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1. Introduction

The Toda lattice hierarchy as a completely integrable system has many important

applications in mathematics and physics including the representation theory of Lie

algebras and random matrix models [1–3]. The Toda system has many kinds of re-

ductions or extensions, for example the B and C type Toda hierarchies [2,4], extended

Toda hierarchy (ETH) [5], bigraded Toda hierarchy (BTH) [6]- [11] and so on. There

are some other generalizations called multi-component Toda systems [2,12] which are

‡Corresponding author’s email:lichuanzhong@nbu.edu.cn.
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useful in the fields of multiple orthogonal polynomials and non-intersecting Brownian

motions.

The multicomponent 2D Toda hierarchy was considered from the point of view

of the Gauss-Borel factorization problem, the theory of multiple matrix orthogonal

polynomials, non-intersecting Brownian motions and matrix Riemann-Hilbert prob-

lem [12]- [15]. In fact the multicomponent 2D Toda hierarchy in [13] is a periodic

reduction of the bi-infinite matrix-formed two dimensional Toda hierarchy. In [16],

we generalize the multicomponent Toda hierarchy to an extended multicomponent

Toda hierarchy including extended logarithmic flow equations. Later by a commuta-

tive algebraic reduction on the extended multicomponent Toda hierarchy, we get an

extended ZN -Toda hierarchy [17] which might be useful in Gromov-Witten theory.

This paper is organized in the following way. In Section 2, we recall some basic

knowledge about the B(C) type Toda hierarchy. We construct a new even constrained

B(C) type Toda hierarchy and derive its Block type additional symmetry in Section 3.

Next, in Section 4 we generalize the B(C) type Toda hierarchy to a new N -component

B(C) type Toda hierarchy. In the last section, we construct the symmetry of the N -

component B(C) type Toda hierarchy which constitutes a coupled
⊗N

QT+ algebra

( N -folds direct product of the positive half of the quantum torus algebra QT ).

2. The B(C) type Toda hierarchy

In this section, some basic facts about the B(C) type Toda hierarchy are reviewed.

One can refer to [2, 4] for more details about the B(C) type Toda hierarchy (or

BTH(CTH)).

Then the BTH hierarchy is defined in the Lax forms as

∂x2n+1
L1 = [−(L2n+1

1 )−, L1] and ∂y2n+1
L1 = [−(L2n+1

2 )−, L1], n = 0, 1, 2, · · · ,

(1)

∂x2n+1
L2 = [(L2n+1

1 )+, L2] and ∂y2n+1
L2 = [(L2n+1

2 )+, L2], n = 0, 1, 2, · · · , (2)

where the Lax operator Li is given by a pair of infinite matrices

L1 =
∑

−∞<i≤1

diag[a
(1)
i (s)]Λi, L2 =

∑

−1≤i<∞

diag[a
(2)
i (s)]Λi, (3)

with Λ = (δj−i,1)i,j∈Z, and a
(k)
i (s) and a

(k)
i (s) depending on x = (x1, x3, x5, · · · ) and

y = (y1, y3, y5, · · · ), such that

a
(1)
1 (s) = 1 and a

(2)
−1(s) 6= 0 ∀s
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and satisfies the BTH(CTH) constraint [2]

LT
i = −JLiJ

−1, LT
i = −KLiK

−1, (4)

where J = ((−1)iδi+j,0)i,j∈Z,K = ΛJ and T refers to the matrix transpose. The

BTH constraint is explicitly showed as

a
(k)
i (s) = (−1)i+1a

(k)
i (−s− i) , k = 1, 2. (5)

The CTH constraint means

a
(k)
i (s) = (−1)i+1a

(k)
i (−s− i− 1). (6)

The Lax equation for the BTH(CTH) can be expressed as a system of equations

of the Zakharov-Shabat type:

∂x2n+1
(L2m+1

1 )+ − ∂x2m+1
(L2n+1

1 )+ + [(L2m+1
1 )+, (L

2n+1
1 )+] = 0, (7)

∂y2n+1
(L2m+1

2 )− + ∂y2m+1
(L2n+1

2 )− − [(L2m+1
2 )−, (L

2n+1
2 )−] = 0, (8)

∂y2n+1
(L2m+1

1 )+ + ∂x2m+1
(L2n+1

2 )− − [(L2m+1
1 )+, (L

2n+1
2 )−] = 0, (9)

−∂y2n+1
(L2m+1

2 )− − ∂x2m+1
(L2n+1

1 )+ − [(L2m+1
2 )−, (L

2n+1
1 )+] = 0. (10)

When m = n = 0, one can get the B type Toda equation

∂x1
a
(2)
−1(1) = a

(2)
−1(1)a

(1)
0 (1), ∂x1

a
(2)
−1(s) = a

(2)
−1(s)(a

(1)
0 (s)− a

(1)
0 (s− 1)) (s ≥ 2),

∂y1a
(1)
0 (s) = a

(2)
−1(s)− a

(2)
−1(s+ 1) (s ≥ 1), (11)

by considering the corresponding constraint (5). Also one can get the C type Toda

equation

∂x1
a
(2)
−1(0) = 2a

(2)
−1(0)a

(1)
0 (0), ∂x1

a
(2)
−1(s) = a

(2)
−1(s)(a

(1)
0 (s)− a

(1)
0 (s− 1)) (s ≥ 1),

∂y1a
(1)
0 (s) = a

(2)
−1(s)− a

(2)
−1(s+ 1) (s ≥ 0), (12)

The Lax operator of the BTH(CTH) (37) has the representation

L1 = W1ΛW
−1
1 = S1ΛS

−1
1 , (13)

L2 = W2Λ
−1W−1

2 = S2Λ
−1S−1

2 , (14)

where

S1(x, y) =
∑

i≥0

diag[ci(s;x, y)]Λ
−i, S2(x, y) =

∑

i≥0

diag[c′i(s;x, y)]Λ
i (15)

and

W1(x, y) = S1(x, y)e
ξ(x,Λ), W2(x, y) = S2(x, y)e

ξ(y,Λ−1) (16)
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with c0(s;x, y) = 1 and c′o(s;x, y) 6= 0 for any s, and ξ(x,Λ±1) =
∑

n≥0 x2n+1Λ
±2n+1.

For the B type Toda hierarchy, under an appropriate choice (W1,W2) satisfies

J−1W T
i J = W−1

i , i = 1, 2. (17)

For the C type Toda hierarchy, under an appropriate choice (W1,W2) satisfies

K−1W T
i K = W−1

i , i = 1, 2. (18)

The wave operators evolve as

∂x2n+1
S1 = −(L2n+1

1 )−S1, ∂y2n+1
S1 = −(L2n+1

2 )−S1, (19)

∂x2n+1
W1 = (L2n+1

1 )+W1, ∂y2n+1
W1 = −(L2n+1

2 )−W2, (20)

∂x2n+1
S2 = (L2n+1

1 )+S2, ∂y2n+1
S2 = (L2n+1

2 )+S2, (21)

∂x2n+1
W2 = (L2n+1

1 )+W2, ∂y2n+1
W2 = −(L2n+1

2 )−W2. (22)

At last, we end this section with the introduction of the additional symmetries of

the BTH(CTH). The Orlov-Shulman operator [4] is defined as

M1 = W1εW
−1
1 , M2 = W2ε

∗W−1
2 , (23)

where

ε = diag[s]Λ−1, ε∗ = −JεJ−1,

satisfying

[Li,Mi] = 1,

∂x2n+1
Mi = [(L2n+1

1 )+,Mi], ∂y2n+1
Mi = [−(L2n+1

2 )−,Mi]. (24)

To construct the Block symmetry of the BTH, the following lemma should be intro-

duced.

Lemma 1. The following identities hold true

Λ−1εΛ = J−1εTJ, Λε∗Λ−1 = J−1ε∗TJ, (25)

ε = KεTK−1, ε∗ = Kε∗TK−1. (26)

For the BTH, using the above lemma, one can derive

Mi
T = JLi

−1MiLiJ
−1. (27)

For the CTH, using the above lemma, one can derive

Mi
T = KMiK

−1. (28)
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The additional symmetry [4] of the BTH can be defined by introducing the additional

independent variables xm,l and ym,l,

∂xm,l
W1 = −Aml(M1, L1)−W1, ∂ym,l

W1 = −Aml(M2, L2)−W1, (29)

∂xm,l
W2 = Aml(M1, L1)+W2, ∂ym,l

W2 = Aml(M2, L2)+W2, (30)

where

Aml(Mi, Li) = Mi
mLi

l − (−1)lLi
l−1Mi

mLi. (31)

For the case of the CTH, the operator Aml will become

Aml(Mi, Li) = Mi
mLi

l − (−1)lLi
lMi

m. (32)

These additional flows form a coupled W∞ Lie algebra [4].

3. The even constrained BTH(CTH)

In this section, for a new constrained BTH(CTH), the Lax operator L is given by

an infinite matrices L as

L = L2N
1 = L2M

2 =
∑

−2M<i≤2N

diag[ai(s)]Λ
i, (33)

with a2N (s) = 1, and for the BTH, it satisfies the B type constraint

LT = JLJ−1, (34)

and for the CTH, it satisfies the C type constraint

LT = KLK−1. (35)

Then the constrained BTH(CTH) hierarchy is defined in the Lax forms as

∂x2n+1
L = [−(L

2n+1

2N )−, L] and ∂y2n+1
L = [−(L

2n+1

2N )−, L], (36)

∂x2n+1
L = [(L

2n+1

2M )+, L] and ∂y2n+1
L = [(L

2n+1

2M )+, L], n = 0, 1, 2. · · · (37)

The Lax operator of the constrained BTH(CTH) (37) has the representation

L = W1Λ
2NW−1

1 = W2Λ
−2MW−1

2 , (38)

where

S1(x, y) =
∑

i≥0

diag[ci(s;x, y)]Λ
−i, S2(x, y) =

∑

i≥0

diag[c′i(s;x, y)]Λ
i (39)

and

W1(x, y) = S1(x, y)e
ξ(x,Λ), W2(x, y) = S2(x, y)e

ξ(y,Λ−1) (40)
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with c0(s;x, y) = 1 and c′o(s;x, y) 6= 0 for any s, and ξ(x,Λ±1) =
∑

n≥0 x2n+1Λ
±2n+1.

Under an appropriate choice (W1,W2) of the constrained BTH(CTH) satisfies

J−1W T
i J = W−1

i , (K−1W T
i K = W−1

i ), i = 1, 2. (41)

The wave operators evolve according to

∂x2n+1
S1 = −(L

2n+1

2N )−S1, ∂y2n+1
S1 = −(L

2n+1

2M )−S1, (42)

∂x2n+1
W1 = (L

2n+1

2N )+W1, ∂y2n+1
W1 = −(L

2n+1

2M )−W1, (43)

∂x2n+1
S2 = (L

2n+1

2N )+S2, ∂y2n+1
S2 = (L

2n+1

2M )+S2, (44)

∂x2n+1
W2 = (L

2n+1

2N )+W2, ∂y2n+1
W2 = −(L

2n+1

2M )−W2. (45)

The Orlov-Shulman operator M̄i will be defined as as

M̄1 = W1ε2NW−1
1 , M̄2 = W2ε

∗
−2MW−1

2 , (46)

where

ε2N =
1

2N
diag[s]Λ−2N, ε∗−2M = −

1

2M
εTΛ2M,

satisfying

[L, M̄i] = 1,

∂x2n+1
M̄i = [(L

2n+1

2N )+, M̄i], ∂y2n+1
M̄i = [−(L

2n+1

2M )−, M̄i]. (47)

Lemma 2. The difference of two Orlov-Schulman operators M̄i for constrained BTH

hierarchy has following B type property:

LT (M̄1 − M̄2)
T = J(LM̄1 − LM̄2)J

−1, (48)

and for constrained CTH hierarchy has following C type property:

LT (M̄1 − M̄2)
T = K(LM̄1 − LM̄2)K

−1. (49)

Proof. It is easy to find the two Orlov-Schulman operators can be expressed as

M̄1 =
M1L

1−2N
1

2N
, M̄2 = −

M2L
1−2M
2

2M
. (50)

Putting eq.(50) into (M̄1 − M̄2)
T can lead to

(M̄1 − M̄2)
T =

JL−2N
1 M1L1J

−1

2N
+

JL−2M
2 M2L

−1
2 J−1

2M
(51)

=
JL−2N

1 M1L1J
−1

2N
+

JL−2M
2 M2L

−1
2 J−1

2M
(52)

=
J(M1L

1−2N
1 − 2NL−2N

1 )J−1

2N
+

J(M2L
1−2M
2 + 2ML−2

2 )J−1

2M
, (53)
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which can further lead to eq.(48). For the CTH, one can do the similar calculation

as

(M̄1 − M̄2)
T =

KL1−2N
1 M1K

−1

2N
+

KL1−2M
2 M2K

−1

2M
(54)

=
KL1−2N

1 M1K
−1

2N
+

KL1−2M
2 M2K

−1

2M
(55)

=
K(M1L

1−2N
1 − 2NL−2N

1 )K−1

2N
+

K(M2L
1−2M
2 + 2ML−2

2 )K−1

2M
, (56)

which can further lead to eq.(49)

In above calculation, the commutativity between L and M̄1 − M̄2 is already used.

Till now, the proof is finished. �

For the constrained BTH(CTH), we need the following operator

Bm,l = (M̄1 − M̄2)
mLl, m ∈ Z

odd
+ , l ∈ Z+. (57)

One can easily check that for the BTH

B
T
m,l = JBm,lJ

−1, m ∈ Z
odd
+ , (58)

and for the CTH

B
T
m,l = KBm,lK

−1, m ∈ Z
odd
+ . (59)

That means it is reasonable to define additional flows of the constrained BTH(CTH)

as

∂L

∂cm,l

= [−(Bm,l)−, L], m ∈ Z
odd
+ , l ∈ Z+. (60)

Proposition 3. For the BTH(CTH), the flows (60) can commute with original flows

of the BTH(CTH), namely,
[

∂

∂cm,l

,
∂

∂xk

]

= 0,

[

∂

∂cm,l

,
∂

∂yk

]

= 0, l ∈ Z+, m, k ∈ Z
odd
+ ,

which hold in the sense of acting on Wi or L.

Theorem 4. The flows in eq.(60) about additional symmetries of constrained BTH(CTH)

compose following Block type Lie algebra

[∂cm,l
, ∂cs,k ] = (km− sl)∂cm+s−1,k+l−1

, m, s ∈ Z
odd
+ , k, l ∈ Z+, (61)

which holds in the sense of acting on Wi or L.
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4. Multicomponent B(C) type Toda hierarchy

In this section we will introduce the multicomponent B type Toda hierarchy (MBTH)

and multicomponent C type Toda hierarchy (MCTH). In the following, we denote

EZ×Z as the bi-infinite identity matrix and EN×N as the N ×N identity matrix. We

also denote Ekk as a N×N matrix which is 1 at the position of the k-th row and k-th

column and 0 for other elements. The Lax operators L1,L2 of the MBTH(MCTH)

are given by a pair of infinite matrices

L1 =
∑

−∞<i≤1

diag[bi(s)]Λ̄
i, L2 =

∑

−1≤i<∞

diag[ci(s)]Λ̄
i, (62)

where bi(s), ci(s) are matrices of size N ×N and Λ̄i = Λi ⊗ EN×N and they satisfy

the B type(C Type) constraint [2]

LT
i = −JLiJ

−1(LT
i = −KLiK

−1), (63)

where J = ((−1)iδi+j,0)i,j∈Z ⊗ EN×N , K = ΛJ ⊗ EN×N . Here the product ⊗ is the

Kronecker product between a matrix of size Z× Z and a matrix of size N ×N . Let

us first introduce some convenient notations as Ēkk = EZ×Z ⊗ Ekk.

The Lax operators of the MBTH(MCTH) (37) can have the following dressing

structure

L1 = W1Λ̄W
−1
1 = S1Λ̄S

−1
1 , (64)

L2 = W2Λ̄
−1W−1

2 = S2Λ̄
−1S−1

2 , (65)

where

W1(x, y) = S1(x, y)(e
ξ(x,Λ)⊗EN×N ), W2(x, y) = S2(x, y)(e

ξ(y,Λ−1)⊗EN×N ). (66)

Now we define matrix operators Ckk, C̄kk, Bjk, B̄jk as follows

Ckk := W1ĒkkW
−1
1 , C̄kk := W2ĒkkW

−1
2 ,

Bjk := W1ĒkkΛ̄
jW−1

1 , B̄jk := W2ĒkkΛ̄
−jW−1

2 .
(67)

Now we give the definition of the multicomponent B(C) type Toda hierarchy(MBTH).

Definition 1. The multicomponent B(C) type Toda hierarchy is a hierarchy in which

the dressing operators S1,S2 satisfy following Sato equations

∂tjkS1 = −(Bjk)−S1, ∂tjkS2 = (Bjk)+S2, (68)

∂t̄jkS1 = −(B̄jk)−S1, ∂t̄jkS2 = (B̄jk)+S2. (69)

Then one can easily get the following proposition about W1,W2.
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Proposition 5. The matrix wave operators W1,W2 satisfy following Sato equations

∂tjkW1 = (Bjk)+W1, ∂tjkW2 = (Bjk)+W2, (70)

∂t̄jkW1 = −(B̄jk)−W1, ∂t̄jkW2 = −(B̄jk)−W2. (71)

From the previous proposition we can derive the following Lax equations for the

Lax operators.

Proposition 6. The Lax equations of the MBTH(MCTH) are as follows

∂tjkL = [(Bjk)+,L], ∂tjkCss = [(Bjk)+, Css], ∂tjk C̄ss = [(Bjk)+, C̄ss], (72)

∂t̄jkL = [(B̄jk)+,L], ∂t̄jkCss = [(B̄jk)+, Css], ∂t̄jk C̄ss = [(B̄jk)+, C̄ss]. (73)

5. Symmetries of of MBTH(MCTH)

To introduce the additional symmetries of the MBTH(MCTH). The Orlov-Shulman

operator of the MBTH(MCTH) will be defined as

M1 = W1(ε⊗ EN×N )W−1
1 , M2 = W2(ε

∗ ⊗ EN×N )W−1
2 , (74)

Rij = Wi(E ⊗ Ejj)W
−1
i . (75)

To construct the additional quantum torus symmetry of the multicomponent BTH,

firstly we define the operator B
(i)
mnj as

B
(i)
mnj = Mm

i Ln
i Rij − (−1)nRijL

n−1
i Mm

i Li. (76)

For the multicomponent CTH, we define the operator B
(i)
mnj as

B
(i)
mnj = Mm

i Ln
i Rij − (−1)nRijL

n
i M

m
i . (77)

For any matrix operator B
(i)
mnj in (77), one has

∂B
(i)
mnj

∂tkj
= [(Lk

1R1j)+, B
(i)
mnj ], k ∈ Z

odd
+ . (78)

∂B
(i)
mnj

∂t̄kj
= [(Lk

2R2j)+, B
(i)
mnj ], k ∈ Z

odd
+ . (79)

Then we can derive the following lemma.

Lemma 7. The following identities hold true

Λ̄−1(ε⊗ EN×N )Λ̄ = J−1(εT ⊗ EN×N )J , Λ̄(ε∗ ⊗ EN×N )Λ̄−1 = J −1(ε∗T ⊗ EN×N )J ,(80)

ε(ε⊗ EN×N ) = K(εT ⊗ EN×N )K−1, ε∗ ⊗ EN×N = K(ε∗T ⊗EN×N )K−1. (81)
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Then for the MBTH, by (41) and (80), we can derive

M1
T = (W1(ε⊗ EN×N )W−1

1 )T = (W−1
1 )T (εT ⊗ EN×N )WT

1

= JW1J
−1(εT ⊗ EN×N )JW−1

1 J −1

= JW1J
−1(εT ⊗ EN×N )JW−1

1 J −1

= JW1Λ̄
−1(ε⊗ EN×N )Λ̄W−1

1 J−1

= JW1Λ̄
−1(ε⊗ EN×N )Λ̄W−1

1 J−1

= JW1Λ̄
−1W−1

1 W1εW
−1
1 W1Λ̄W

−1
1 J −1

= JL−1
1 M1L1J

−1, (82)

Using the second equation in eq.(80), we can also derive

M2
T = JL−1

2 M2L2J
−1. (83)

Similarly, for the CTH, we can derive

Mi
T = KMiK

−1. (84)

Because of the constraints (63) on the Lax operators for the MBTH(MCTH), we can

have the following proposition.

Proposition 8. For the MBTH, it is sufficient to ask for

B
(i)T
mnj = −JB

(i)
mnjJ

−1, (85)

Proof. From (63) and (82), we have

(Mm
i Ln

i Rij)
T = RT

ij(L
n
i )

T (Mm
i )T = (−1)lJLi

lJ−1JLi
−1Mi

mLiJ
−1

= J (−1)nRijL
n−1
i Mm

i LiJ
−1.

Since JT = J−1 = J . Therefore B
(i)
mnj will satisfy the B type condition. �

Similarly, the following proposition can also be got.

Proposition 9. For the MCTH, the following C type condition must hold true

B
(i)T
mnj = KB

(i)
mnjK

−1, (86)

Now for the MBTH we will denote the matrix operator Dmnj as

Dimnj := emMiqnLiRij − L−1
i Rijq

−nLiemMiLi, (87)
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which further leads to

Dimnj =

∞
∑

p,s=0

mp(n log q)s(Mp
iL

s
iRij − (−1)sRijL

s−1
i M

p
iLi)

p!s!
=

∞
∑

p,s=0

mp(n log q)sB
(i)
psj

p!s!
.

(88)

Then the following calculation will lead to the B(C) type anti-symmetry property of

Dimnj as

DT
imnj = (

∞
∑

p,s=0

mp(n log q)sB
(i)
psj

p!s!
)T

= −(

∞
∑

p,s=0

mp(n log q)sJB
(i)
psjJ

−1

p!s!
)

= −J (
∞
∑

p,s=0

mp(n log q)sB
(i)
psj

p!s!
)J −1

= −JDimnjJ
−1.

Now for the MCTH we will denote the matrix operator Dmnj as

Dimnj := emMiqnLiRij −Rijq
−nLiemMi . (89)

Therefore we get the following important B(C) type condition which the matrix

operator Dimnj satisfies

DT
imnj = −JDimnjJ

−1(DT
imnj = −KDimnjK

−1). (90)

Then basing on a quantum parameter q, the additional flows for the time variable

t
ij
m,n, t

∗ij
m,n are defined as follows

∂S1

∂t
ij
m,n

= −(B
(i)
mnj)−S1,

∂S1

∂t
∗ij
m,n

= −(Dimnj)−S1, (91)

∂S2

∂t
ij
m,n

= (B
(i)
mnj)+S2,

∂S2

∂t
∗ij
m,n

= (Dimnj)+S2, (92)

or equivalently rewritten as

∂L1

∂t
ij
m,n

= −[(B
(i)
mnj)−,L1],

∂M1

∂t
∗ij
m,n

= −[(Dimnj)−,M1], (93)

∂L2

∂t
ij
m,n

= [(B
(i)
mnj)+,L2],

∂M2

∂t
∗ij
m,n

= [(Dimnj)+,M2]. (94)

Generally, one can also derive

∂
t
∗ip

l,k

(D1mnj) = [−(Dilkp)−,D1mnj ], (95)
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∂
t
∗ip

l,k

(D2mnj) = [(Dilkp)+,D2mnj ]. (96)

This further leads to the commutativity of the additional flow
∂

∂t
∗ij
m,n

with the flow

∂tjn , ∂t̄jn in the following theorem.

Theorem 10. The additional flows of ∂t∗is
l,k

are symmetries of the multicomponent

BTH(CTH), i.e. they commute with all ∂tjn , ∂t̄jn flows of the multicomponent BTH(CTH).

Comparing with the additional symmetry of the single-component BTH(CTH), the

additional flows ∂ts
l,k

of the multicomponent BTH(CTH) form the following N -folds

direct product of the W∞ algebra as following

[∂tirp,s , ∂tjca,b
]Lk = δijδrc

∑

αβ

C
(ps)(ab)
αβ ∂tic

α,β
Lk, i, j, k = 1, 2; 1 ≤ r, c ≤ N.

Now it is time to identity the algebraic structure of the additional t∗jl,k flows of the

multicomponent BTH(CTH).

Theorem 11. The additional flows ∂
t
∗dj
l,k

of the multicomponent BTH(CTH) form the

coupled
⊗N

QT+ algebra ( N -folds direct product of the positive half of the quantum

torus algebra QT ), i.e.,

[∂t∗crn,m
, ∂

t
∗dj
l,k

] = δcdδrj(q
ml − qnk)∂t∗cr

n+l,m+k
, n,m, l, k ≥ 0; 1 ≤ r, j ≤ N ; c = d = 1, 2.

(97)

Proof. One can also prove this theorem as following by rewriting the quantum torus

flow in terms of a combination of ∂
t
ij
m,n

flows

[∂t∗crn,m
, ∂

t
∗dj
l,k

]Li

= [

∞
∑

p,s=0

np(m log q)s

p!s!
∂tcrp,s ,

∞
∑

a,b=0

la(k log q)b

a!b!
∂
t
dj
a,b

]Li

=

∞
∑

p,s=0

∞
∑

a,b=0

np(m log q)s

p!s!

la(k log q)b

a!b!
[∂tcrp,s , ∂tdj

a,b

]Li

=
∞
∑

p,s=0

∞
∑

a,b=0

np(m log q)s

p!s!

la(k log q)b

a!b!

∑

αβ

C
(ps)(ab)
αβ δrj∂tcr

α,β
Li

= (qml − qnk)

∞
∑

α,β=0

(n+ l)α((m+ k) log q)β

α!β!
δcdδrj∂tcrα,β

Li

= (qml − qnk)δcdδrj∂t∗cr
n+l,m+k

Li.

�
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