Skip to main content
Log in

Flight Control of Biomimetic Air Vehicles Using Vibrational Control and Averaging

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

A combination of vibrational inputs and state feedback is applied to control the flight of a biomimetic air vehicle. First, a control strategy is developed for longitudinal flight, using a quasi-steady aerodynamic model and neglecting wing inertial effects. Vertical and forward motion is controlled by modulating the wings’ stroke and feather angles, respectively. Stabilizing control parameter values are determined using the time-averaged dynamic model. Simulations of a system resembling a hawkmoth show that the proposed controller can overcome modeling error associated with the wing inertia and small parameter uncertainties when following a prescribed trajectory. After introducing the approach through an application to longitudinal flight, the control strategy is extended to address flight in three-dimensional space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson, M.L., Cobb, R.G.: Toward flapping wing control of micro air vehicles. J. Guid. Control Dyn. 35(1), 296–308 (2012)

    Article  Google Scholar 

  • Anderson, M.L., Cobb, R.G.: Implementation of a flapping wing micro air vehicle control technique. J. Guid. Control Dyn. 37(1), 290–300 (2014)

    Article  Google Scholar 

  • Berman, G.J., Wang, Z.J.: Energy-minimizing kinematics in hovering insect flight. J. Fluid Mech. 582, 153–168 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Bhatia, M., Patil, M., Woolsey, C., Stanford, B., Beran, P.: Stabilization of flapping-wing micro-air vehicles in gust environments. J. Guid. Control Dyn. 37(2), 592–607 (2014)

    Article  Google Scholar 

  • Bullo, F.: Averaging and vibrational control of mechanical systems. SIAM J. Control Optim. 41(2), 542–562 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems. Texts in Applied Mathematics, vol. 49, pp. 467–471. Springer, New York, NY (2005)

  • Chirarattananon, P., Ma, K.Y., Wood, R.J.: Adaptive control of a millimeter-scale flapping-wing robot. Bioinspir. Biomimet. 9(2), 025004 (2014)

    Article  Google Scholar 

  • Deng, X., Schenato, L., Sastry, S.S.: Flapping flight for biomimetic robotic insects, part 2: flight control design. IEEE Trans. Robot. 22(4), 789–803 (2006a)

    Article  Google Scholar 

  • Deng, X., Schenato, L., Wu, W.C., Sastry, S.S.: Flapping flight for biomimetic robotic insects, part 1: system modeling. IEEE Trans. Robot. 22(4), 776–788 (2006b)

    Article  Google Scholar 

  • Dickinson, M.H., Lehmann, F.O., Sane, S.P.: Wing rotation and the aerodynamic basis of insect flight. Science 284(5422), 1954–1960 (1999)

    Article  Google Scholar 

  • Doman, D.B., Oppenheimer, M.W., Sigthorsson, D.O.: Wingbeat shape modulation for flapping-wing micro-air-vehicle control during hover. J. Guid. Control Dyn. 33(3), 724–739 (2010)

    Article  Google Scholar 

  • Ellington, C.P.: The aerodynamics of the hovering insect flight. I. the quasi-steady analysis. Philos. Trans. R. Soc. B Biol. Sci. 305(1122), 1–15 (1984)

    Article  Google Scholar 

  • Elzinga, M.J., van Breugel, F., Dickinson, M.H.: Strategies for the stabilization of longitudinal forward flapping flight revealed using a dynamically-scaled robotic fly. Bioinspir. Biomimet. 9(2), 025001 2014

  • Etkin, B.: Dynamics of Atmospheric Flight. Wiley, New York (1972)

    Google Scholar 

  • Greenwood, D.T.: Advanced Dynamics. Cambridge University Press, Cambridge, UK (2003)

    Book  Google Scholar 

  • Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42, pp. 166–169. Springer, New York, NY (1983)

  • Jenkins, C.: Bio-inspired Engineering. Momentum Press, New York (2011)

    Book  Google Scholar 

  • Keennon, M., Klingebiel, K., Won, H., Andriukov, A.: Development of the nano hummingbird: a tailless flapping wing micro air vehicle. In: Proceedings of AIAA Aerospace Science Meeting, Nashville, TN. AIAA 2012-0588, January 2012

  • Khan, Z.A., Agrawal, S.K.: Control of longitudinal flight dynamics of a flapping-wing micro air vehicle using time-averaged model and differential flatness based controller. In: Proceedings of American Control Conference, pages 5284–5289, New York City, NY, July 2007

  • Ma, K.Y., Chirarattananon, P., Fuller, S.B., Wood, R.J.: Controlled flight of a biologically inspired insect-scale robot. Science 340, 603–607 (2013)

    Article  Google Scholar 

  • Oppenheimer, M.W., Doman, D.B., Sigthorsson, D.O.: Dynamics and control of a minimally actuated biomimetic vehicle: Part II—control. In: Proceedings of AIAA Guidance, Navigation, and Control Conference, Chicago, IL. AIAA 2009-6161, August 2009

  • Oppenheimer, M.W., Doman, D.B., Sigthorsson, D.O.: Dynamics and control of a biomimetic vehicle using biased wingbeat forcing functions. J. Guid. Control Dyn. 34(1), 204–217 (2011)

    Article  Google Scholar 

  • Orlowski, C.T., Girard, A.R.: Dynamics, stability, and control analyses of flapping wing micro-air vehicles. Prog. Aerosp. Sci. 51, 18–30 (2012)

    Article  Google Scholar 

  • Ramamurti, R., Sandberg, W.C.: A three-dimensional computational study of the aerodynamic mechanisms of insect flight. J. Exp. Biol. 205(10), 1507–1518 (2002)

    Google Scholar 

  • Rifai, H., Marchand, N., Poulin-Vittrant, G.: Bounded control of an underactuated biomimetic aerial vehicle—validation with robustness tests. Robot. Auton. Syst. 60(9), 1165–1178 (2012)

    Article  Google Scholar 

  • Sanders, J.A., Verhulst, F.: Averaging Methods in Nonlinear Dynamical Systems. Applied Mathematical Sciences, vol. 59, pp. 33–66. Springer, New York, NY (1985)

  • Serrani, A., Keller, B.E., Bolender, M.A., Doman, D.B. : Robust control of a 3-dof flapping wing micro air vehicle. In: Proceedings of AIAA Guidance, Navigation, and Control Conference, Toronto, Canada. AIAA 2010-7709, August 2010

  • Sun, M.: Insect flight dynamics: stability and control. Rev. Mod. Phys. 86, 615–646 (2014)

    Article  Google Scholar 

  • Sun, M., Wang, J., Xiong, Y.: Dynamic flight stability of hovering insects. Acta Mech. Sin. 23(3), 231–246 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Taha, H.E., Hajj, M.R., Nayfeh, A.H.: Flight dynamics and control of flapping-wing MAVs: a review. Nonlinear Dyn. 70(2), 907–939 (2012)

    Article  MathSciNet  Google Scholar 

  • Tahmasian, S., Woolsey, C.A.: A control design method for underactuated mechanical systems using high frequency inputs. ASME J. Dyn. Syst. Meas. Control 137 (2015). doi:10.1115/1.4029627

  • Tahmasian, S., Taha, H.E., Woolsey, C.A.: Control of underactuated mechanical systems using high frequency input. In: Proceedings of IEEE American Control Conference, pp. 603–608, Washington, DC, June 2013

  • Tahmasian, S., Allen, D.W., Woolsey, C.A.: On averaging and input optimization of high-frequency mechanical control systems. J. Vib. Control (2016). doi:10.1177/1077546316655706

  • Ward, T.A., Rezadad, M., Fearday, C.J., Viyapuri, R.: A review of biomimetic air vehicle research: 1984–2014. Int. J. Micro Air Veh. 7(3), 375–394 (2015)

    Article  Google Scholar 

  • Wood, R.J.: The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans. Robot. 24(2), 341–347 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the comments of the anonymous reviewers and the support of the National Science Foundation under Grant No. CMMI-1435484. The authors also would like to thank Dr. Haithem Taha for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevak Tahmasian.

Additional information

Communicated by Maurizio Porfiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahmasian, S., Woolsey, C.A. Flight Control of Biomimetic Air Vehicles Using Vibrational Control and Averaging. J Nonlinear Sci 27, 1193–1214 (2017). https://doi.org/10.1007/s00332-016-9334-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-016-9334-5

Keywords

Navigation