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Abstract

In this paper we study the rigorous sharp interface limit of a diffuse interface
model related to the dynamics of tumor growth, when a parameter ε, representing
the interface thickness between the tumorous and non tumorous cells, tends to
zero. More in particular, we analyze here a gradient-flow type model arising
from a modification of the recently introduced model for tumor growth dynamics
in [21] (cf. also [22]). Exploiting the techniques related to both gradient-flows
and gamma convergence, we recover a condition on the interface Γ relating the
chemical and double-well potentials, the mean curvature, and the normal velocity.

Key words: sharp interface limit, gamma convergence, gradient-flow, diffuse interface
models, Cahn-Hilliard equation, reaction-diffusion equation, nonlocal operators, tumor
growth.
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1 Introduction

The morphological evolution of a growing solid tumor is the result of the dynamics of
a complex system that includes many nonlinearly interacting factors, including cell-
cell and cell-matrix adhesion, mechanical stress, cell motility and angiogenesis, just to
name a few. Numerous mathematical models have been developed to study various
aspects of tumor progression and this has been an area of intense research interest (see
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the recent reviews by Fasano et al. [12], Graziano and Preziosi [20], Friedman et al. [14],
Bellomo et al. [3], Cristini et al. [9], and Lowengrub et al. [25]). The existing models
can be divided into two main categories: continuum models and discrete models. We
concentrate on the former ones. There the necessity of dealing with multiple interacting
constituents has led to the consideration of diffuse-interface models based on continuum
mixture theory (see, for instance, [10] and references therein). In the diffuse approach,
sharp interfaces are replaced by narrow transition layers that arise due to differential
adhesive forces among the cell-species. The main advantages of the diffuse interface
formulation are:

- it eliminates the need to enforce complicated boundary conditions across the
tumor/host tissue and other species/species interfaces that would have to be
satisfied if the interfaces were assumed sharp, and

- it eliminates the need to explicitly track the position of interfaces, as is required
in the sharp interface framework.

Such models generally consist of Cahn-Hilliard equations with transport and
reaction terms which govern various types of cell concentrations. Here we consider
only one tumor specie and we denote the tumorous phase by u. The reaction terms
depend on the nutrient concentration (e.g., oxygen), denoted here by σ, which obeys an
advection-reaction-diffusion equation coupled with the Cahn-Hilliard equations. The
cell velocities satisfy a generalized Darcy’s (or Brinkman’s) law where, besides the
pressure gradient, also appears the so-called Korteweg force due to cell concentration.

While there exist quite a number of numerical simulations of diffuse-interface
models of tumor growth (cf., e. g., [11, Chap. 8], [10,21,34]), there are still only a few
contributions to the mathematical analysis of the models. The first contributions in
this direction dealt with the case where the nutrient is neglected, which then leads to
the so-called Cahn-Hilliard-Hele-Shaw system (see, e.g., [23, 26]). Moreover, we refer
to the paper [17] where a new model for tumor growth including different densities
is introduced and a formal sharp interface limit is performed. Finally, in the recent
contribution [15] the model introduced in [21] (where the velocity is neglected) was
rigorously analyzed concerning well-posedness, regularity, and asymptotic behavior.
We also refer to the recent papers [6, 7], in which various viscous approximations of
the state system have been studied analytically, and [8] where a first optimal control
problem for tumor growth models has been investigated. Hence, the existing literature
is just at a preliminary step towards the theoretical analysis of more refined models.

Regarding the transition from diffuse to sharp interfaces, several results already
regard some formal passages to the sharp interface limit (cf., e.g., [17, 22]), but, up to
our knowledge, no rigorous theorems are proved for such coupled systems. Only very
recently in [13] we investigated the existence of weak solutions and some rigorous sharp
interface limit (in a simplified case) for a model introduced in [5] where both velocities
(satisfying a Darcy law with Korteweg term) and multispecies tumor fractions as well
as the nutrient evolutions are taken into account. However these are very partial
results, because only the coupling between the Cahn-Hilliard equation and Darcy law
for the velocities is considered and, for example, the physically meaningful case of a
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double-well potential in the Cahn-Hilliard equation (cf. (1.2)) cannot be accounted for
in [13].

Hence, the main goal of this paper is to perform a rigorous sharp interface limit
as the thickness of the interface goes to zero, in the spirit of what is already known
for the standard Cahn-Hilliard equation (cf., e.g., [24] and references therein). The
model under consideration is a variant of the diffuse interface tumor growth model
introduced in [21] where we first write down the system as a gradient-flow system and
then use refined results of gamma convergence already exploited in [30], and applied to
the Cahn-Hilliard equation in [24]. Another possibility would be the one of considering
the known results for Cahn-Hilliard equations by [4], trying to extend them to the
coupled Cahn-Hilliard-Darcy system (first neglecting the nutrient) in the spirit of [1],
and then trying to get possibly weaker results for the complete system. This is a work
in progress.

Here, more in particular, we aim to let ε tend to zero in the following PDE
system in Ω× (0, T ), where Ω ⊂ R

3 denotes a regular domain,
{

u̇+ Asv = R(u, v, σ)

σ̇ + As(σ) = −R(u, v, σ),
(1.1)

coupled with suitable initial conditions, where we choose R(u, v, σ) = 2σ + u− v and

v = −ε∆u+
W ′(u)

ε
, W (u) = (u2 − 1)2 . (1.2)

Here A denotes the Laplace operator with Neumann homogeneous boundary conditions
and As stands for its power s with s ≥ 1. Then, introducing the auxiliary variable
ϕ := u+ σ, we rewrite (1.1) as the following gradient-flow system:

(ϕ̇, σ̇) = −∇Xε×Y εEε(ϕ, σ), (1.3)

where Xε × Y ε = H−s
n (Ω)×L2(Ω), being H−s

n (Ω) the dual space of Hs
n(Ω) = D(As/2),

and where the energy functional Eε is defined as

Eε(ϕ, σ) :=

{

Mε(ϕ− σ) + F (ϕ, σ) if (ϕ, σ) ∈ L2(Ω)×Hs
n(Ω) and ϕ− σ ∈ H1(Ω)

+∞ otherwise.

Here Mε is the functional defined on H1(Ω) by

Mε(u) :=

∫

Ω

(

W (u)

ε
+
ε

2
|∇u|2

)

dx, (1.4)

and F is the function on L2(Ω)×Hs
n(Ω) given by

F (ϕ, σ) :=

∫

Ω

(

σϕ+
|σ|2

2

)

dx+
as(σ, σ)

2
(1.5)

being as the bilinear form associated to As defined as

as(u, v) :=

∫

Ω

As/2u As/2vdx. (1.6)
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Let us notice that the operator As can be interpreted as a nonlocal contribution
to our energy functional modeling nonlocal interactions between cells (cf. [18, 19, 34]
for a physical interpretation).

The presence of such regularization, entailing that vε ∈ L2(0, T ;Hs
n(Ω)) for every

ε > 0 in (1.2), enables us to avoid, in case s > 3/2, to make further assumptions on
the convergence of the approximated chemical potential vε related to the so-called
equipartition of energy (cf. Hyp. (HP1bis) in Section 5.1), which are instead needed
in case s ∈ [1, 3/2]. Therefore the result in [29, Theorem 3.2], in case s > 3/2, or the
Hyp. (HP1bis) related to the equipartition of energy in case s ∈ [1, 3/2], ensures that
the limiting function v satisfies

v = −cWk on Γ,

where cW =
∫ 1

−1
W (s) ds and k is the mean curvature of the limiting interface Γ between

the two open sets Ω+ and Ω− where u takes values u ≡ 1 and u ≡ −1 (the pure phases),
respectively.We also emphasize that in order to get such result, we need to assume some
regularity of the limit interface. In particular, the limit interface must be at least of
class C3 in the time-space in order that the derivation of its motion law can be obtained.

Let us notice that the choice we make of the coupling function R is almost obliged
from the fact that we aim to write down the system as a gradient-flow. Possibly, more
general functions should be taken into account in order to accomplish with the tumor
growth model introduced in [21] (cf. also [6, 7, 15]), but we cannot treat these cases
with our techniques here.

In order to obtain our results we proceed as follows:

Step 1 We prove the well-posedness of the system (1.1) for ε > 0 by means of a passage
to the limit in a suitable time-discrete approximation scheme.

Step 2 We consider the functional

E0(ϕ, σ) :=

{

M0(ϕ− σ) + F (ϕ, σ) if (ϕ− σ) ∈ BV (Ω, {−1, 1}), σ ∈ Hs
n(Ω)

+∞ otherwise

where M0 is defined as

M0(u) :=

{

cWHn−1(Γ) if u ∈ BV (Ω, {−1, 1})

+∞ otherwise,
(1.7)

and we demonstrate that the functionals Eε gamma converge to E0 with respect
to the L1(Ω)-topology when ε tends to 0.

Step 3 We state the regularity assumptions we need (in particular on the interface Γ
between the two phases u ≡ −1 and u ≡ 1) in order to prove our main result
mainly stating that the limit functions (in proper functional spaces) ϕ, σ and v
of ϕε, σε and vε satisfying (1.1) are solutions of the following system on some
time interval [0, T ∗]:

2Γ̇(t) = −Asv(t) + ϕ(t) + σ(t)− v(t) on Ω,

σ̇(t) = −Asσ(t) + v(t)− ϕ(t)− σ(t) on Ω,

v(t) = −cWk(t) on Γ, Asv(t) = ϕ(t) + σ(t)− v(t) on Ω+ ∪ Ω−,

4



where Γ̇ denotes here the normal velocity of the interface Γ.

Step 4 In the special cases when s = 1 (As = −∆) and s = 2 (As = ∆2), then, we can
also deduce that

[

∂v

∂n

]

(t) = −2Γ̇(t) H2 − a.e. on Γ and for a.e. t ∈ [0, T ∗]

and
[

∂∆v

∂n

]

(t) = −2Γ̇(t) H2 − a.e. on Γ and for a.e. t ∈ [0, T ∗],

respectively, where [·] denotes the jump of the functions across Γ.

Let us emphasized that the techniques of proof are quite elementary and strongly based
on previous results on the Γ convergence of the Modica-Mortola functional [28] and on
the convergence of the solutions to the Cahn-Hilliard equation to the Mullins-Sekerka
flow [24].

Finally, let us conclude by mentioning that, although molecular mechanisms and
cell-scale migration dynamics are well described, the variable empirical and qualitative
observations of tumor invasion and response to therapy illustrate the critical need for
biologically realistic and predictive multiscale mathematical models that integrate tu-
mor proliferation and invasion with microvascular effects and microenvironmental sub-
strate gradients. Such complex systems, dominated by large numbers of processes and
highly nonlinear dynamics, are difficult to approach by experimental methods alone
and can typically be better understood with appropriate mathematical models and
sophisticated computer simulations, in addition and complementary to experimental
investigations. By focusing on these common elements, mathematical modeling aims
to contribute to the prevention, diagnosis and treatment of this complex disease. The
ultimate goal is for modeling and simulation to aid in the development of individ-
ualized therapy protocols to minimize patient suffering while maximizing treatment
effectiveness.

More in particular, in larger scale systems, diffuse interface continuum methods
provide a good modeling approach and then it is clear that the study of the corre-
sponding sharp interface limits would be an important validation of the models. In
this direction the present contribution is a first step toward the validation of previous
works where only formal asymptotic limits were performed (cf., e.g., [17] and [22]).
Moreover, we believe that the same techniques could be applied in the future to dif-
ferent type of complex system dynamics like Liquid Crystals’ evolution for example.

Plan of the paper. In Section 2 we fix some notation and preliminaries. In Section 3
we introduce our energies functionals and prove the preliminary results about gamma
convergence. Then we prove the well-posedness of our diffuse interface model (1.1) for
a fixed ε > 0 in Section 4. The last part, Section 5, is devoted to study the limit of
equations (1.1) as ε vanishes. Such section is divided in two parts, in the first one we
fix some conventions and hypotheses on our setting, in the second one we prove our
main result.
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2 Space setting and notation

Let Ω be a smooth and bounded open subset of R3. If X stands for a Hilbert space, we
denote by (·, ·)X the scalar product in X , while we denote by 〈·, ·〉 the duality pairing
between every two dual spaces.

Powers of positive operators. We denote by V the Hilbert space H1(Ω) and by
H = L2(Ω), the latter endowed with scalar product (·, ·) and norm ‖ · ‖. Then, for any
ζ ∈ V ′, set

ζΩ :=
1

|Ω|
〈ζ, 1〉, (2.1)

V ′ := {ζ ∈ V ′ : ζΩ = 0}, V := V ∩ V ′. (2.2)

The above notation V ′ is just suggested for the sake of convenience; indeed, we mainly
see V, V ′ as (closed) subspaces of V , V ′, inheriting their norms, rather than as a
couple of spaces in duality. We introduce the realization of the Laplace operator with
homogeneous Neumann boundary conditions as

A : V → V ′, 〈Au, v〉 :=

∫

Ω

∇u · ∇v dx for u, v ∈ V . (2.3)

Clearly, A maps V onto V ′ and its restriction to V is an isomorphism of V onto V ′. Let
us denote by N : V ′ → V the inverse of A, so that, for any u ∈ V and ζ ∈ V ′, there
holds

〈Au,N ζ〉 = 〈AN ζ, u〉 = 〈ζ, u〉. (2.4)

By using the Poincaré-Wirtinger inequality, we can easily show that the norm

(

∫

Ω

|∇
(

N ζ
)

|2
)1/2

= 〈ζ,N ζ〉1/2 for ζ ∈ V ′ (2.5)

is equivalent to the norm ‖ζ‖V ′ and we will use this norm, when it is convenient.
Define H2

n(Ω) := {w ∈ H2(Ω) : ∂nw = 0 on ∂Ω}, where ∂n is the derivative
with respect to the outward normal to ∂Ω, and introduce also the following spaces
W := H2

n ∩ V ′ and H := H ∩ V ′. Now, it is also possible to restrict the operator N to
a new isomorphic operator (always called N ) from H to W: it maps v ∈ H into the
unique function N v ∈ W such that

−∆(N v) = v a.e. in Ω, and ∂n(N v) = 0 a.e. on ∂Ω,

∫

Ω

N v = 0.

Note that any solution Φ to

−∆Φ = v a.e. in Ω and ∂nΦ = 0 a.e. on ∂Ω, (2.6)

corresponding to a v ∈ H, can be written as Φ = N v +m, where m is the mean-value
of Φ.
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We consider then every positive power As of the positive operator A, with s > 0
that can be also defined as follows: if ei ∈ L2(Ω) is a basis of eigenfunctions with
eigenvalues λi, i ∈ N, then it holds, for all u ∈ D(As),

u =
∑

i

ciei ⇒ Asu =
∑

i

λsi ciei. (2.7)

Moreover, for 1 < s < 2 we denote by

Hs
n(Ω) := D(As/2) (2.8)

and by Hs
n(Ω) := {u ∈ Hs

n(Ω) :
∫

Ω
u = 0}. We consider on Hs

n(Ω) the scalar product

as(u, v) := (As/2u,As/2v) ∀u, v ∈ Hs
n(Ω) . (2.9)

In the space Hs
n(Ω) we can also consider the equivalent norm

as(u, u)
1/2 + ‖u‖ ∀u ∈ Hs

n(Ω) . (2.10)

We define

H−s
n (Ω) = {f ∈ (Hs

n(Ω))
′ : ∃ g ∈ Hs

n(Ω) such that 〈f, ϕ〉 = as(g, ϕ) ∀ϕ ∈ Hs
n(Ω)}.

It can be observed that for all f ∈ H−s
n (Ω), it holds g = A−sf . We endow the space

H−s
n (Ω) with the scalar product

(f1, f2)H−s
n

:= (A−s/2f1, A
−s/2f2).

With such product H−s
n (Ω) is a Hilbert space with norm denoted by ‖ · ‖H−s

n
.

Let U ⊂⊂ Ω and K = Ū be compact. Denote by Hs
K(Ω) the space of functions

u ∈ Hs(Ω) such that supp u ⊂ K. The interpolation space of order s ∈ (0, 1) between
H and W := H2

n(Ω) is [H,W ]s. From the inclusions H2
0 (U) ⊂ H2

K(Ω) ⊂ W ⊂ H2(Ω)
and thanks to the fact that Hs

n(Ω) = D(As/2) = [H,W ]s it is possible to prove that

Hs
K(Ω) ⊂ Hs

n(Ω) ⊂ Hs(Ω). (2.11)

This follows from the facts that [H,H2
0 (U)]s = Hs

K(Ω), s ∈ (1/2, 1) (see [31, Section
4.5]). In particular it is seen that smooth functions with compact support in Ω belong
to Hs

n(Ω) for all s ∈ (0, 1).

Properties of operators defined on Γ. Let Γ be a smooth interface between the
two open sets Ω+ and Ω−. Let us consider the map T : H1/2(Γ) → H1(Ω) such that
T (f) = f̃ , where, for f ∈ H1/2(Γ), f̃ ∈ V ′ is defined as the null-mean value solution of
the problem

∆f̃ = 0 on Ω+ ∪ Ω−, f̃ = f on Γ, ∂nf̃ = 0 on ∂Ω. (2.12)

We consider the inner product on H1/2(Γ)

(u, v)H1/2(Γ) =

∫

Ω

∇T (u) · ∇T (v)dx ∀u, v ∈ H1/2(Γ), (2.13)
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which induces the seminorm ‖ · ‖
H

1/2
n (Γ)

. It is easy to observe that ‖f‖
H

1/2
n (Γ)

= 0 if

and only if f is constant, and thus if we note by ∼ the equivalence relation f1 ∼ f2 iff
f1− f2 is constant on Γ, we see that H1/2(Γ)/ ∼ is a Hilbert space with scalar product
(2.13). Hence we have

H1/2
n (Γ) = H1/2(Γ)/ ∼ .

We denote byH
−1/2
n (Γ) the dual space ofH

1/2
n (Γ). We now introduce the Laplace

operator restricted to Γ, namely −∆Γ : H
1/2
n (Γ) → H

−1/2
n (Γ), defined as

−∆Γ(f) :=

[

∂f̃

∂n

]

∀f ∈ H1/2
n (Γ). (2.14)

Here we have use the following notation: for all f ∈ H1/2(Γ), if f± are the two

restrictions of f̃ in (2.12) to Ω± respectively, [∂f̃
∂n
] ∈ H

−1/2
n (Γ) is the jump of the

normal derivative of f̃ on Γ, i.e. [∂f̃
∂n
] := ∂f+

∂n
− ∂f−

∂n
. This is well defined in H

−1/2
n (Γ)

and coincides with the distribution

〈

[

∂f̃

∂n

]

, ϕ〉 =

∫

Ω

∇f̃ · ∇ϕ̄dx ∀ϕ ∈ H−1/2
n (Γ), (2.15)

where ϕ̄ ∈ V is an arbitrary extension of ϕ. In particular, we can always choose
ϕ̄ = T (ϕ), so that, taking ϕ = f it is also readly seen that −∆Γ is a positive operator.

It is immediately seen that the scalar product (2.13) can be equivalently rewrit-
ten as

(u, v)
H

1/2
n (Γ)

= −〈(∆Γu), v〉 ∀u, v ∈ H1/2(Γ). (2.16)

The following lemma is proved in [24, Lemma 2.1]:

Lemma 2.1. (i) For all u ∈ H
−1/2
n (Γ) there exists a unique u∗ ∈ H

1/2
n (Γ) such that

‖u‖
H

−1/2
n (Γ)

= ‖u∗‖
H

1/2
n (Γ)

and

〈u, v〉 = (u∗, v)
H

1/2
n (Γ)

,

for all v ∈ H
1/2
n (Γ). Moreover −∆Γu

∗ = u, so that by uniqueness we can write
u∗ = −∆−1

Γ u.

(ii) H
−1/2
n (Γ) is a Hilbert space with inner product

〈u, v〉 = (∆−1
Γ u,∆−1

Γ v)
H

1/2
n (Γ)

,

for all u, v ∈ H
−1/2
n (Γ).

Notice that f ∈ H
−1/2
n (Γ) can be naturally seen as an element T ∗f ∈ V ′ by the

relation

〈T ∗f, ϕ〉 = 〈f, ϕxΓ〉, (2.17)
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for all ϕ ∈ V . Thus H
−1/2
n (Γ) is isomorphic to a subspace of V ′

Γ ⊂ H−1
n (Ω) defined as

V ′

Γ := {u ∈ H−1
n (Ω) ∩ D′(Γ)} = {u ∈ H−1

n (Ω) : suppu ⊂ Γ}. (2.18)

The isomorphism is exactly the map T ∗ : H
−1/2
n (Γ) → V ′

Γ. We define

VΓ := A−1(V ′

Γ) = {u ∈ H1
n(Ω) : suppAu ⊂ Γ}.

The space VΓ is isomorphic to H
1/2
n (Γ) via the isomorphism T : H

1/2
n (Γ) → VΓ intro-

duced in (2.12).
Assertion (i) of the previous lemma has the following consequence:

Lemma 2.2. Let f ∈ H−1/2(Γ), then T ◦ (−∆Γ)
−1f = N ◦ T ∗f .

Proof. For all ϕ ∈ H1
n(Ω) we have by (i) of Lemma 2.1

〈T ∗f, ϕ〉 = 〈f, ϕxΓ〉 = 〈−∆Γ(−∆Γ)
−1f, ϕ〉, (2.19)

and, denoting by g = T ◦ (−∆Γ)
−1f , the last term equals

∫

Γ
[ ∂g
∂n
]ϕdHd−1. Therefore

integrating by parts, or in other words using formula (2.15), we get

〈T ∗f, ϕ〉 =

∫

Ω

∇g · ∇ϕdx. (2.20)

Therefore by the definition of N and the arbitrariness of ϕ ∈ H1
n(Ω) it follows that

g = NT ∗f , that is the thesis.

Lemma 2.2 says exactly that (−∆Γ)
−1 = T−1◦N ◦T ∗, i.e., −∆Γ = (T ∗)−1◦A◦T .

Lemma 2.3. Let f ∈ H−1
n (Ω) ∩H and let g := N f . Then [ ∂g

∂n
] = 0 on Γ.

Proof. By definition we have

〈f, ϕ〉 =

∫

Ω

∇g · ∇ϕdx, (2.21)

for all ϕ ∈ H1
n(Ω). On the other hand we have

〈f, ϕ〉 =

∫

Ω

fϕdx =

∫

Ω+

AN fϕdx+

∫

Ω−

AN fϕdx

= −

∫

Γ

[

∂g

∂n

]

ϕdHd−1 +

∫

Ω

∇g · ∇ϕdx.

from which the thesis follows.
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3 Energies and preliminary results

Let Ω be an open and bounded smooth set in R
3 and s ≥ 1. We consider the functional

Mε defined on V as

Mε(u) :=

∫

Ω

ε−1W (u) +
ε

2
|∇u|2dx. (3.1)

We also define, for all u ∈ L1(Ω), the energy

M0(u) :=

{

cWHn−1(Γ) if u ∈ BV (Ω, {−1, 1})

+∞ otherwise
(3.2)

where Γ is the boundary of the set {u = 1}, that is, the interface between the two
phases of u, namely {u = ±1}, and

cW :=

∫ 1

−1

W (s)ds.

The following Theorem is well-known and first proved by Modica and Mortola [28]:

Theorem 3.1. The functionals Mε(u) gamma converge in L1(Ω) to M0(u).

Let us denote by F the functional on H ×Hs
n(Ω) given by

F (ϕ, σ) := 〈σ, ϕ〉+
as(σ, σ)

2
+

∫

Ω

σ2

2
dx. (3.3)

Let ε > 0, the energy functional Eε is defined as

Eε(ϕ, σ) :=

{

Mε(ϕ− σ) + F (ϕ, σ) if (ϕ, σ) ∈ H ×Hs
n(Ω) and ϕ− σ ∈ H1(Ω)

+∞ otherwise.

(3.4)

Standard estimates show that there exists a constant C = C(ε) > 0 such that

Eε(ϕ, σ) ≥ C
(

‖ϕ‖2V + ‖σ‖2Hs
n

)

, (3.5)

for all ϕ ∈ V and σ ∈ Hs
n(Ω). Moreover there exists a constant C > 0 independent of

ε ∈ (0, 1) such that

Eε(ϕ, σ) ≥ C(‖ϕ‖2 + ‖σ‖2Hs
n(Ω)). (3.6)

We consider the functional

E0(ϕ, σ) :=

{

M0(ϕ− σ) + F (ϕ, σ) if (ϕ− σ) ∈ BV (Ω, {−1, 1}) and σ ∈ Hs
n(Ω)

+∞ otherwise.

(3.7)

We now study the relation between Eε and E0.
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Theorem 3.2. The functionals Eε(ϕ, σ) gamma converge to the functional E0(ϕ, σ)
with respect to the L1 × L1 topology.

Proof. Liminf inequality. Let (ϕε, σε) be a sequence converging to (ϕ, σ) in L1(Ω)×
L1(Ω). We must demonstrate that

lim inf
ε→0

Eε(ϕε, σε) ≥ E0(ϕ, σ). (3.8)

So, let us assume the left-hand side being equal to a finite real number M > 0. In
particular condition (3.6) implies that, up to a subsequence, σε ⇀ σ weakly in Hs

n(Ω).
Moreover, from the boundedness W (ϕε − σε) ≤ εM and the growth condition of W
we infer ϕε − σε → ϕ − σ strongly in H . This, together with the convergence of σε,
provides ϕε → ϕ strongly in H . Now, thanks to Theorem 3.1, we already know that

lim inf
ε→0

Mε(ϕε − σε) ≥M0(ϕ− σ). (3.9)

Thus the thesis follows from the semicontinuity inequality

lim inf
ε→0

F (ϕε, σε) ≥ F (ϕ, σ), (3.10)

that holds true thanks to the strong convergences in H of both ϕε and σε, and the
weak convergence of σε in Hs

n(Ω).
Limsup inequality. Let (ϕ, σ) be such that E0(ϕ, σ) < +∞. By Theorem 3.1

there exists a sequence uε → u := ϕ− σ such that

lim sup
ε→0

Mε(uε) ≤M0(u). (3.11)

For all ε ∈ (0, 1) we then set σε := σ and ϕε := uε + σε. Again by the coerciveness
properties of Mε we obtain uε → u strongly in H , and we easily find out

lim
ε→0

F (ϕε, σε) = F (ϕ, σ), (3.12)

from which the thesis follows.

4 Existence of approximate gradient flow

In this section we show the existence of solutions to the approximate gradient flow

(ϕ̇ε, σ̇ε) = −∇X×YE(ϕ
ε, σε). (4.1)

We want to take the topologies X := H−s
n (Ω) and Y := H . The corresponding system

of equations is

{

ϕ̇ε = −As
(

1
ε
W ′(ϕε − σε)− ε∆(ϕε − σε)

)

− Asσε,

σ̇ε = −ε∆(ϕε − σε) + 1
ε
W ′(ϕε − σε)−Asσε − σε − ϕε.

(4.2)

The existence theorem is stated as follows.

11



Theorem 4.1. Let ε ∈ (0, 1) and T > 0. For all (ϕε
0, σ

ε
0) ∈ H1

n(Ω)×Hs
n(Ω) there exist

(ϕε, σε) with

ϕε ∈ L∞(0, T ;H1
n(Ω)) ∩H

1(0, T ;H−s
n (Ω)), (4.3)

σε ∈ L∞(0, T ;Hs
n(Ω)) ∩H

1(0, T ;H), (4.4)

satisfying (4.2) a.e. on [0, T ], with initial conditions (ϕε(0), σε(0)) = (ϕε
0, σ

ε
0). More-

over we have

ϕε ∈ L2(0, T ;H2(Ω)) and σε ∈ L2(0, T ;H2s
n (Ω)), vε ∈ L2(0, T ;Hs

n(Ω)), (4.5)

where vε := W ′(uε)
ε

− ε∆uε.

Proof. In order to prove Theorem (4.1) we use a standard technique of discretization
and an Euler implicit scheme. In the rest of the proof we will drop the label ε from
the formulas. It is convenient to write the potential W (x) = (x2 − 1)2 as the sum
of a convex and a monotone part, namely W := W̃ + W̄ , with W̃ (x) = x4 + 1 and
W̄ (x) = −2x2. We fix a time T > 0. Let n ∈ N and define τ := T/n. Setting
ϕ0 := ϕε(0) and σ0 := σε(0), we define recursively

σk := argmin σ∈Hs
n(Ω)

1

τ
‖σ − σk−1‖

2 +
1

ε

∫

Ω

W̃ (ϕk−1 − σ)dx

−
1

ε

∫

Ω

W̄ ′(ϕk−1 − σk−1)σdx+
ε

2
‖∇(ϕk−1 − σ)‖2 (4.6)

+
as(σ, σ)

2
+

‖σ‖2

2
+ 〈ϕk−1, σ〉,

ϕk := argmin ϕ∈H1
n(Ω)

1

τ
‖ϕ− ϕk−1‖

2
H−s

n
+

1

ε

∫

Ω

W̃ (ϕ− σk)dx+
1

ε

∫

Ω

W̄ ′(ϕk−1 − σk)ϕdx

+
ε

2
‖∇(ϕ− σk)‖

2 + 〈ϕ, σk〉, (4.7)

for k = 1, . . . , n. Notice that the minimizers exist and are unique thanks to the
convexity and coerciveness of the functionals. By minimality we get the two Euler
conditions

〈
σk − σk−1

τ
, ψ1〉 − 〈

1

ε
W̃ ′(ϕk−1 − σk), ψ1〉 − 〈

1

ε
W̄ ′(ϕk−1 − σk−1), ψ1〉

− 〈ε∇(ϕk−1 − σk),∇ψ1〉+ 〈ϕk−1 + σk, ψ1〉+ as(σk, ψ1) = 0, (4.8)

(
ϕk − ϕk−1

τ
, ψ2)H−s

n (Ω) + 〈
1

ε
W̃ ′(ϕk − σk), ψ2〉

+ 〈
1

ε
W̄ ′(ϕk−1 − σk), ψ2〉+ 〈ε∇(ϕk − σk),∇ψ2〉+ 〈σk, ψ2〉 = 0, (4.9)

valid for all ψ1 ∈ Hs
n(Ω) and ψ2 ∈ H1

n(Ω). Testing (4.8) by ψ1 = τ−1(σk − σk−1)
and (4.9) by ψ2 = τ−1(ϕk − ϕk−1), then summing the two expressions and using the
inequalities

−
(

W̃ ′(ϕk−1 − σk) + W̄ ′(ϕk−1 − σk−1)
)

(σk − σk−1) ≥ W (ϕk−1 − σk)

−W (ϕk−1 − σk−1),
(

W̃ ′(ϕk − σk) + W̄ ′(ϕk−1 − σk)
)

(ϕk − ϕk−1) ≥W (ϕk − σk)−W (ϕk−1 − σk),

12



we get

‖
σk − σk−1

τ
‖2 + ‖

ϕk − ϕk−1

τ
‖2
H−s

n (Ω)
+

1

τε

∫

Ω

W (ϕk − σk)dx−
1

τε

∫

Ω

W (ϕk−1 − σk−1)dx

− 〈ε∇(ϕk−1 − σk),
∇σk −∇σk−1

τ
〉+ 〈ε∇(ϕk − σk),

∇ϕk −∇ϕk−1

τ
〉

+ 〈ϕk−1 + σk,
σk − σk−1

τ
〉+ 〈∇σk,

∇σk −∇σk−1

τ
〉+ 〈σk,

ϕk − ϕk−1

τ
〉

+ as(σk,
σk − σk−1

τ
) ≤ 0. (4.10)

We define the following piecewise affine and constant functions on [0, T ]

στ (t) := σk−1 + τ−1(t− tk)(σk − σk−1) for t ∈ [tk−1, tk),

ϕτ (t) := ϕk−1 + τ−1(t− tk)(ϕk − ϕk−1) for t ∈ [tk−1, tk),

σ̃τ (t) := σk−1 for t ∈ [tk−1, tk),

ϕ̃τ (t) := ϕk−1 for t ∈ [tk−1, tk). (4.11)

For all t ∈ [tk−1, tk) it holds

〈∇σk,
∇σk −∇σk−1

τ
〉 = 〈∇στ (t),∇σ̇τ (t)〉+ |tk − t|‖∇σ̇τ (t)‖

2, (4.12)

implying
∫ tk

tk−1

〈∇σk,
∇σk −∇σk−1

τ
〉 ≥

1

2
‖∇σk‖

2 −
1

2
‖∇σk−1‖

2. (4.13)

Similarly, we get the estimates
∫ tk

tk−1

as(σk,
σk − σk−1

τ
) ≥

1

2
as(σk, σk)−

1

2
as(σk−1, σk−1), (4.14)

and
∫ tk

tk−1

〈σk,
σk − σk−1

τ
〉 ≥

1

2
‖σk‖

2 −
1

2
‖σk−1‖

2. (4.15)

Moreover, for t ∈ [tk−1, tk),

− 〈ε∇(ϕk−1 − σk),
∇σk −∇σk−1

τ
〉+ 〈ε∇(ϕk − σk),

∇ϕk −∇ϕk−1

τ
〉

= 〈ε∇(ϕk − σk),∇ϕ̇τ −∇σ̇τ 〉+ τε〈∇ϕ̇τ ,∇σ̇τ 〉

= 〈ε∇(ϕτ − στ ),∇ϕ̇τ −∇σ̇τ 〉+ ε(tk − t)‖∇(ϕτ − στ )‖
2 + τε〈∇ϕ̇τ ,∇σ̇τ 〉,

so that integrating on [tk−1, tk) we arrive at

ε

2
‖∇ϕk −∇σk‖

2 −
ε

2
‖∇ϕk−1 −∇σk−1‖

2 +
ετ 2

2
‖∇ϕ̇τ −∇σ̇τ‖

2 + ετ 2〈∇ϕ̇τ ,∇σ̇τ 〉

=
ε

2
‖∇ϕk −∇σk‖

2 −
ε

2
‖∇ϕk−1 −∇σk−1‖

2 +
ετ 2

2
‖∇ϕ̇τ‖

2 +
ετ 2

2
‖∇σ̇τ‖

2. (4.16)
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Then, for 0 < K < n we integrate over [tk−1, tk) expression (4.10) and sum over
k = 1, . . . , K, so that, taking into account (4.13), (4.14), (4.15), and (4.16), we infer

Eε(ϕτ (tK), στ (tK)) +

∫ tK

0

‖σ̇τ (t)‖
2 + ‖ϕ̇τ (t)‖

2
H−s

n (Ω)
dt ≤ Eε(ϕτ (0), στ(0)). (4.17)

This, together with the coerciveness property (3.5), implies that there exists a constant
M > 0 independent of τ such that

‖ϕτ‖L∞(0,T ;H1
n(Ω)) ≤ M, (4.18a)

‖στ‖L∞(0,T ;Hs
n(Ω)) ≤M, (4.18b)

‖ϕ̇τ‖L2(0,T ;H−s
n (Ω)) ≤M, (4.18c)

‖σ̇τ‖L2(0,T ;H) ≤ M. (4.18d)

Therefore we find ϕ ∈ L∞(0, T ;H1
n(Ω))∩H

1(0, T ;H−s
n (Ω)) and σ ∈ L∞(0, T ;Hs

n(Ω))∩
H1(0, T ;H) such that, up to a subsequence,

στ ⇀ σ weakly* in L∞(0, T ;Hs
n(Ω)), (4.19a)

ϕτ ⇀ ϕ weakly* in L∞(0, T ;H1
n(Ω)), (4.19b)

and

στ ⇀ σ weakly in H1(0, T ;H), (4.20)

ϕτ ⇀ ϕ weakly in H1(0, T ;H−s
n (Ω)). (4.21)

From (4.19) we infer

W ′(ϕτ − στ )⇀W ′(ϕ− σ) weakly* in L∞(0, T ;H), (4.22)

thanks to the cubic growth ofW ′ and of the Sobolev embedding V ⊂ L6(Ω). Therefore,
multiplying (4.8) and (4.9) by an arbitrary test function g ∈ C(0, T ;R) and integrating
on time, we can pass to the limit in τ → 0 thanks to (4.19)-(4.22), and then the
arbitrariness of g entails that, almost everywhere on [0, T ],

〈σ̇, ψ1〉 = 〈
1

ε
W ′(ϕ− σ), ψ1〉+ 〈ε∇(ϕ− σ),∇ψ1〉 − 〈ϕ+ σ, ψ1〉 − as(σ, ψ1), (4.23)

and

〈A−sϕ̇, ψ2〉 = −〈
1

ε
W ′(ϕ− σ), ψ2〉 − 〈ε∇(ϕ− σ),∇ψ2〉 − 〈σ, ψ2〉, (4.24)

for all ψ1 ∈ Hs
n(Ω) and ψ2 ∈ Hs

1(Ω). From (4.24) we infer, almost everywhere on [0, T ],

A−sϕ̇ = −v − σ, (4.25)

where we have set

v :=
1

ε
W ′(ϕ− σ)− ε∆(ϕ− σ).
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Thanks to (4.20) and (4.22), expression (4.25) implies

v ∈ L2(0, T ;Hs
n(Ω)) and ∆(ϕ− σ) ∈ L2(0, T ;H)). (4.26)

On the other hand, comparing all the terms in (4.23), we also find

Asσ ∈ L2(0, T ;H), (4.27)

which, together with (4.26), implies

ϕ ∈ L2(0, T ;H2(Ω)) and σ ∈ L2(0, T ;H2s
n (Ω)). (4.28)

5 The sharp interface limit

To prove the convergence of the gradient flow considered in the previous section, we
have to make some necessary hypotheses on our setting and on the regularity of our
solutions.

5.1 Hypotheses

(HP1) We assume s > 3/2.

(HP2) We assume that the functions uε(t) := ϕε(t) − σε(t) are of class C3(Ω̄) and the
limiting interface Γ is of class C3 in the time-space [0, T ∗]×Ω for some T ∗ ∈ (0, T ].

In the case Hs(Ω) ⊂ W 1,p(Ω) for some p > d = 3 (which holds true if s > 3/2,

namely under hypothesis (HP1)), since vε = W ′(uε)
ε

−ε∆uε ∈ L2(0, T ;Hs
n(Ω)), then the

following convergence in the sense of Radon measures holds true

ε

2
|∇uε|2 +

W (uε)

ε
⇀ 2cWdH

d−1
xΓ. (5.1)

Thanks to (HP1) this follows from [29, Theorem 3.2]. The last property implies the
following fact, called equipartition of energy : in the sense of Radon measures

∣

∣

∣

ε

2
|∇uε|2 −

W (uε)

ε

∣

∣

∣
⇀ 0. (5.2)

This is proved in [27, Lemma 1]. In [32, 33] it is shown that without the restriction
s > 3/2, formula (5.1) holds with an additional factor θ at the right-hand side, which
is a positive integer-valued function supported on Γ. Since it might be a non-constant
function, hypothesis (HP1) turns out to be necessary. It is conjectured that (5.1) must
hold also in the case s = 1, but this issue is still an open question (see [29]). In
particular, in the case that s ∈ [1, 3/2] we have to make the alternative hypothesis

(HP1bis) We assume s ∈ [1, 3/2] and that (5.1) holds true.
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In other words, we assume that the integer-valued function θ supported on Γ is con-
stantly equal to 1, as conjectured in [29].

Let us now consider the approximate gradient flows: for all ε > 0 let (ϕε, σε) be
a solution to system (4.2) with initial data (ϕε

0, σ
ε
0), as provided by Theorem 4.1. Let

(ϕ0, σ0) be functions in H
2(Ω)∩H1

n(Ω)×H2s(Ω)∩Hs
n(Ω) such that E0(ϕ0, σ0) < +∞.

In particular, such condition requires that ϕ0 − σ0 = u0 = χΩ+

0
− χΩ−

0
, where Ω+

0 and

Ω−

0 are two disjoint sets with Ω−

0 = Ω\Ω+
0 and common boundary Γ0. We assume that

the interface Γ0 is of class C3, according with hypothesis (HP2).
We will assume that the initial conditions are well prepared, that is

(ϕε
0, σ

ε
0) → (ϕ0, σ0) strongly in L1(Ω)× L1(Ω),

and Eε(ϕε
0, σ

ε
0) → E0(ϕ0, σ0). (5.3)

In other words, we are assuming that (ϕε
0, σ

ε
0) is a recovery sequence for (ϕ0, σ0).

Thanks to [24, Theorem 1.2B] it is possible to construct a sequence of well-
prepared initial data. We address to the following theorem the easy adaptation to our
case.

Theorem 5.1. Let (ϕ0, σ0) ∈ L1(Ω) × H2s(Ω) such that ϕ0 − σ0 = u0 = 1 − 2χΩ−

0
=

2χΩ+

0
−1, with Ω−

0 ⊂ Ω having boundary Γ0 = ∂Ω−

0 a C3-closed surface in Ω with finite

H2 measure. Then there exists a sequence of smooth functions (ϕε
0, σ

ε
0) such that (5.3)

holds true.

Proof. Theorem 1.2 of [24] ensures the existence of a sequence uε0 of smooth functions
such that uε0 → u0 strongly in L1(Ω). Since the surface Γ0 is closed in Ω, it has
strictly positive distance from the boundary. Assume the inner part of Γ0 being Ω+

0 .
Using a suitable cut-off function ζ which equals 1 on Ω̄+

0 and 0 on a neighborhood
of ∂Ω, and then replacing uε0 by ζ(uε0 + 1) − 1, it is not restrictive to assume that
uε0 ∈ H1

n(Ω)∩H
s
n(Ω). In order to have (5.3) it suffices to choose a sequence σε

0 ∈ Hs
n(Ω)

converging strongly to σ0 in H
2s
n (Ω). Then setting ϕε

0 := σε
0+u

ε
0 the thesis easily follows

thanks to the form of the energy E0.

5.2 Convergence of gradient flows

Let us start with the following statement:

Lemma 5.2. Let ∪t∈[0,T ∗]Γ(t) × {t} ⊂ Ω × [0, T ∗] be a C3 hypersurface with Γ(t)
closed for all t ∈ [0, T ∗]. Let u(t) := χΩ+(t) − χΩ−(t) for all t ∈ [0, T ∗], and assume
u ∈ L∞(0, T ∗;H)∩H1(0, T ∗;H−s

n (Ω)) and σ ∈ L∞(0, T ∗;Hs
n(Ω))∩L

2(0, T ∗;H2s
n (Ω))∩

H1(0, T ∗;H). Then, for a.e. t ∈ [0, T ∗],

d

dt
E0(u(t) + σ(t), σ(t)) =− 2cW (V (t), k(t))L2(Γ) + 2(V (t), σ(t))L2(Γ)

+ (σ̇(t), Asσ(t) + u(t) + 3σ(t)),

where V (t) = Γ̇(t) is the normal velocity of the interface Γ(t), and k(t) is its mean
curvature.
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Proof. Using [2, Theorem 7.31] (see also [24, formula (2.4)]) we obtain

d

dt
(cWH1(Γ))(t) = −2cW (Γ̇(t), k(t))L2(Γ).

The time derivative of 〈u+ σ, σ〉+ 1
2
‖As/2σ‖2 + 1

2
‖σ‖2 instead reads

〈u̇(t), σ〉+ 〈σ̇(t), u(t)〉+ 3(σ̇(t), σ(t)) + (σ̇(t), Asσ(t)) =

= 2(Γ̇(t), σ)L2(Γ) + (σ̇(t), Asσ(t) + u(t) + 3σ(t)).

It is convenient to denote the normal velocity of the interface by Γ̇, so that we
write u̇ = 2Γ̇.

Let us recall that the functions (ϕε, σε) satisfy

{

ϕ̇ε = −Asvε − Asσε,

σ̇ε = vε − Asσε − σε − ϕε,
(5.4)

with the corresponding energy balance

Eε(ϕε
0, σ

ε
0)− Eε(ϕε(t), σε(t)) =

∫ t

0

‖ϕ̇ε‖2
H−s

n (Ω)
+ ‖σ̇ε‖2ds, (5.5)

valid for all t ∈ [0, T ]. From this we easily infer some a-priori estimates.

Proposition 5.3. For ε ∈ (0, 1) let (ϕε, σε) be a solution in Theorem 4.1 with initial
datum (ϕε

0, σ
ε
0). Then there exists a constant M > 0 such that

‖ϕε‖L∞(0,T ;H) ≤M, (5.6)

‖σε‖L∞(0,T ;Hs
n(Ω)) ≤M, (5.7)

‖ϕε‖H1(0,T ;H−s
n (Ω)) ≤M, (5.8)

‖σε‖H1(0,T ;H) ≤M, (5.9)

and, setting vε := 1
ε
W ′(ϕε − σε)− ε∆(ϕε − σε) and uε := ϕε − σε, we have

‖vε‖L2(0,T ;Hs
n(Ω)) ≤M, (5.10)

‖σε‖L2(0,T ;H2s
n (Ω)) ≤ M, (5.11)

‖uε‖L∞(0,T ;L4(Ω)) ≤M. (5.12)

for all ε ∈ (0, 1).

Proof. For all t ∈ [0, T ] we have

∫ t

0

‖σ̇ε‖2 + ‖ϕ̇ε‖2
H−s

n (Ω)
ds+ E(ϕε(t), σε(t)) = E(ϕε

0, σ
ε
0) ≤M, (5.13)
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which, together with (3.6), implies (5.6)-(5.9). The uniform boundedness (3.6) and the
coerciveness property Eε(ϕ, σ) ≥ C‖ϕ− σ‖4L4(Ω) imply

‖uε‖L∞(0,T ;L4(Ω)) ≤M. (5.14)

Subtracting the two equations in (5.4), we obtain

Asvε + vε = ϕε + σε − ϕ̇ε + σ̇ε,

so that, by (5.8) and (5.9), we see that

‖Asvε + vε‖L2(0,T ;H−s
n (Ω)) ≤M,

for all ε ∈ (0, 1). Therefore we infer (5.10) from the fact that the bilinear form as(·, ·)+
(·, ·)H is coercive on Hs

n(Ω). From this, (5.6), (5.7), and (5.9), thanks to the fact that
σ̇ε = −Asσε + vε − ϕε − σε, we infer

‖Asσε‖L2(0,T ;H) ≤M, (5.15)

implying (5.11).

Remark 5.4. Notice that estimate (5.6) can be refined. Actually from (5.7), (5.12),
and the embedding Hs

n(Ω) ⊂ L4(Ω) we obtain

‖ϕε‖L∞(0,T ;L4(Ω)) ≤M. (5.16)

Proposition 5.5. For a subsequence, we have

uε ⇀ u weakly in L4(Ω× [0, T ]). (5.17)

Moreover, for all t ∈ [0, T ], u(t) ∈ BV (Ω; {−1, 1}) and

uε(t)⇀ u(t) weakly in L4(Ω), (5.18)

uε(t) → u(t) strongly in L1(Ω), (5.19)

uε(t)⇀ u(t) weakly* in BV (Ω). (5.20)

Proof. The first statement readily follows from (5.12). To conclude the proof it suffices
to follow the lines of the proof of [24, Proposition 4.1], which can be trivially adapted
to our case.

Proposition 5.6. Up to a subsequence, the functions vε ⇀ v weakly in L2(0, T ;V )
and the limit function v satisfies for a.e. t ∈ [0, T ]

v(t) = −cWk(t) on Γ(t), (5.21)

where k(t) ∈ H−1/2(Γ(t)) is the mean curvature of the smooth surface Γ(t) at time t.

Proof. To prove this we argue as in [24, Lemma 3.1]. Note that this result is strongly
based on hypothesis (HP1) or (HP1bis).
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Proposition 5.7. For all t ∈ [0, T ] there holds

lim inf
ε→0

∫ t

0

‖ϕ̇ε(s)‖H−s
n (Ω)ds ≥

∫ t

0

‖2Γ̇(s) + σ̇(s)‖H−s
n (Ω)ds. (5.22)

Proof. Since uε → u in L1([0, T ]×Ω) we know that u̇ε tends to u̇ = 2Γ̇ in the sense of
distributions. On the other hand, we know that u̇ε = (ϕ̇ε − σ̇ε) ⇀ (ϕ̇− σ̇) weakly in
L2(0, T ;H−s

n (Ω)), so that ϕ̇ − σ̇ = 2Γ̇ ∈ L2(0, T ;H−s
n (Ω)). This, together with (5.9),

implies
ϕ̇ε ⇀ 2Γ̇ + σ̇ weakly in L2(0, T ;H−s

n (Ω)).

The thesis then follows by lower semicontinuity.

Now we are ready to state the main result of the paper.

Theorem 5.8. Let us assume hypotheses (HP1) or (HP1bis), and (HP2). Suppose
that the initial data satisfy (5.3). Then there exists a time T ∗ ∈ (0, T ] such that it
holds

2Γ̇(t) = −Asv(t) + ϕ(t) + σ(t)− v(t), (5.23)

σ̇(t) = −Asσ(t) + v(t)− ϕ(t)− σ(t), (5.24)

and

v(t) = −cWk H2 − a.e. on Γ, (5.25)

for a.e. t ∈ [0, T ∗]. Moreover it holds

Asv(t) = ϕ(t) + σ(t)− v(t), (5.26)

almost everywhere in Ω+ ∪ Ω−, and for a.e. t ∈ [0, T ∗]. Finally

σε(t) → σ(t) strongly in Hs
n(Ω), (5.27)

for all t ∈ [0, T ∗] and

vε → v strongly in L2(0, T ∗;Hs
n(Ω)). (5.28)

Proof. The energy identity (5.5) together with (4.2) imply

2Eε(ϕε
0, σ

ε
0)− 2Eε(ϕε(t), σε(t)) =

∫ t

0

(

‖ϕ̇ε‖2
H−s

n (Ω)
+ ‖σ̇ε‖2

)

ds

+

∫ t

0

(

‖ − Asvε − Asσε‖2
H−s

n (Ω)

+‖ − Asσε + vε − ϕε − σε‖2
)

ds.
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Thus taking the liminf as ε→ 0 we infer

lim inf
ε→0

Eε(ϕε
0, σ

ε
0)− Eε(ϕε(t), σε(t))

≥
1

2

∫ t

0

‖2Γ̇ + σ̇‖2
H−s

n (Ω)
+ ‖ − Asv − Asσ‖2

H−s
n (Ω)

ds

+
1

2

∫ t

0

‖σ̇‖2 + ‖ −Asσ + v − ϕ− σ‖2ds

≥

∫ t

0

−(2Γ̇ + σ̇, As(v + σ))H−s
n (Ω) + (σ̇,−Asσ + v − ϕ− σ)ds

=

∫ t

0

−2〈Γ̇, v + σ〉+ (σ̇,−Asσ − u− 3σ)ds

=

∫ t

0

−2(Γ̇, v + σ)L2(Γ) + (σ̇,−Asσ − u− 3σ)ds

=

∫ t

0

2cW (Γ̇, k)L2(Γ) − 2(Γ̇, σ)L2(Γ) + (σ̇,−Asσ − u− 3σ)ds

= E(ϕ0, σ0)− E(ϕ(t), σ(t)). (5.29)

We have used (5.22) and the lower semicontinuity of the norms in L2(0, T ;H−s
n (Ω))

and L2(0, T ;H) in the first inequality, the Cauchy-Schwartz inequality in the second
one, the identity (5.21) in the second equality and Lemma 5.2 in the last one. On the
other hand, by Proposition 5.5 we have

(ϕε(t), σε(t)) → (ϕ(t), σ(t)) in L1(Ω)× L1(Ω),

so that Theorem 3.2 and the hypothesis that (ϕε
0, σ

ε
0) is a recovery sequence entails

lim sup
ε→0

E(ϕε
0, σ

ε
0)− E(ϕε(t), σε(t)) ≤ E(ϕ0, σ0)−E(ϕ(t), σ(t)).

Therefore all the inequalities in (5.29) are equalities, and in particular we get that for
a.e. t ∈ [0, T ],

2Γ̇(t) + σ̇(t) = −As(v(t) + σ(t)) a.e. on Ω, (5.30a)

σ̇(t) = −Asσ(t) + v(t)− ϕ(t)− σ(t) a.e. on Ω. (5.30b)

Combining these two equations we infer

2Γ̇(t) = −Asv(t) + ϕ(t) + σ(t)− v(t) (5.31)

for a.e. t ∈ [0, T ] and hence (5.23) and (5.24) are proved. Using the fact that Γ̇(t) is
supported on Γ, using test functions in C∞

c (Ω+ ∪ Ω−) it is easily seen that

Asv(t) = ϕ(t) + σ(t)− v(t) on Ω+ ∪ Ω−, (5.32)

for a.e. t ∈ [0, T ]. This is (5.26), and (5.25) follows by Proposition 5.6. Finally we
have seen that, for all t ∈ [0, T ∗]

Eε(ϕε(t), σε(t)) → E(ϕ(t), σ(t)).
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Moreover, (5.7) and (5.9) imply that for all t ∈ [0, T ∗]

σε(t) → σ(t) strongly in H,

while
ϕε(t)⇀ ϕ(t) weakly in H,

by (5.6) and (5.8). Hence we deduce, thanks to the special form of the energies (3.4)
and (3.7),

∫

Ω

ε−1W (uε(t)) +
ε

2
|∇uε(t)|2dx→ cWH2(Γ(t)), (5.33)

as(σ
ε(t), σε(t)) → as(σ(t), σ(t)), (5.34)

and then

σε(t) → σ(t) strongly in Hs
n(Ω). (5.35)

Moreover, we have also seen that

∫ t

0

‖ − Asvε −Asσε‖2
H−s

n (Ω)
ds→

∫ t

0

‖ − Asv −Asσ‖2
H−s

n (Ω)
ds,

so that

−Asvε → −Asv strongly in L2(0, T ∗;H−s
n (Ω)), (5.36)

which implies

vε → v strongly in L2(0, T ∗;Hs
n(Ω)). (5.37)

In the particular case s = 1 or s = 2 we can deduce then from (5.23) a condition
relating v and Γ̇ on Γ. This relation is stated in the following result.

Theorem 5.9. Assume hypotheses of Theorem 5.8 with (HP1bis) and s = 1. Then
the additional condition holds true

[

∂v

∂n

]

(t) = −2Γ̇(t) H2 − a.e. on Γ,

for a.e. t ∈ [0, T ∗].

Proof. Let us denote w := −v+A−1ϕ+A−1σ−A−1v. Equation (5.31) reads Aw = 2Γ̇.
This means that w ∈ VΓ and, using Lemma 2.2, that −∆Γ(wxΓ) = 2Γ̇, i.e.,

[

∂w

∂n

]

(t) = 2Γ̇(t).

But
[

∂w
∂n

]

= −[ ∂v
∂n
] + [∂A

−1ϕ
∂n

] + [∂A
−1σ
∂n

] − [∂A
−1v
∂n

] = −[ ∂v
∂n
] by Lemma 2.3, that is the

thesis.

21



Theorem 5.10. Assume hypotheses of Theorem 5.8 with (HP1) and s = 2. Then

[

∂Av

∂n

]

(t) = −2Γ̇(t) H2 − a.e. on Γ,

for a.e. t ∈ [0, T ∗].

Proof. Denoting again w := −v+A−2ϕ+A−2σ−A−2v, equation (5.31) reads AAw =
2Γ̇. Thus, applying the same argument of Theorem 5.9 to Aw we get the thesis.
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