvv} Q^3_k \right) \cos ^3\frac{k\pi x}{L}\nonumber \\&\quad =\chi _k\left( \bar{\phi }\varphi ''_2 +\left( \bar{\phi }_u+\bar{\phi }_v Q_k \right) \left( \varphi '_1\cos \frac{k\pi x}{L}\right) ' +\bar{\phi }_u \left( \varphi _1\cos '\frac{k\pi x}{L}\right) '\right. \nonumber \\&\qquad +\bar{\phi }_v\left( \psi _1\cos '\frac{k\pi x}{L}\right) '\nonumber \\&\qquad \left. +\frac{1}{2}\left( \bar{\phi }_{uu}+2\bar{\phi }_{uv} Q_k+\bar{\phi }_{vv} Q^2_k \right) \left( \cos ^2\frac{k\pi x}{L}\cos '\frac{k\pi x}{L}\right) '\right) \nonumber \\&\qquad +\mathcal {K}_2\bar{\phi }\cos ''\frac{k\pi x}{L}. \end{aligned}$$
(6.1)

In order to obtain closed formula of \(\mathcal K_2\), we collect the following identities which can be easily obtained through straightforward calculations,

$$\begin{aligned}&\left\{ \begin{array}{ll} \int _0^L\varphi _1\cos ^2\frac{k\pi x}{L}\hbox {d}x=\frac{1}{2}\int _0^L\varphi _1\cos \frac{2k\pi x}{L}\hbox {d}x+\frac{1}{2}\int _0^L\varphi _1\hbox {d}x, \\ \int _0^L\psi _1\cos ^2\frac{k\pi x}{L}\hbox {d}x=\frac{1}{2}\int _0^L\psi _1\cos \frac{2k\pi x}{L}\hbox {d}x+\frac{1}{2}\int _0^L\psi _1\hbox {d}x, \end{array} \right. \end{aligned}$$
(6.2)
$$\begin{aligned}&\left\{ \begin{array}{ll} \int _0^L\left( \varphi '_1\cos \frac{k\pi x}{L}\right) '\cos \frac{k\pi x}{L}\hbox {d}x=-\left( \frac{k\pi }{L}\right) ^2\int _0^L\varphi _1\cos \frac{2k\pi x}{L}\hbox {d}x,\\ \int _0^L\left( \varphi _1\cos '\frac{k\pi x}{L}\right) '\cos \frac{k\pi x}{L}\hbox {d}x=\frac{1}{2}\left( \frac{k\pi }{L}\right) ^2 \left( \int _0^L\varphi _1\cos \frac{2k\pi x}{L}\hbox {d}x-\int _0^L\varphi _1\hbox {d}x \right) ,\\ \int _0^L\left( \psi _1\cos '\frac{k\pi x}{L}\right) '\cos \frac{k\pi x}{L}\hbox {d}x=\frac{1}{2}\left( \frac{k\pi }{L}\right) ^2 \left( \int _0^L\psi _1\cos \frac{2k\pi x}{L}\hbox {d}x-\int _0^L\psi _1\hbox {d}x \right) , \end{array} \right. \nonumber \\ \end{aligned}$$
(6.3)

and

$$\begin{aligned} \left\{ \begin{array}{ll} \int _0^L\cos ^4\frac{k\pi x}{L}\hbox {d}x=\frac{3}{8}L,\\ \int _0^L\left( \cos ^2\frac{k\pi x}{L}\cos '\frac{k\pi x}{L}\right) '\cos \frac{k\pi x}{L}\hbox {d}x=-\frac{k^2\pi ^2}{8L}. \end{array} \right. \end{aligned}$$
(6.4)

Multiplying (6.1) by \(\cos \frac{k\pi x}{L}\) and integrating it over (0, L) by parts, we conclude from (6.2)–(6.4) that

$$\begin{aligned} \mathcal {K}_2&=-\frac{2L}{\bar{\phi }(k\pi )^2}\left( A_1\int _0^L\varphi _2\cos \frac{k\pi x}{L}\hbox {d}x+A_2\int _0^L\psi _2\cos \frac{k\pi x}{L}\hbox {d}x+A_3\int _0^L\varphi _1\cos \frac{2k\pi x}{L}\hbox {d}x\right. \nonumber \\&\left. \qquad +A_4\int _0^L\psi _1\cos \frac{2k\pi x}{L}\hbox {d}x+A_5\int _0^L\varphi _1\hbox {d}x+A_6\int _0^L\psi _1\hbox {d}x+A_7\right) , \end{aligned}$$
(6.5)

where we denote

$$\begin{aligned} A_1= & {} \chi _k\bar{\phi }\left( \frac{k\pi }{L}\right) ^2+\bar{g}_u, A_2=-d_2\left( \frac{k\pi }{L}\right) ^2+\bar{g}_v,\\ A_3= & {} \frac{1}{2}(\bar{g}_{uu}+\bar{g}_{uv} Q_k)+\chi _k\left( \frac{1}{2}\bar{\phi }_u+\bar{\phi }_v Q_k\right) \left( \frac{k\pi }{L}\right) ^2,\\ A_4= & {} \frac{1}{2}\left( \bar{g}_{uv}+\bar{g}_{vv} Q_k \right) -\frac{1}{2}\chi _k\bar{\phi }_v\left( \frac{k\pi }{L}\right) ^2,\\ A_5= & {} \frac{1}{2}\left( \bar{g}_{uu}+\bar{g}_{uv} Q_k \right) +\frac{1}{2}\chi _k\bar{\phi }_u\left( \frac{k\pi }{L}\right) ^2,\\ A_6= & {} \frac{1}{2}\left( \bar{g}_{uv}+\bar{g}_{vv} Q_k \right) +\frac{1}{2}\chi _k\bar{\phi }_v\left( \frac{k\pi }{L}\right) ^2, \end{aligned}$$

and

$$\begin{aligned} A_7= & {} \frac{L}{16}\left( \left( \bar{g}_{uuu}+3\bar{g}_{uuv} Q_k+3\bar{g}_{uvv} Q^2_k+\bar{g}_{vvv} Q^3_k \right) \right. \\&\left. +\chi _k\left( \frac{k\pi }{L}\right) ^2\left( \bar{\phi }_{uu}+2\bar{\phi }_{uv} Q_k+ \bar{\phi }_{vv} Q^2_k \right) \right) . \end{aligned}$$

Equating \(s^3\)-terms in the first equation of (3.1), we have that

$$\begin{aligned}&d_1\varphi ''_2+\bar{f}_u\varphi _2+\bar{f}_v\psi _2\nonumber \\&\quad +\left( \bar{f}_{uu} +\bar{f}_{uv} Q_k \right) \varphi _1\cos \frac{k\pi x}{L}+\left( \bar{f}_{uv} +\bar{f}_{vv} Q_k \right) \psi _1\cos \frac{k\pi x}{L}\nonumber \\&\quad +\frac{1}{6}\left( \bar{f}_{uuu}+3\bar{f}_{uuv} Q_k+3\bar{f}_{uvv} Q^2_k+\bar{f}_{vvv} Q^3_k\right) \cos ^3\frac{k\pi x}{L}=0. \end{aligned}$$
(6.6)

Multiplying (6.6) by \(\cos \frac{k\pi x}{L}\) and integrating it over (0, L) lead us to

$$\begin{aligned} \left( -d_1\big (\frac{k\pi }{L}\big )^2+\bar{f}_u \right) \int _0^L \varphi _2 \cos \frac{k\pi x}{L}\hbox {d}x +\bar{f}_v\int _0^L \psi _2 \cos \frac{k\pi x}{L}\hbox {d}x =C_0, \end{aligned}$$
(6.7)

where

$$\begin{aligned} C_0=&-\frac{1}{2}\left( \bar{f}_{uu} +\bar{f}_{uv} Q_k \right) \int _0^L \varphi _1 \cos \frac{2k\pi x}{L}\hbox {d}x\\&-\frac{1}{2}\left( \bar{f}_{uv} +\bar{f}_{vv} Q_k \right) \int _0^L \psi _1 \cos \frac{2k\pi x}{L}\hbox {d}x\\&-\frac{1}{2}\left( \bar{f}_{uu} +\bar{f}_{uv} Q_k \right) \int _0^L \varphi _1\hbox {d}x -\frac{1}{2}\left( \bar{f}_{uv} +\bar{f}_{vv} Q_k \right) \int _0^L \psi _1\hbox {d}x\\&-\frac{L}{16}\left( \bar{f}_{uuu}+3\bar{f}_{uuv} Q_k+3\bar{f}_{uvv} Q^2_k+\bar{f}_{vvv} Q^3_k\right) . \end{aligned}$$

On the other hand, since \((\varphi _2,\psi _2)\in \mathcal {Z}\) as defined in (3.14), we have that

$$\begin{aligned} \bar{f}_v\int _0^L \varphi _2 \cos \frac{k\pi x}{L}\hbox {d}x +\left( d_1\left( \frac{k\pi }{L}\right) ^2-\bar{f}_u\right) \int _0^L \psi _2 \cos \frac{k\pi x}{L}\hbox {d}x =0. \end{aligned}$$
(6.8)

Combining (6.7) and (6.8) gives

$$\begin{aligned} \begin{pmatrix} -d_1\left( \frac{k\pi }{L}\right) ^2+\bar{f}_u &{} \bar{f}_v \\ \bar{f}_v &{} d_1\left( \frac{k\pi }{L}\right) ^2-\bar{f}_u \end{pmatrix} \begin{pmatrix} \int _0^L \varphi _2 \cos \frac{k\pi x}{L} \hbox {d}x \\ \int _0^L \psi _2 \cos \frac{k\pi x}{L} \hbox {d}x \end{pmatrix} = \begin{pmatrix} C_0 \\ 0 \end{pmatrix} \end{aligned}$$
(6.9)

and solving (6.9) gives

$$\begin{aligned} \int _0^L \varphi _2 \cos \frac{k\pi x}{L}\hbox {d}x =\frac{B_1}{B_0}, \int _0^L \psi _2 \cos \frac{k\pi x}{L}\hbox {d}x =\frac{B_2}{B_0}, \end{aligned}$$
(6.10)

where

$$\begin{aligned} B_0=-\left( d_1\left( \frac{k\pi }{L}\right) ^2-\bar{f}_u \right) ^2-\bar{f}^2_v, B_1=C_0\left( d_1\left( \frac{k\pi }{L}\right) ^2-\bar{f}_u \right) , B_2=-\bar{f}_v C_0. \end{aligned}$$

Finally, we need to evaluate \(\int _0^L\varphi _1\hbox {d}x\), \(\int _0^L\psi _1\hbox {d}x\), \(\int _0^L\varphi _1\cos \frac{2k\pi x}{L}\hbox {d}x\), and \(\int _0^L\psi _1\cos \frac{2k\pi x}{L}\hbox {d}x\).

Integrating (4.5) and (4.7) over (0, L), we have that

$$\begin{aligned} \begin{pmatrix} \bar{f}_u &{} \bar{f}_v \\ \bar{g}_u &{} \bar{g}_v \end{pmatrix} \begin{pmatrix} \int _0^L\varphi _1\hbox {d}x \\ \int _0^L\psi _1\hbox {d}x \end{pmatrix} = \begin{pmatrix} -\frac{L}{4}\left( \bar{f}_{uu} +2\bar{f}_{uv} Q_k+\bar{f}_{vv} Q^2_k \right) \\ -\frac{L}{4}\left( \bar{g}_{uu} +2\bar{g}_{uv} Q_k+\bar{g}_{vv} Q^2_k \right) \end{pmatrix}. \end{aligned}$$
(6.11)

Solving (6.11) gives us

$$\begin{aligned} \int _0^L\varphi _1\hbox {d}x =\frac{D_1}{D_0}, \int _0^L\psi _1\hbox {d}x =\frac{D_2}{D_0}, \end{aligned}$$
(6.12)

where

$$\begin{aligned} D_0= & {} \bar{f}_u\bar{g}_v-\bar{f}_v\bar{g}_u,\\ D_1= & {} -\frac{L}{4}\left( \left( \bar{f}_{uu} +2\bar{f}_{uv} Q_k+\bar{f}_{vv} Q^2_k \right) \bar{g}_v-\left( \bar{g}_{uu} +2\bar{g}_{uv} Q_k+\bar{g}_{vv} Q^2_k \right) \bar{f}_v\right) ,\\ D_2= & {} \frac{L}{4}\left( \left( \bar{f}_{uu} +2\bar{f}_{uv} Q_k+\bar{f}_{vv} Q^2_k \right) \bar{g}_u-\left( \bar{g}_{uu} +2\bar{g}_{uv} Q_k+\bar{g}_{vv} Q^2_k \right) \bar{f}_u\right) . \end{aligned}$$

Multiplying (4.5) and (4.7) by \(\cos \frac{2k\pi x}{L}\) and then integrating them over (0, L) by part, we have that

$$\begin{aligned} \begin{pmatrix} -d_1\left( \frac{2k\pi }{L}\right) ^2+\bar{f}_u&{}\bar{f}_v \\ \chi _k \bar{\phi }\left( \frac{2k\pi }{L}\right) ^2+\bar{g}_u&{} -d_2\left( \frac{2k\pi }{L}\right) ^2+\bar{g}_v \end{pmatrix} \begin{pmatrix} \int _0^L\varphi _1\cos \frac{2k\pi x}{L}\hbox {d}x\\ \int _0^L\psi _1\cos \frac{2k\pi x}{L}\hbox {d}x \end{pmatrix} = \begin{pmatrix} C_3 \\ C_4 \end{pmatrix}. \end{aligned}$$
(6.13)

where

$$\begin{aligned} C_3= & {} -\frac{L}{8}\left( \bar{f}_{uu} +2\bar{f}_{uv} Q_k+\bar{f}_{vv} Q^2_k \right) ,\\ C_4= & {} -\frac{L}{8}\left( \bar{g}_{uu} +2\bar{g}_{uv} Q_k+\bar{g}_{vv} Q^2_k \right) -\frac{k^2\pi ^2}{2L}\chi _k \left( \bar{\phi }_u+\bar{\phi }_v Q_k \right) . \end{aligned}$$

Solving (6.13) gives us

$$\begin{aligned} \int ^0_L\varphi _1\cos \frac{2k\pi x}{L}\hbox {d}x =\frac{E_1}{E_0}, \int ^0_L\psi _1\cos \frac{2k\pi x}{L}\hbox {d}x =\frac{E_2}{E_0}, \end{aligned}$$
(6.14)

where

$$\begin{aligned} E_0= & {} \left( -d_1\left( \frac{2k\pi }{L}\right) ^2+\bar{f}_u \right) \left( -d_2\left( \frac{2k\pi }{L}\right) ^2+\bar{g}_v \right) -\left( \chi _k \bar{\phi }\big (\frac{2k\pi }{L}\big )^2+\bar{g}_u \right) \bar{f}_v,\\ E_1= & {} C_3\left( -d_2\left( \frac{2k\pi }{L}\right) ^2+\bar{g}_v \right) -C_4\bar{f}_v, \end{aligned}$$

and

$$\begin{aligned} E_2=\left( -d_1\left( \frac{2k\pi }{L}\right) ^2+\bar{f}_u \right) C_4-\left( \chi _k \bar{\phi }\left( \frac{2k\pi }{L}\right) ^2+\bar{g}_u \right) C_3. \end{aligned}$$

We point out that \(E_0\) is always nonzero thanks to (3.12).

In light of (6.10), (6.12), and (6.14), we are able to represent \(\mathcal K_2\) in (6.5) in terms of system parameters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Song, Y. & Shao, L. Nonconstant Positive Steady States and Pattern Formation of 1D Prey-Taxis Systems. J Nonlinear Sci 27, 71–97 (2017). https://doi.org/10.1007/s00332-016-9326-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-016-9326-5

Keywords

Mathematics Subject Classification

Navigation