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The Sobolev stability threshold for 2D shear flows near Coué¢

Jacob Bedrossian, Vlad Vicol, and Fei Wang

ABSTRACT. We consider the 2D Navier-Stokes equatiorilor R, with initial datum that ig-close

in A" to a shear flow(U(y),0), where||U(y) — y||yv+a < 1 andN > 1. We prove that if

e < v'/?, wherev denotes the inverse Reynolds number, then the solutioneoN#vier-Stokes
equation remains-close inH " to (¢*?vv U (y), 0) for all t > 0. Moreover, the solution converges to

a decaying shear flow for timeéss '/ by a mixing-enhanced dissipation effect, and experiences
a transient growth of gradients. In particular, this shdve the stability threshold in finite regularity
scales no worse than/? for 2D shear flows close to the Couette flow. July 17, 2018.

1. Introduction

A fundamental problem in the field of hydrodynamic stabil&yto assess the stability of shear
flows in the (2D or 3D) Navier-Stokes equations at high Regsalumber — 0); see e.g. the
texts DR81, SHOL, YaglZ and the references therein.

In this paper we consider the incompressible 2D Navier&taquations

ov+v-Vo—vAv+Vp=0, V-v=0, (1.1a)
o(t =0) = Vi (1.1b)
on the domaif) = {(z,y) € T x R}, wherev denotes the inverse Reynolds number. Heig the
periodized interval0, 1]. The initial datumu;, is taken to be a small perturbation of a shear flow
profile (U(y),0), and we write
:Jin(wa y) = (U(y)7 0) + @in('x7 y)
If 7in, = 0, the solution of the 2D Navier-Stokes equati@rilg—(1.1b) is given by the heat evolution
of the shear profile, i.e.
(U(t,y),0) = (" U(y),0). (1.2)

In this paper we are concerned only with shed(g) which satisfy||0,U — 1| ;. < 1 for s large
enough (see Theorefnl below for precise requirement) and hence are close to thet@ofiow
U(y) = y. For small (but nontrivialy;,, we look for a solutiorny as a perturbation of this decaying
shear profile and define

ot z,y) = (U(t,y),0) +o(t, z,y)
with the equations satisfied laybeing obtained from1(19—(1.1b) as
0+ U0 0 +0-Vo—vAv+ (U1Y,0) +Vp=0, V- -0=0, (1.3a)
o(t = 0) = Vyy. (1.3b)
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In (1.39 we have used the notatidi’ = 9,U, anda¥ for the second, i.ey, component of the
vector fieldo. Taking the curl of equationl(3g and denoting

w = curl v,

we obtain the vorticity formulation of the perturbed Navitokes equation

wi +U0pw +0-Vw=U"0,0 +vAw (1.4a)
A = w (1.4b)

7=Vt (1.4c)

w(t =0) = Win, (1.4d)

where we have used the notatiol = d,,U andV+ = (—3,, ;). In (1.4b) the stream function
is taken to have zero mean oveyso that we may writ¢) = —(—A)~lwands = —-V+(—-A)lw.

1.1. Statement and discussion of the main resultThe purpose of this paper is to study the
long-time dynamics of the perturbatiansolving (L.4) in the high Reynolds number limit — 0.

Our main goal is to estimate tistability thresholdfor the solutionU (¢, ), and in particular, to
determine how it scales with respectito That is, given anV > 1, try to find thesmallesty > 0
such that|wi, || ;v = € < v implies that the perturbatiom remains small inL> N H~1, and to
determine the dynamics of such stable solutions. We shalttss stability uniformly inv in H*
for anys > 0 is necessarily false as the solution undergoes a largadrdargrowth in these norms
due to the mixing caused by the shear.

At high Reynolds number, in 3D experiments and computer lsitimms, nonlinear instability is
often observed at a lower Reynolds numbers than what isqieetby linear theory. This is usually
referred to asubcritical transitionf]SHO1, Yag12. In some cases, such ds4), the flow is linearly
stable at all Reynolds numbers, but the nonlinear stalthiitgshold might be decreasing:as- 0,
resulting in instability at a finite Reynolds number in anpesiment or simulation. Hencgijven a
norm|-|| v, the goal is to determinea= ~(X) such that (naturally we do not know a priori that it
is a power law),

|winllx Sv = stability
|win||x >v? = possible instability

In the applied math and physics literatueis sometimes referred to as ttransition threshold

The minimal value ofy is expected to depend non-trivially on the noftm For example, in
the numerical experiments o0REBH98 on 3D Couette flow, it is estimated that “rough” initial
perturbations (e.g. weakeé¥) result in a highery. In the case 08D Couette flow, it was shown
in [BGM15a, BGM15b] thaty = 1 for X taken as Gevreys with m < 2, and thaty < 3/2 for
X = H~ for s > 7/2 in [BGM15c] (the latter estimate is consistent with the numericahestion
of 31/20 given in RSBH99).

However, for the2D Couette flow, it was shown irBMV16] that in facty = 0 for X taken as
Gevreysm with m < 2. That is, for initial perturbations taken sufficiently snilmothe Couette flow
is uniformly stable at high Reynolds number and theradasubcritical transition. It was shown
earlier in BM13] that the Couette flow is also nonlinearly stable (in a slé&a®nse) for the 2D
Euler equations, the case= 0, for such sufficiently smooth Gevrey perturbations.

In this paper, we estimate the stability threshold in 2D, imo®obolev regularitfas opposed to
in a Gevrey classHMV16]). Asin 3D, we could expect the stability threshold in Sabholegularity
to be worse than in a Gevrey class (or at least, our estimatigecftability threshold). Indeed, it
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follows from [LZ11] for that topologiesX which are weaker tha#/?/2, we should expect > 0
even for the Couette flowl'he stability threshold we estimateyis< 1/2. Our main result is:

THEOREM1.1. LetN > 1,0 < v < 1, andC > 1 be a sufficiently large constant depending
only onN (in particular, it is independent aof). Consider a shear floW = U(y) such that

10" = Ulgs @y + 10" sy =0 < C7F
for somes > 2 + N and ¢ independent of. Assume that the initial perturbation obeys

”winHHN(Q) + H’DinHm(Q) —e<C W2 (1.5)

Then the global in time solution to (1.48—1.4d) obeys
191] Loo (0,005202)) + 100l £oo (0,003 (02)) + v1/? IVwoll £2(0 0013 (02)) < CE (1.6a)
lwo (@ +tU(t,5),9) || oo 0 posrv () < C€ (1.6b)

and we have the enhanced dissipation estimate
lwazll 220,00, (@) < Cev™1/S. (1.7)

In (1.6«1.7) we have denoted by the projection ofu onto its nonzero Fourier modes with respect
to x, and byw, the projection ofv onto the zero Fourier mode with respectitdsee alsd1.10).

REMARK 1.2. Estimate.7) encodes that the time-scale on which the deviation fronmtban
in  is decaying is mucliaster than the heat equation time-scékehich would ber—1/2). This
“enhanced dissipation” effect is the key to this work, andissussed further below in Sectidr2

REMARK 1.3. Notice that Theorem.l is neither stronger nor weaker than the results of
[BMV16]. In [BMV16], much stronger regularity hypotheses are taken, howevesn be cho-
sen independently of, whereas in Theorerh.l, the data is permitted to be much rougher but is
instead required to be much smaller, specifically v'/2.

REMARK 1.4. The composition inl(6b) looks slightly non-standard, but note tHatt, ) is
essentially constant (in time) until> v, at which pointu_ is essentially zero byl(7).

REMARK 1.5. The regularity assumptiaN > 1 arises due to the fact that this is the smallest
Sobolev exponent which guarantees the local in time wedkdoess of the underlying 2D Euler
equation ¢ = 0). Since our constants are all independent dfvhich may be taken arbitrarily
small), such a requirement on the sizeNdis arguably natural.

REMARK 1.6. Using techniques fronBMV16], one can slightly weaken the regularity re-
quirement L.5) via local parabolic smoothing. Specifically, if one canaeposev;, = wf + Wii
such that for am > 0 we havel|ws [| v ) + /2™ [|wf|| 2 + (|6l 12y = & <yn v/, then
the conclusions of Theorefh1 apply, except that the inequalitiet.¢) and (L.7) hold over(1, co).

REMARK 1.7. Naturally, the values = 1/2 is much lower than for 3D Couette in Sobolev
spaces (in 3D, the estimated value is. 3/2 [BGM15c], consistent also with numericREBH99).
The major differences between 2D and 3D are due to: the lzexhi3D Couette flow induces
vortex stretching and a 3D non-normal transient growth kmas the lift-up effect; the class of
z-independent flows is much larger in 3D; and the nonlinedwity a much more problematic “non-
linear resonance” structure in 3D (s&&3dM15a] for more discussion). It seems difficult to lower
~ here without confronting the main nonlinear source of ragtyl losses encountered in the case of
Gevrey initial datumBM13, BMV16]. See Subsectioh.2 below for more discussion.
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In order to fix the main ideas of the proof, we first prove Theoielin the case of the Couette
flow U(y) = y (see Sectio below). The advantage here is thiat, yy) = y for all t > 0, and thus
the change of coordinates we use to account for the fastaatithe shear flow is trivial (cf.4.1)).
Moreover, the cas&/(y) = y has the advantage that the linearized Navier-Stokes egsalick
the U” velocity term (see e.g. the right side df.49) and that the Biot-Savart law is a Fourier
multiplier in the new variables. These make the proof of Theol.1lin the case of Couette more
transparent. At the linear level, the main effects we takeaathge of are inviscid damping and
enhanced dissipation (see Sectio@below).

In proving Theoreml.1for the more general class of shear flows which are “close ie@Ge’,
we use the same main ideas as in the Couette case (e.g. thengam)e but we are faced with a
number of technical difficulties due to a more complicatednge of coordinates (cf3(3)) which
needs to be adapted to the decaying shear. For example, @eémbetter quantify the transfer of
kinetic energy from the non-zero modes (with respeci)tto the zero one. At the technical level,
we also need to consider a number of new commutators betlwedfourier multipliers that define
the norm and multiplication operators with functionsyofThese details are given in Sectigr2

1.2. The linearized problem: inviscid damping and enhancedissipation. Before address-
ing the nonlinear problem, it is important to understandgtaperties of the linearized problem in
the casdJ(t,y) = y, which we review here; see alsBY1V16] for similar discussions. In the case
U(t,y) =y, the linearization of1.4) becomes

Ow + yOrw = VAw
AY = w.

These equations were first solved by Kelvinike[87]. The solution is given, in Fourier space, by

t
@(t, k,n) = Gin(k,n + kt) exp {—V/ K+ n—k(r —t)dr|.
0

From this formula, one verifies the enhanced dissipaticceffor some universal > 0 there holds

o)l 2 S lwinll 2 =,
which explains the accelerated time-scdler). Physically, the fast mixing of the Couette flow is
sending information to high frequencies linearly in timehancing the viscous damping at the cor-
responding rate. This mixing-enhanced dissipation effecelated mechanisms have been studied
in many works on linear equations, for example, @GKRZ08, GGNOQ9, Zlal10, BW13, VDPS15
BCZGH15, BCZ15] and in the physics literaturd.in82, RY83, DN94, LB01, BL94]. This effect
implies that solutions strongly converge to a slowly desgyshear flow after times like> v /3,

A related, but more subtle effect, is that of inviscid dangpifirst noticed by Orr in(Qrr07].
For this, note that

~ Win(k,n + kt) L, 5
Dt k, :—exp[—V/ K24 —k(r — )2 dr
(t, k,n) R ; In —k(r —1)]
1 t
— ket) 2 t - 24— k(r—t)]?
(k2+772)(77+kt>2<77+ ) @ (k:,n—l—k:)exp[ 1//0 kE*+|n—k(r—t)|dr|,

which implies

1 —et?
[z 2 S GE lwinll 72 ™" (1.8)
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In particular, it follows that there is some decay whichndependent of Reynolds numpand
indeed is present even in the case- 0. Moreover, by similar arguments, one has

1 3
10502 ()| 2 + () 10y ()] 2 S w2 leinl| 2 €=, (1.9)

which implies that the velocity field converges back to a sffilea even at infinite Reynolds number.
The namdnviscid dampings due to its relationship with Landau damping in plasma psyésee
[LZ11, Zil14, BM13, WZZ15] and the references therein for more discussion on invidardping
and [CM98, Ryu99, MV11, BMM13] for discussions regarding Landau damping). The regylarit
loss in (L.9) is physically meaningful and in particular is connectedattransient (non-normal)
unmixing effect known as the Orr mechanism. Wheis too small, this loss makes it impossible to
naively close the kind of regularity estimates requiredpplya (1.8) due to the large derivative loss
in the right hand side (se8M13] for a more in-depth discussion). Physically, this marnifess the
nonlinear echo resonancélp02, YDOO5, MV11, BM13]. In this paper we are able to balance this
difficulty with the enhanced dissipation. This balance isatets the requiremenat< /2 used
here (see e.g. the treatment of estimatéd below).

1.3. Notations used in this paper.Throughout this paper, we write

(x) = V/1+ a2

For a functioni(zx, y), denote by

holy) = /T W) dr and h(r.y) = h(z,y) — ho(y), (1.10)

the projections ont® frequencies with respect toand the projection onto non-zero frequencies,
respectively. By convention, we uggl to represent the Fourier variable of while &, n are the
Fourier variable ofy. The Fourier transform of a functiom is denoted byi(k, ). We use the
notation f < ¢ to expressf < Cg for some constanf’ > 0 that is independent of the param-
eters of interest and usé < g when f < gyg for someuniversalconstantz, sufficiently close

to 0. The notationL?L? = LYL , is used for the Banach spadé ([0, 7]; LY(©2)) with norm
1Ft ) B = fo (J 1£19 dx)p/q dt wherep,q € [1,00] andT > 0. We also use the space

LPH® = Ly H; , whose norm is giveti |7, . = fOT | fII%;s dt for p € [1,00] ands > 0.

2. Stability threshold for the Couette flow

In order to introduce several of the main ideas of the proef fivet prove Theorem.lin the

case thal/(y) = U(t,y) = y. We change coordinates to mod out by the fast mixing of thee@eu
flow, however, unlike the previous works on Navier-Stokes Baler BM13, BMV16, BGM15a,
BGM15b, BGM15c], we do not need a coordinate change that depends on thesalself:

z=x—tv (2.1a)
v=1. (2.1b)

The changev — y is made only to unify with Sectio8 below. If we then writef (¢, z,v) =
w(t, z + tv,v), the Navier-Stokes equationk.{) become

Of+u-Vif=vArLf (2.2a)
u=-Vi(-Ap)'f, (2.2b)
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where

0,
Vi = (&; - taz> (2.33)
Ap =V -V =0..+ (0, —td.)> (2.3b)
The following statement in the new coordinates then impliesoreml.1 (in the casé/(y) = v).

THEOREM2.1. LetN > 1 and assumé fi,|| v = € < v'/2 with 0 < v < 1. Then the unique
global in time solutionf to (2.29—2.2b) is such that
£l poe i + 2NV L F  p2mn Se, (2.4)
and
£l popn S ev 1S, (2.5)
where the implicit constants do not dependwoor on the initial datum.
The norm we employ is based on a special, time-dependenigfouultiplier which is designed
to capture transient unmixing effects in the linearizatiowl its effect on the nonlinear problem. This
particular technique was first introduced BM13], although the norm we use is more similar to

the 3D Sobolev regularity worlkg[GM15c]. We specifically employ a Fourier multipliev/ which
obeys the properties:

M(0,k, &) = M(2,0,¢) =1 (2.6a)
> M(t,k,§) >c (2.6b)

M I
37 2 ENRTE fork #0 (2.6¢)
83%&’5)' < ﬁ for k # 0, uniformly in & (2.6d)

1<y Y6 (\/—MM(t, ko) + v 2| kn — kt\) for k 0 (2.6€)
VMMt k) S (n— &\ —MM(t, k, €), (2.6f)

for a constant: € (0,1) which is independent af. The construction of such a multiplié¥/ is
given in AppendixA below and is similar to one used iIBGEM15c¢] (some aspects of the multiplier
also appeared irZfl14]). See LemmaA.1 in AppendixA for details.

PrROOF OFTHEOREM 2.1. Defining

A= M(D)V,
where(D) = /1 + D?2, it follows from Plancherel’s inequality an@.@b) that
I llgn Se [A@) fllzz < N fllgw, (2.7)

and that||A(0) ||, = || f|lz~. It is important to note that such a simple equivalence t@adsird
norm (uniform inv andt) has not been true in most previous works using similar leouniultiplier-
based technique8M13, BMV16, BGM15a, BGM15b, BGM15c]; the exception beingZil14].
This distinction is one of the primary reasons that the pafofheoreml.1 is significantly less
technical than the previous works (it also makes the tecten@ssentially a Fourier-side analogue
of Alinhac’s ghost energy methodl[i01]; see BGM15c] for more discussion).
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By (2.7), the proof of Theoren2.1is then based on establishing the a priori estimate
|AF iz z2 + VIV LA gore + |V=31(D)Vg|| | < 8e. (2.8)

In turn, @.8) implies @.4) since||Af| .2 and| f|| z~ are equivalent. Moreover2(®) follows from
(2.8), since .68 and @.7) imply that for anyf,

1l apn S v (VRIVLAS flipage + |V=DiMD)Ns| ). 29)

By the local well-posedness il of the 2D Navier-Stokes equations, fesufficiently small,
there holds

IAf Lo (0,6522) + V1/2||VLAf||L2(0,t;L2) + H V —MM (D) f

g,

L2(0,t;L2)

and all the quantities on the right hand side 228 take values continuously in time. We will use a
bootstrap argument to extend these estimates for all tireacél defind” < oo to be the maximal
time such that

I Afll Lo 0,712y + V1/2||VLAf||L2(0TL2 + H V- Nf‘

< 8¢ (2.10)

L2(0,T;L?)

holds; by the above discussidfi,> t. We refer to this inequality as tH®otstrap assumptionNe
next prove that in factA.10 holds with the constar& on the right side replaced bl implying the
global stability (i.e. thafl” may be taken arbitrarily large).

PrRopPOSITION2.2. For all N > 1 ande sufficiently small (depending only @vi), inequality
(2.10 holds with the “8” replaced with a “4” on[0, T"), and hence by continuit{; = +oc.

First, applying the operatot to (2.29, we obtain the energy estimate fbmhich reads

CIATWIa + VIV AS DI + ||V 50|
=~ [ At Tusenas v

where we use the notatietl” = dz dv. Integrating the above equality in time on the interval [Q), T
we obtain (where we have abbreviated the time-interval fnomms in order to reduce clutter)

2dt

SIAFTEs + IV L Afaps + | V0T Nf\

L2L2
— 147 — [[ Aw-Viparavar = S1arO: - T

whereT = [[A(u-Vf)AfdVdt. In order to estimatd, which is the bulk of the proof, we
decompose the velocity into the zero frequency and non-zero frequency parts as

T = // ug 0y f Adedt—l—/ Auyg - Vi fYAfdVdt = To + Tx. (2.11)
We first bound the terrfi. using €.6b) and the algebra property &N as
T.| = ‘/ AVEAL fz Vi f)AfdVat

SIVZAL fell v IV Ll o |AF || oo 2 (2.12)
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From .12, the property 2.69 of M, and the fact thaf.. contains only modeg:| > 1, we obtain
the following, using the bootstrap assumpti@al(),
IVLfllz2mn [ Af [ poe 2

el S || V=DV 14|,
<12, (2.13)

This is consistent with Propositich2 by choosing: < »'/2 (where the implicit constant depends
only onN). This term,7, is the onlycritical one for which we need the assumptior< v1/2,

In order to estimate the zero frequency part, we note thas independent of and thus we
may rewrite7, as

To = / / A(=0,0;%fo 0. f)Af dV dt = / / A(=0,0;2 fo 0. 2)Af . AV dt. (2.14)

where we also used, by Plancherel’'s theorem,

[ A0.0:2 0.1 Afsav = 0.

Additionally, using the cancellation

/ 0v0y 2 f00. Af 2 AfzdV =0,

we obtain from 2.14) that

To = / / (A(—avagz fodof2) + 0,072 fo E?ZAf;,g)Af# dV dt. (2.15)

By Plancherel’s theorem,

o= 1 > J[ [ A6 = Ak =) FO.F (0 = ) A, €)1, ) .
(2.16)

We decompose the difference (a commutator in real varipblés, &) — A(k,{ — n) into two
commutators, one due t and one due t¢D)":

Ak, €) = Ak,€ = ) = M(k,€) (14K + )N — (14 k2 + (¢ - m)2)™/2)
+ (M (k,€) = M(k, € =m)(L+ K + (€ =m)*)"/?

= comj + comy.

Forcom;, we use the mean value theorem to obtain, for séra€0, 1],
N
eomn] = [M(k, €)% (14 K2 + (€ = 602>~ 1)2(¢ — b

S (A+R+E =)+ A+ R+ NIl (217)

To estimatecom,, we additionally recall that the multipliev/ satisfies 2.6d). From @.6d) and the
mean value theorem we deduce

lcoms| < %(1 R4 (e — )V, (2.18)
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Combining @.16) with the boundsZ.17) and @.18) for com; andcom, respectively, we arrive at
TS [[] (@i €= mh2 4 e+ e)v)
k0
X |F(0,0)f (k. & = n)[|Alk, &) f (k. €)| dndgdt.
By Young'’s convolution inequality, andy > 1, we obtain,
170l S W foll oo s 1 £ 21172 v (2.19)
By (2.9) and the bootstrap assumptidh10), we obtain
0 2
Tl S Ifoll o™/ (IV=DIM(DYY e + v VL Af 4l 1212
< &3y,
which is sufficient to deduce Propositi@®2 under the hypotheses< /3. This completes the
proof of Propositior2.2and hence of Theore 1 O
3. Shear flows close to Couette

In this section we consider the more general class of sheas fldth initial data(U(y), 0)
which are sufficiently close to Couette, in the sense that

NU" — 1z + 10" |11 < 6 < 1 (3.1)
for somes > 2 + N.
REMARK 3.1. Recall from Theorerh.1that the constant is independent of andwv.

Recall the definition of/ from (1.2), the solution of the Navier-Stokes equations with theahit
datum(U(y),0). From standard estimates on the heat equation there holds,

sup 10" (t,) = g < NU" = 1|z (3.2a)
>
sup [|U”(t, M zs < U s (3.2b)
t>0
10" Nl 255 S 0072, (3.2¢)

3.1. Coordinate System.Recall thatl7 (t) = e"*% U is the decaying background shear flow.
Instead of 2.1) we need to work with a coordinate change adapted to thisr §leeg and thus
consider

Tz =212 —tU(t,y) (3.3a)

y—v="U(ty). (3.3b)
For ¢ sufficiently small, the magz,y) +— (x,v) is invertible; see Subsectio®.2 below. The
choicey — v is made so that, — 0,U (0, —t0.) (see 8.6) below). This ensures that the
critical times are not significantly perturbed by the coéffits, and featured in all of the previous
works on Navier-Stokes or Euler near Couette flow, introduost in [BM13]. The change from
x — z is essentially rewinding by the characteristics of the sflew, although in way which is also
well-adjusted for the requirement en(it is also well-adjusted for the parabolic decayloft, y),
although this is less obvious).
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In the new coordinate system we define quantities correspgrid vorticity, stream function,
and velocity, respectively, by
f(t 2t z,y),v(ty) = w(t, z,y)
¢(t7 Z(t, x? y)7 U(t7 y)) = ¢(t7 ':L'7 y)

u(t, z(t, z,y),v(t,y)) = v(t, z,y). (3.4)

It is also convenient to denote the spatial derivatives efstiear flow in the new coordinates
a(t,v(t,y)) =U'(t,y) (3.5a)
b(t,v(t,y)) =U"(t,y). (3.5b)

For any function’ in the (z, y) coordinates, the corresponding functiin the (z, v) coordinates
h(t, z,v) = ht,z,y),
the differential operato¥’ — V., is defined by

~ Ouh\ d.h _(0th\
Vh(t,z,y) = ((9;,%) = <a((9v —t@z)h> = <(9f)h> = V¢h, (3.6)
and analogousih\ — A; is defined via,
Ah(t,z,y) = (02 + a®0L, + bdX)h = Ah. (3.7)

Finally, the time derivative maps to the following, usiig/ = v9,,U and the definitions ofi, b
from (3.5),

Oih = b + 9.h (~U — t,U) + 0,hd,U
= Oih — v9.h + vb(D, — 0, )h. (3.8)

Recall that 2.3) is the “linear part” of the operatdV,. The relationship betweefiand¢ is given
through B.7):

f=20p= (0 + a®0L + b0E)p = (02 + a2 (D, — t0.)? + b(D, — 1))
= Arp+ ((a* — 1)L, + bdL) o, (3.9)
Note that by the chain rule, we have

b = adya. (3.10)
Using the above notations, by applyirg ), (3.7), and 8.8) we find thatf satisfies the equations
Of +u-Vif =b0.0+vALf (3.11a)

Ap=f (3.11b)

u= Vi, (3.11c)

where the modified Laplace operator is given by
Ay =0 + a0k = Ap + (a* — 1)0k.
In particular, note the cancellation between the lower iotelen in A; and the last term in3(8).
REMARK 3.2. Recall the notations i1 (10). As U is independent af, there holds
(Vih)o = Vihyg, (Vih)£ = Vihs.
As a result, from the divergence free condition we deducea&a; 0.
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3.2. Equivalence of the two coordinate systemsi\e shall prove Theorem.1 in the new
coordinate systen8(3). Here we discuss how to relate this coordinate system torigaal (z, v).
The first lemma, the proof of which can be found IKT13], provides a composition inequality in
fractional Sobolev spaces.

LEMMA 3.3 (Fractional Sobolev Compositionjets’ > 2, s’ > s > 0, f € H*(R), and
g € H¥(R) be such that|g|| ;- < . Then, there holds

1f o (I +9)lms < Csa(O)[ fllas,
where the implicit constant obeys ,(6) — 1 asd — 0.

The next implicit function theorem is important for inveagi the coordinate transformatio8.8)
and carrying the information back to the original coordésat

LEMMA 3.4 (Implicit Function Theorem)Lets > 2. There exists any = ¢((s) such that if
||| s < €0, then there is a unique solutighto

Bly) = aly + B(y)),
with || 8]+ < <o.

The next lemma shows that we are allowed to take all the irdition in the original system to
the new system.

LEMMA 3.5. Lets’ > 2,5’ > s > 0, f € H*(R?), andg € H* (R?) be such that|g| ;;.» < 6.
Then, there holds

[fllzrs < Cosr D) f o (I + ),
where the implicit constant obey$ /() — 1asé — 0.

PROOF OFLEMMA 3.5. Leth = (I + ¢g)(y) = y + g(y). Then we rewrite this equality as
h —y = g(h —y + h). Now thinking of y as a function ofh, we denote5(h) = h — y and
deduced(h) = g(h+ B(h)). By Lemma3.4, there exists & such that the above equality holds and
furthermore

1B 1 S .
Now we write f as
f(h)=fo(I+g)o(I+p)h)
and use Lemma.3to conclude the proof. O

From the properties of the heat equation and Len3mawe can deduce the following lemma
regarding the coefficients andb, which arise in 8.11).

LEMMA 3.6. From (3.10, Lemma3.5, and(3.29), for ¢ sufficiently small, there holds for > 2,
H(‘?v(az - 1)”L§H; = ”2bHL§Hg S ”U””Lng S 5V_1/2= (3.12)

where the implicit constant does not dependandv. Similarly, by(3.4), (3.1), and Lemma&.5,
we have that

la = Lllze +[[bll e < 201U = Lige + 1U"[|l#) < 20 (3.13)

holds fore > 2 and§ > 0 small enough.
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3.3. Main result. The main result of this section, which in particular impligdseoreml. ], is:

THEOREM3.7. Let N > 1 and assume that the shear floWi(y), 0) satisfieq3.1). If the initial
vorticity perturbation obeys fi.|| yx = € < v'/2, then the unique solutiofi to (3.119—3.119
obeys the global in time estimates

1f ooy + v 2NV Ef |2y S, (3.14a)
[uf || oo 2 + 2|00t | 1212 S e, (3.14b)
and

£l popn S ev™ /0 (3.15)
where the implicit constants do not dependroor on the initial datum.

Indeed, the estimate8.(L4) and 3.15 together with Lemma8.3and3.5, imply Theoreml.1

3.4. Proof of Theorem3.7. The proof of Theoren8.7 uses the main ideas of Theoreiri,
however, due to the more complicated change of coordinat8f (e need to consider new terms,
such as the linear termv,¢ appearing in §.119. Moreover, due t03.3), the Biot-Savart law
(3.11h—(3.119 is more complicated, and in particula.{1q is no longer expressible as a Fourier
multiplier (this was possible in the proof of Theoréhi), which in turn makes the use of our norm
A alittle more difficult.

PrOOF OFTHEOREM 3.7. For our norm, we use the same multipliées and A as in the the
proof of Theoren®.1(the M which obeys the condition®(6)). LetT be the maximal time interval
[0, T'] such that the following estimates hold:

1A ez + V2V LA e + |[V=MIMD)Vg|| | < 8e (3.16a)
V2)|0,ud|| 22 < 8e. (3.16b)

By local well-posedness, the quantities on the left-hadé sif (3.16) take values continuously in
time, 7' > 0, and @.16 holds on a smaller time interval with the “8” replaced by &.“ZThe
following proposition implies TheorerB.7.

[ugll oo 2 + v

ProPOSITION3.8. For § ande chosen sufficiently small, the estimate¢3ri6) hold on[0, 7]
with “8” replaced with “4”. It follows by continuity that7 = +cc.

We now prove PropositioB.8.
3.4.1. Energy estimate orf, (3.163. In this subsection we improve3(163. Applying the
operatorA to (3.119 we arrive at the energy estimate for the vorticity

2

SIAFDZs + VIVLAF(T) g + |V =RIM(D)Y 4(T)

L2L?

_ %||Af(0)\|%2 - //A(u-vtf)AdedH//A(bazqzb)Adedt
+ u// A((a® — 1)OL, f)Af dVdt

|
= 5 IAf(O)7: = T + S + DE. (3.17)

We next bound thé&ransport thesource and thedissipation errorterms on the right side oB(17).
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We first consider the transport terfn We begin by decomposing the velocity field into zero
and non-zero modes (recallin8.{1Hh—(3.119, and the definition o¥,), we have

T = //A 50.f) Adedt+/ ANVEA fp - Vi f)ASf dVat
=To+ Tz
Using 3.13 and theH " product rule (V > 1), the term7. is bounded as
Tel SUVEAT fell e mn Ve f 2 [|AS | oo 12
SIVEAT fell 2w IV L fll o |Af | poo 2. (3.18)
By usmg @.60, the fact thatk| > 1, and the LemmaA.3), which allows us to commutA and

\/ —M M, there holds
IVEAT Fellann S ||V=NIMALAT 1|
From (3.18 and @.16), we then obtain

L2HN ™~ H f#‘

L2HN

|VLf||L2HN||Af||LooL2 St /2.

This is consistent with Propositidh8 prowded we use the hypothesis thak 1v!/2,
For the zero mode terriiy, we begin as in SectioB. Similarly to .15, upon integrating by
parts we need to consider the commutator

- / / (A0, f.) — uED.Af.) Afs dVdt.
By Plancherel’'s theorem,
o= g 3 A0 A0k ik 56—, e

The commutator is estimated as 19 above (in particular, we appl2(17) and @.18); we also
applyus = ad A, fo,

1Tl < 1100 (a0 A7 fo) oo prnv |2l Lo prv [|Af2 | 2 12
< (lla = Ul poo g1 |00 AT foll poo v + a0 AT foll poo ) | foell 2 n [ A S £ p2 12

Note that by considering separately frequencies less thdugieater than one, there holds
10025 fol e < 10087 foll oo 2+ ([0 ol e o -

Therefore, by 3.13), (2.9, LemmaA.5, and Lemma3.5 (see also3.20 below), we further obtain

170l S (180A; " foll Loz + 1000 foll oo v ) 11 2l 2 | Afe | 22

S (1007 foll ooz + [ foll oo g ) 1 f 2l p2mrn A S 2] 212

Using 3.13 and Sobolev embedding, we have éosufficiently small (recalt§ = —aavAt‘lfo),

Tol < ([[ugllzoere + [ foll Lo ) ”f;éHmHNHAf#HL?m
<S8,

Here in the last step we used the bootstrap hypoth&&§).( This is now consistent with Proposi-
tion 3.8 provideds < /3 (which of course is weaker than the hypotheses 1/2).
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Next we estimate the source tefsrin (3.17). Recall that = b(¢, v) and thus

S = / / A0 A f2)Af 2 dVdt.
Via Plancherel’s theorem2(60), and @.6f), there holds

S| = // ADO AT ALAT f L) Af, AV dt
= |2 [ Ak e g AT A k.0 e
<I§O/// Ak, £)b(¢ — n)%mm Liz) (k) A(K, €) f (k,€)| dnddt
<,§0/// Ak (€ — )bl —m)y| oD (A AT 1) )
x Aff’?A(/c,s)f(k,f) dnded

<2l

k0

(€ —mNroE — 77\/ Ak, n)(ALA; f;e)(k‘n)

__Ay(kaf)
M(k,¢€)

Young's convolution inequality followed by Lemn#f&3 and 3.13 yields
11 S [6llse [ V=DMV ALAT | ||V =REM(D)Y £

S VRO o, 0

Hence, ford sufficiently small, this term is absorbed on the left hana sifi(3.17).
Finally, we estimate the diffusion error tertE in (3.17). First divide into zero and non-zero
modes,

DE = y// A((a® = 1)y, fo)Afo dVdt + 1/// A((a® = 1)L f2)Af.dVat,
= DEy + DE.
Integration by parts, followed by3(10), (3.13), and a bound similar t3(19), implies

A(k, &) f(k,€)| dndgdt. (3.19)

L2[2 L2[2

|DE.| =

2y/ AWDOLfL)AfLdVat + y/ A((a® = 1)0L fL)0L Af . dVat

SV L el ean |Af £l 22 + v |VL fllp2gn VLA £ 22
SOV LI 2 pn + SV Af£|l72
<ove?vt < 6e2.
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This is consistent with Propositid8 providedd is chosen sufficiently small (independently :of
ande). For the zero mode term, we similarly integrate by parts#sel@.12) to obtain
IDEy| S vbll 2 100 foll 2 L foll poe v + vlla® = 1| poo v 180 foll 72 v
< 0¢?,
which is again consistent with Propositi@&8 by choosings sufficiently small. This concludes

improvement of 8.163 for £ andé sufficiently small.
3.4.2. Velocity estimate Here we improve3.160. By Lemmas3.3and3.5we have

1 _
g lluollzz < ool 22 < 2fluoll 2, (3.20)

provideds is small enough. Thus, in order to pro\&160, we only need to prove the inequality in
the original coordinates far.
Taking thex average of1.39, we obtain the equation faij
0y + (v - Vo*)g — vAT§ =0,

where we used{ = 0 due to the divergence-free condition. Multiplying the ab@guation by?
and integrating ovey onR, we obtain the energy estimate

1d oz
> 11 +vIVEsIE: =~ (@ Vorlors dy.
Integrating in time gives
1, _
SN ()2 + PV (1) 3ara = 3 I550) 2 — / @ Voot dyat

= —H 572 —

In order to estimate the transport teffip we recall thatij = 0, use the divergence free condition,
and apply Plancherel’'s theorem to arrive at

T = // Up OzUh o dydt + //(v;,g - VoL )ovy dydt
// vy - VUL )o0g dydt = // - (020%))ovg dydt = // v?év#)) vy dydt.

Physically this term corresponds to the transfer of kinetiergy from the non-zero modes to the
zero mode. By changing coordinates back4ov) inside thex integral we obtain,

<6y(2_1§é’[_)i)>0 = /a(av - taz) (a(av - taz)qb#azﬁb#) dz

- [ a0, (@(0, 10,06 40.0,) d-.
Therefore, by .13, Lemma3.5 LemmaA.4, and the Sobolev embedding we have
IT1 S (10005 02l 22 10:0 211 2w + 10502 2 o 19026211 2 2) 196 1 o 12
S ”f#HZLzHN 195 (| oo 12
< 531/_1/3,

which is sufficient to improve3.160 and hence conclude the proof of PropositRB Therefore,
this also concludes the proof of Theor@na. O
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Appendix A. Construction and properties of the multiplier M

In this section we recall some of the technical tools regaydhe Fourier multiplied/ from
[BGM15c] and adapt them to our simpler setting.

LEMMA A.1. There exists a multiplieh/ such that the condition&®.69—(2.66 hold for some
constant) < ¢ < 1.

PROOF OFLEMMA A.1l. We consider a multiplier of the form/ = M; M, such that both\/;
and M, satisfy .69. We choosel/; such that fork # 0 it is determined by the ODE

M M
My, k?+|§ — kt|?
M1(07 k777) =1

Similar multipliers appeared inZjl14, BGM15a, BGM15b, BGM15c]. The above multiplier
clearly satisfies4.69). Notice that fork # 0, there holds

K24 |n—kt)? K2 4|6 —kt 4+ — ¢
K2+ |6 —kt|2 K2+ |¢—Kt]?
and henceZ.6f) holds for ;. A direct computation shows that

! ||
M (t — — S 1l B
1(t,k,€) exp< /0 k2+|£—ks|2ds>’

which implies @.6b) holds for M, . Taking the derivative of\/; with respect t& gives
M t _ t
O l(k,ﬁ)‘ / 2JI| (€ — ks)_ ds‘ < 12/ L s
My (k. €) o (K*+ & —ks]?) k|* Jo (L+1[6/k—s]?)

which proves thatZ.6d) holds forM/;. Note here thak # 0 implies |k| > 1.
Next, we definel/, by the differential equation (fat # 0),

51+|77_£|27

M, 1/1/3
My, (Bt —¢g/k)2+1
M5(0,k,n) = 1.

This multiplier was introduced irgGM15c]. Similarly to A, we deduce that2(6b), (2.6d), and
(2.6f) all hold for M5 (and hence also fat/ = M; Ms). Since fork # 0 we have that

1< Bk, e — k] if Y3 <

§
=

and

1 £

1<
TRt E/R)? + 1 k

inequality .69 holds for M,. Therefore, the multipliedl we constructed satisfies conditions
(2.69—(2.68, completing the proof. O

if »~1/3 >

)

REMARK A.2. In condition .68, the powerr—'/6 in front of the multiplier is sharp in the
sense that /6 is the smallest sacrifice we need to make to bound the expreesi the right side
from below by a constant. In fact, if we malé, to be positive constants independentvafthen
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|t —&/k| > v~1/3, then the size of\f, should be approximately'/3. Hence, if we did not need
(2.6f) or (2.6d), one could construct/, to satisfy .66 with

My =20 ifV_1/3> ‘t——i‘
y 1 1/3 : -1/3 g
M = —5v if v t—+

We need the following lemma to commuté— M M with A A, the latter of which is not a
Fourier multiplier.

LEMMA A3. Letf ¢ HY and N > 1. Then the following estimate holds férsufficiently

small,
RS I M
PROOF OFLEMMA A.3. Using the equality
Ap = A — (a* = 1)0% — bol,

we have
e N i o I Rt e )
+ Hw (bOLAT£.) HHN . (A1)
By (2.6f), N > 1, and @.13, we deduce
| V=2 (@ - 005a7 )| = |V (0= 17 =20 - 0057 )|
S lla = Ul |V=IIMALAT ||
<o |V 1
and similarly
| V=01 0T )| S Wl |VENTMALAT
So|Vermacary
Since) <« 1, the result follows fromA.1) immediately. O

The following lemma is proved in the same manner as LerAn3aalthough slightly simpler.
In particular, this lemma shows thadt; A, ! can be approximately treated as the identity for
sufficiently small.

LEMMA A4. Letf ¢ HN and N > 1. Then the following estimate holds férsufficiently
small,

|ALAT |l o S Il gy -
The following estimate applies to the zero mode of the vejdald.

LEMMA A.5. Let f be such thaif, € HY, N > 1, andd,A; ! fy € L2 Then fors sufficiently
small, there holds

1000 AT foll v S W foll v + 81186 AT foll 2.
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PROOF OFLEMMA A.5. Since
avat_l.fO - (At - (a2 - 1)81)1) - bav)At_lf07
we have byN > 1 and 8.13 (interpolating /¥ betweenZ? and HV+1),

Havat_lfOHHN S ”fOHHN "‘5”avat_1f0”HN + 5HavAt_1f0”HN
S ”fOHHN "‘5”avat_1fo”HN + 5HavAt_1f0”L2-
Foro < 1, we may absorb the second term on the right side and we obigesired result. [
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