Skip to main content
Log in

Permanence of Stochastic Lotka–Volterra Systems

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

This paper proposes a new definition of permanence for stochastic population models, which overcomes some limitations and deficiency of the existing ones. Then, we explore the permanence of two-dimensional stochastic Lotka–Volterra systems in a general setting, which models several different interactions between two species such as cooperation, competition, and predation. Sharp sufficient criteria are established with the help of the Lyapunov direct method and some new techniques. This study reveals that the stochastic noises play an essential role in the permanence and characterize the systems being permanent or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bao, J., Mao, X., Yin, G., Yuan, C.: Competitive Lotka–Volterra population dynamics with jumps. Nonlinear Anal. 74, 6601–6616 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Benaïm, M., Schreiber, S.J.: Persistence of structured populations in random environments. Theoret. Popul. Biol. 76, 19–34 (2009)

    Article  MATH  Google Scholar 

  • Braumann, C.A.: Environmental versus demographic stochasticity in population growth. In: Workshop on Branching Processes and Their Applications (pp. 37–52). Springer, Berlin (2010)

  • Cai, Y., Kang, Y., Banerjee, M., Wang, W.: A stochastic epidemic model incorporating media coverage. Commun. Math. Sci. 14, 893–910 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Cai, Y., Wang, X., Wang, W., Zhao, M.: Stochastic dynamics of an SIRS epidemic model with ratio-dependent incidence rate. Abstr. Appl. Anal. Article ID 172631 (2013)

  • Chessa, S., Yashima, H.F.: The stochastic equation of predator–prey population dynamics. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 5, 789–804 (2002)

    MathSciNet  MATH  Google Scholar 

  • Chesson, P.L.: Predator–prey theory and variability. Annu. Rev. Ecol. Syst. 9, 323–347 (1978)

    Article  Google Scholar 

  • Chesson, P.L.: The stabilizing effect of a random environment. J. Math. Biol. 15, 1–36 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Chesson, P.L.: Persistence of a Markovian population in a patchy environment. Z. Wahrsch. Verw. Gebiete 66, 97–107 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Chesson, P.L., Ellner, S.: Invasibility and stochastic boundedness in monotonic competition models. J. Math. Biol. 27, 117–138 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Durrett, R.: Stochastic Calculus: A Practical Introduction. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  • Evans, S.N., Ralph, P., Schreiber, S.J., Sen, A.: Stochastic population growth in spatially heterogeneous environments. J. Math. Biol. 66, 423–476 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Freedman, H.I., Waltman, P.: Persistence in models of three interacting predator–prey populations. Math. Biosci. 68, 213–223 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Freedman, H.I., Moson, P.: Persistence definitions and their connections. Proc. Am. Math. Soc. 109, 1025–1032 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Gard, T.C.: Persistence in stochastic food web models. Bull. Math. Biol. 46, 357–370 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Gard, T.C.: Introduction to Stochastic Differential Equations. Dekker, New York (1988)

    MATH  Google Scholar 

  • Hallam, T.G., Ma, Z.: Persistence in population models with demographic fluctuations. J. Math. Biol. 24, 327–339 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Hasminskii, R.: Stochastic Stability of Differential Equations. Sijthoff & Noordhoff, Alphen aan den Rijn (1980)

    Book  Google Scholar 

  • Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, London (1998)

    Book  MATH  Google Scholar 

  • Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  • Jansen, W.: A permanence theorem for replicator and Lotka–Volterra systems. J. Math. Biol. 25, 411–422 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, D., Shi, N., Li, X.: Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation. J. Math. Anal. Appl. 340, 588–597 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, D., Ji, C., Li, X., O’Regan, D.: Analysis of autonomous Lotka–Volterra competition systems with random perturbation. J. Math. Anal. Appl. 390, 582–595 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Lahrouz, A., Settati, A., Akharif, A.: Effects of stochastic perturbation on the SIS epidemic system. J. Math. Biol. (2016). doi:10.1007/s00285-016-1033-1

    MATH  Google Scholar 

  • Li, X., Mao, X.: Population dynamical behavior of non-autonomous Lotka–Volterra competitive system with random perturbation. Discrete Contin. Dyn. Syst. 24, 523–545 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, X., Jiang, D., Mao, X.: Population dynamical behavior of Lotka–Volterra system under regime switching. J. Comput. Appl. Math. 232, 427–448 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, X., Gray, A., Jiang, D., Mao, X.: Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching. J. Math. Anal. Appl. 376, 11–28 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, D., Cui, J., Song, G.: Permanence and extinction for a single-species system with jump-diffusion. J. Math. Anal. Appl. 430, 438–464 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, M., Wang, K.: Survival analysis of a stochastic cooperation system in a polluted environment. J. Biol. Syst. 19, 183–204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, M., Wang, K.: Population dynamical behavior of Lotka–Volterra cooperative systems with random perturbations. Discrete Contin. Dyn. Syst. 33, 2495–2522 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, M., Wang, K.: Stochastic Lotka–Volterra systems with Lévy noise. J. Math. Anal. Appl. 410, 750–763 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, M., Bai, C.: Analysis of a stochastic tri-trophic food-chain model with harvesting. J. Math. Biol. 73, 597–625 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, M., Wang, K., Wu, Q.: Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle. Bull. Math. Biol. 73, 1969–2012 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, X., Zhong, S., Tian, B., Zheng, F.: Asymptotic properties of a stochastic predator–prey model with Crowley–Martin functional response. J. Appl. Math. Comput. 43, 479–490 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Lv, J., Wang, K.: Asymptotic properties of a stochastic predator-prey system with Holling II functional response. Commun. Nonlinear Sci. Numer. Simul. 16, 4037–4048 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Lv, J., Wang, K., Zou, X.: Remarks on stochastic permanence of population models. J. Math. Anal. Appl. 408, 561–571 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, Z.: Mathematical Modeling and Study of Population Ecology. Anhui Education Press, Hefei (2000)

    Google Scholar 

  • Mandal, P.S., Abbas, S., Banerjee, M.: A comparative study of deterministic and stochastic dynamics for a non-autonomous allelopathic phytoplankton model. Appl. Math. Comput. 238, 300–318 (2014)

    MathSciNet  MATH  Google Scholar 

  • Murray, J.D.: Mathematical Biology: I. An Introduction, 3rd edn. Springer, New York (2002)

    MATH  Google Scholar 

  • Neill, W.E.: The community matrix and interdependence of the competition coefficients. Am. Nat. 108, 399–408 (1974)

    Article  Google Scholar 

  • Novak, M., Yeakel, J.D., Noble, A.E., Doak, D.F., Emmerson, M., Estes, J.A., Jacob, U., Tinker, M.T., Wootton, J.T.: Characterizing species interactions to understand press perturbations: What is the community matrix? Ann. Rev. Ecol. Evol. Syst. 47, 1–25 (2016)

    Article  Google Scholar 

  • Qiu, H., Lv, J., Wang, K.: Two types of permanence of a stochastic mutualism model. Adv. Differ. Equ. 37, 1–17 (2013)

    MathSciNet  Google Scholar 

  • Rao, F.: The complex dynamics of a stochastic toxic-phytoplankton-zooplankton model. Adv. Differ. Equ. (2014). doi:10.1186/1687-1847-2014-22

    MathSciNet  MATH  Google Scholar 

  • Rao, F., Jiang, S., Li, Y., Liu, H.: Stochastic analysis of a Hassell–Varley type predation model. Abstr. Appl. Anal. Article ID 738342 (2013)

  • Roth, G., Schreiber, S.J.: Persistence in fluctuating environments for interacting structured populations. J. Math. Biol. 69, 1267–1317 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Rudnicki, R.: Long-time behaviour of a stochastic prey–predator model. Stoch. Process. Appl. 108, 93–107 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Schreiber, S.J., Benaïm, M., Atchadé, K.A.S.: Persistence in fluctuating environments. J. Math. Biol. 62, 655–683 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Smith, H.L., Thieme, H.R.: Dynamical Systems and Population Persistence. American Mathematical Society, New York (2011)

    MATH  Google Scholar 

  • Tan, R., Liu, Z., Guo, S., Xiang, H.: On a nonautonomous competitive system subject to stochastic and impulsive perturbations. Appl. Math. Comput. 256, 702–714 (2015)

    MathSciNet  MATH  Google Scholar 

  • Tran, K., Yin, G.: Stochastic competitive Lotka–Volterra ecosystems under partial observation: feedback controls for permanence and extinction. J. Frankl. Inst. 351, 4039–4064 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, F., Hu, Y.: Asymptotic properties of stochastic functional Kolmogorov-type system. Acta Appl. Math. 106, 251–263 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, X., Wang, K.: Asymptotic behavior of stochastic Gilpin–Ayala mutualism model with jumps. Electron. J. Differ. Equ. 2013, 1–17 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, Y., Gao, S., Fan, K., Dai, Y.: On the dynamics of a stochastic ratio-dependent predator-prey model with a specific functional response. J. Appl. Math. Comput. 48, 441–460 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are very grateful to the anonymous referees for their careful reading and valuable comments, which greatly improved the presentation of the paper. We also thank Professor H. R. Thieme at Arizona State University for his nice comments and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Liu.

Additional information

Communicated by Philip K. Maini.

Partially supported by the Natural Science Foundation of PR China (11671072, 11271065, 11301207), Research Fund for the Doctoral Program of Higher Education of PR China (20130043110001), Project Funded by Chinese Postdoctoral Science Foundation (2015M571349, 2016T90236), Natural Science Foundation of Jiangsu Province (BK20130411). Jiangsu Province “333 High-level Personnel Training Project” and Qing Lan Project, overseas training program for outstanding young college teachers and principals in Jiangsu Province.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Fan, M. Permanence of Stochastic Lotka–Volterra Systems. J Nonlinear Sci 27, 425–452 (2017). https://doi.org/10.1007/s00332-016-9337-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-016-9337-2

Keywords

Mathematics Subject Classification

Navigation