Skip to main content
Log in

Periodic Solution and Stationary Distribution of Stochastic Predator–Prey Models with Higher-Order Perturbation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, two stochastic predator–prey models with general functional response and higher-order perturbation are proposed and investigated. For the nonautonomous periodic case of the system, by using Khasminskii’s theory of periodic solution, we show that the system admits a nontrivial positive T-periodic solution. For the system disturbed by both white and telegraph noises, sufficient conditions for positive recurrence and the existence of an ergodic stationary distribution to the solutions are established. The existence of stationary distribution implies stochastic weak stability to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Du, N., Kon, R., Sato, K., Takeuchi, Y.: Dynamical behavior of Lotka–Volterra competition systems: nonautonomous bistable case and the effect of telegraph noise. J. Comput. Appl. Math. 170, 399–422 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Freedman, H.: Deterministic Mathematical Models in Population Ecology. Marcel Dekker, New York (1980)

    MATH  Google Scholar 

  • Gard, T.C.: Persistence in stochastic food web models. Bull. Math. Biol. 46, 357–370 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Gard, T.C.: Stability for multispecies population models in random environments. Nonlinear Anal. 10, 1411–1419 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Jia, Y., Xue, P.: Effects of the self- and cross-diffusion on positive steady states for a generalized predator–prey system. Nonlinear Anal. Real World Appl. 32, 229–241 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Khasminskii, R.: Stochastic Stability of Differential Equations, 2nd edn. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  • Khasminskii, R.Z., Zhu, C., Yin, G.: Stability of regime-switching diffusions. Stoch. Process. Appl. 117, 1037–1051 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, X., Gray, A., Jiang, D., Mao, X.: Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching. J. Math. Anal. Appl. 376, 11–28 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, Q., Zu, L., Jiang, D.: Dynamics of stochastic predator–prey models with Holling II functional response. Commun. Nonlinear Sci. Numer. Simul. 37, 62–76 (2016)

    Article  MathSciNet  Google Scholar 

  • Luo, Q., Mao, X.: Stochastic population dynamics under regime switching. J. Math. Anal. Appl. 334, 69–84 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Mao, X., Yuan, C.: Stochastic Differential Equations with Markovian Switching. Imperial College Press, London (2006)

    Book  MATH  Google Scholar 

  • May, R.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (2001)

    MATH  Google Scholar 

  • Settati, A., Lahrouz, A.: Stationary distribution of stochastic population systems under regime switching. Appl. Math. Comput. 244, 235–243 (2014)

    MathSciNet  MATH  Google Scholar 

  • Slatkin, M.: The dynamics of a population in a Markovian environment. Ecology 59, 249–256 (1978)

    Article  Google Scholar 

  • Takeuchi, Y., Du, N., Hieu, N.T., Sato, K.: Evolution of predator–prey systems described by a Lotka–Volterra equation under random environment. J. Math. Anal. Appl. 323, 938–957 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, C., Yuan, S., Zhang, T.: Global dynamics of a predator–prey model with defense mechanism for prey. Appl. Math. Lett. 62, 42–48 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, X., Li, W., Liu, M., Wang, K.: Dynamics of a stochastic Holling II one-predator two-prey system with jumps. Physica A 421, 571–582 (2015)

    Article  MathSciNet  Google Scholar 

  • Zhao, D., Yuan, S.: Dynamics of the stochastic Leslie–Gower predator–prey system with randomized intrinsic growth rate. Physica A 461, 419–428 (2016)

    Article  MathSciNet  Google Scholar 

  • Zhu, C., Yin, G.: Asymptotic properties of hybrid diffusion systems. SIAM J. Control Optim. 46, 1155–1179 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Zu, L., Jiang, D., O’Regan, D.: Conditions for persistence and ergodicity of a stochastic Lotka–Volterra predator-prey model with regime switching. Commun. Nonlinear Sci. Numer. Simul. 29, 1–11 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC of China Grant No. 11371085, the Fundamental Research Funds for the Central Universities (No. 15CX08011A), 2016GXNSFBA380006 and KY2016YB370.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daqing Jiang.

Additional information

Communicated by Oliver Junge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Jiang, D. Periodic Solution and Stationary Distribution of Stochastic Predator–Prey Models with Higher-Order Perturbation. J Nonlinear Sci 28, 423–442 (2018). https://doi.org/10.1007/s00332-017-9413-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-017-9413-2

Keywords

Mathematics Subject Classification

Navigation