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Though the bicycle is a familiar object of everyday life, modelling its full nonlinear three-dimensional
dynamics in a closed symbolic form is a difficult issue for classical mechanics. In this article, we address
this issue without resorting to the usual simplifications on the bicycle kinematics nor its dynamics. To
derive this model, we use a general reduction based approach in the principal fiber bundle of configurations
of the three-dimensional bicycle. This includes a geometrically exact model of the contacts between the
wheels and the ground, the explicit calculation of the kernel of constraints, along with the dynamics of
the system free of any external forces, and its projection onto the kernel of admissible velocities. The
approach takes benefits of the intrinsic formulation of geometric mechanics. Along the path toward the
final equations, we show that the exact model of the bicycle dynamics requires to cope with a set of
non-symmetric constraints with respect to the structural group of its configuration fiber bundle. The
final reduced dynamics are simulated on several examples representative of the bicycle. As expected the
constraints imposed by the ground contacts, as well as the energy conservation are satisfied, while the
dynamics can be numerically integrated in real time.

1 Introduction
Since its birth, the bicycle has drawn the attention of scientists from the pioneering treatises
by [37, 7, 8, 39, 14], to the most recent works of [4, 30, 18], including the important steps by
[25, 23, 38, 27, 20] to name a few among the most significant ones. In particular, it is well known
that the model of the rigid four-body bicycle with knife-edge wheels, introduced for the first time
in the seminal works of Whipple [39], is a non-holonomic system, i.e. a system whose description
of motions, requires more configuration coordinates than the number of its admissible velocities.
Originally studied by Hertz [22], Appell [1] and Chaplygin [16], non-holonomic systems have
recently aroused a new interest in the context of mobile robotics of planar wheeled vehicles such
as the simple unicycle or the car-like platform [24, 13, 31]. Though sharing non-holonomy with
these systems, the bicycle differs from them by the fact that contrarily to a simple unicycle,
its shape-controlled locomotion dynamics cannot be fully described with a kinematic model but
also require a further dynamic model. As such, the bicycle belongs to the less common class of
dynamic non-holonomic systems which have been studied over the past years in the community
of geometric mechanics [15], and geometric control [6], with applications to planar undulatory
systems as the snake-board [34, 33, 32]. In this system, the locomotion is based on the transfer
of kinetic momentums from its internal (shape) degrees of freedom to its external (net) ones,
through non-sliding conditions imposed by the wheels [11]. In spite of being a dynamic non-
holonomic locomotion system as the snake-board or the younger trikke [17], the bicycle differs
from these undulatory systems by several characteristics which make it a system unique. Indeed,
the wheels of the bicycle are not used for kinetic momentum transfers, but rather to ensure the
self-stability, a property which is fundamental for control theory [28, 21, 2, 3], and which cer-
tainly explains the empirical success of the bicycle [26]. From the point of view of modeling,
the bicycle being fundamentally three-dimensional, the derivation of its dynamics is much more
difficult than usual non-holonomic planar systems. Beyond the geometric nonlinearities which
unavoidably grow while progressing toward dynamics, the modelling difficulties arise from the
early geometric and kinematic modelling stages. In particular, the position of the contact points

1F. Boyer, M. Porez and J. Mauny IMT Atlantique, LS2N, La Chantrerie 4, rue Alfred Kastler B.P.
20722 - 44307 Nantes Cedex 3 France. E-Mail: frederic.boyer@imt-atlantique.fr



Reduced dynamics of the non-holonomic Whipple bicycle

in a frame attached to the bicycle move with the bicycle configuration, so requiring a contact
model which is almost systematically eluded in the literature on the topic. Another modelling
difficulty is due to the unavoidable holonomic constraints modelling no-penetration nor lifting
of the wheels along vertical. This introduces a kinematic loop coupling the attitude of the
bicycle with its handlebar steering, and results in an implicit nonlinear algebraic system that
cannot be solved explicitly for the purpose of coordinate reduction [36]. All these difficulties
probably explain why most of the bicycle dynamic models proposed so far are based on simpli-
fied designs, inertial approximations and approximated kinematics. In particular, the complex
kinematic coupling imposed by the above mentioned kinematic loop as well as the configuration-
dependency of the contact points, are mostly ignored and replaced by approximated decoupled
kinematics where the position of contact points in the bicycle frame only depend on its design
parameters [38, 21, 9, 10]. Beyond these analytical approximated models, recent progresses in
computational multibody system dynamics have provided a definitive solution to the fully non-
linear dynamics of the Whipple bicycle and proposed a benchmark [30], which has opened the
way toward the explanation of the self-stability of the bicycle [26], an issue that has been highly
debated throughout the history of bicycle dynamics.

In this article, we address the issue of modelling the exact nonlinear dynamics of the three-
dimensional Whipple bicycle. In contrast to previous works on the topic, this issue is addressed
in the context of the geometric locomotion theory on principal fiber bundles as it has been
developed over the past years in the field of geometric mechanics and robotics [24, 35, 11]. In
this context, the dynamics of the bicycle are investigated on its configuration space SE(3)× S,
where SE(3) stands for the special Euclidean Lie group of the bicycle net displacements in
the three-dimensional ambient space, while S is the shape space of its internal degrees of free-
dom (DoF). Following a reduction approach presented in [9], the dynamics are first stated in
(se(3) × TS/S) × (SE(3) × S), and then projected onto (ker(A,B)) × (SE(3) × S), where
ker(A,B) stands for the kernel of a set of constraints modelling the zero ground-wheel velocit-
ies conditions. These kinematic constraints include the no-penetrating nor lifting conditions, a
choice which allows changing the analytically unfeasible coordinate reduction into the feasible
velocity reduction. The position of the ground-wheel contact points are exact and obtained by
the inversion of a set of algebraic conditions imposing the parallelism of the planes tangent to
the wheels with that of the ground. The solutions of this contact problem being dependent on
the position-orientation of the bicycle in SE(3), the kinematic constraints are not symmetric
(with respect to the structural group) along the fibers of SE(3)×S. However, taking advantage
of the intrinsic modelling in SE(3) allows outsourcing all the artificial nonlinearities induced
by the three-dimensional rigid body motions (as those introduced by the Euler angles usually
used for modelling the 3D bicycle) to a set of reconstruction equations that can be numerically
integrated. The approach gives at the end a closed symbolic form of the reduced dynamics of
the bicycle whose solutions satisfy the constraints as soon as the dynamics are initialized in a
configuration which is compatible with the two holonomic constraints of vertical no-penetrating
nor lifting. The final equations are fully nonlinear and can be qualified of "geometrically exact"
since they do not require any of the simplifications usually done to study this system. To valid-
ate the approach, these reduced dynamics are simulated on several examples with comparisons
to a numerical benchmark recently proposed in [30]. As expected, the results obtained with our
reduction-based approach match those of this numerical code and tend to show that a closed
form of the fully nonlinear dynamics of the three-dimensional bicycle, at least for simple designs,
could be in fact reachable. Finally, the aims of the article are two folds. Firstly, it provides
a new (intrinsic) formulation of the bicycle dynamics. Secondly, it illustrates how some of the
reduction techniques developed in recent years can be applied to the three-dimensional Whipple
bicycle.

2



Reduced dynamics of the non-holonomic Whipple bicycle

The article is structured as follows. We start by giving the parametrization of a MMS and the
notations we use in the article in section 2. The purpose of section 3 is to provide a general
algorithm for deriving in a systematical manner, the reduced dynamics of a MMS with persistent
point contacts. The next three sections consist of the application of this general algorithm to
the case of a three-dimensional bicycle. The modelling of the bicycle starts with the geometric
model of the contacts wheels-ground in section 4, continues with its kinematics (section 5), and
ends with its dynamic model (section 6). These reduced dynamics are numerically tested in
section 7 while the article ends by a conclusion (section 8).

2 Parametrization of a MMS, application to the bicycle
The bicycle is modelled as a rigid Mobile Multibody System, or MMS, interacting with a fixed
rigid substrate through persistent ideal contacts. Such a system (see figure 1) is constituted of
a sequence of n+ 1 rigid bodies B0,B1, ...,Bn interconnected through n one DoF revolute joints
parameterized by the vector r = (r1, ..., rn)T of relative angles around the joint axis between the
bodies. The entire system moves in the ambient Euclidean space, or "physical space", endowed
with a fixed orthonormed frame Fe = (Oe, se, ne, ae), named spatial frame. The body B0 stands
for the reference body, i.e., for an arbitrarily distinguished body whose motions define the net
motions of the MMS, and with respect to which, the motions of the other bodies define the shape
time-variations of the MMS. Any MMS configuration can be defined by an instance of the vector
r = (r1, ..., rn)T , i.e., as a point on the manifold S = (S1)n, together with a position-orientation
matrix g ∈ SE(3) of B0 with respect to Fe. The set SE(3) is the Lie group of Euclidean dis-
placements in R3, and the configuration space of the MMS is a trivial principal fiber bundle
C = SE(3) × S, i.e., the product of a base manifold (here S), and of a structural group (here
SE(3)), named the fiber. In C, a configuration of the MMS is defined by (g, r) and the map
(g, r) 7→ (hg, r) for any h ∈ SE(3), defines the (left) action of SE(3) on C [5]. Time evolutions
of r ∈ Rn define the motions of the MMS on the shape space S, while those of g ∈ SE(3) define
its rigid net motions. Any arbitrary motions of the MMS is a composition of these two types
of motions. At any time t, the contacts are assumed to be exerted through a discrete set of
geometric points defined as the intersection of the current configuration of the MMS with the
substrate. In each of these points, the linear velocity with respect to the substrate is forced to
be zero along a set of directions defined in F0.

In figure 2, the above general model is applied to the three-dimensional rigid bicycle of Whipple
[39], i.e., a four-body MMS constituted of a frame B0, a fork B1 and two knife-edge wheels B2
and B3, all these bodies being connected together through n = 3 revolute joints parameterized
by r = (r1, r2, r3)T ∈ R3, rj measuring the time-dependent angle between Bj−1 and Bj . The
system is in contact with a planar ground to which the spatial frame (Oe, se, ne, ae) is fixed,
with se supporting the vertical axis. According to figure 2, µ denotes the (fixed) fork angle,
and each body Bj is endowed with a mobile orthonormed frame Fj = (Oj , sj , nj , aj) where the
center Oj coincides with the center of the joint j, and aj supports the joint axis. For any tensor
Tj related to a body Bj , iTj denotes the matrix of its components in the frame Fi. To simplify
the notations, the upper-left index is omitted when Fj = Fi, i.e., Tj = jTj . The position of a
point P in a frame Fj of origin Oj will be denoted pj(P ). Finally, time derivation is denoted by
a ’dot’.
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Figure 1: Mobile Multibody System subject to point contacts with a rigid substrate (the ground).

3 Dynamics of a MMS subject to persistent contacts
In this section, we present a reduction process of the dynamics of a MMS subject to constraints
imposed by persistent point contacts with a rigid substrate. This process is introduced in [9]
in the case when the system is possibly submitted to some imposed internal motions. Here,
we will apply it to the case where only the internal forces can be imposed. This is the case of
the bicycle when its handlebar and rear wheel are torque-controlled. Moreover, modelling the
contacts exactly will need to extend the model of constraints introduced in [9] in a sense we will
detail in the following.

3.1 Dynamics of a constrained MMS in its configuration principal fiber bundle

In all the subsequent developments a "hat" covering a vector U will define a matrix Û = U∧

whose definition depends on the dimension of U . Thus, if U ∈ R3, Û ∈ R3 ⊗ R3 denotes the
skew-symmetric matrix such that ÛW = U ×W for ∀W ∈ R3. If U = (V T ,W T )T ∈ R6 with
V,W ∈ R3, then:

Û =
(
Ŵ V
0 0

)
∈ R4 ⊗ R4 , (1)

while if U = (V T ,W T )T ∈ R6+n, with n the number of internal joints of the considered MMS,
V ∈ R6, and W ∈ Rn, then, the hat operator will be such that:

Û =
(

V̂
W

)
∈ (R4 ⊗ R4)× Rn , (2)

i.e., Û represents the concatenation of a 4× 4 matrix (V̂ ) and a n-dimensional vector (W ).

According to our general model, the bicycle is considered as a constrained MMS subject to
persistent point contacts which are assumed to be ideal. In its principal fiber bundle of config-
urations C = SE(3)× S, the paths t 7→ (g, r)(t) in C of any constrained MMS, are governed by

4



Reduced dynamics of the non-holonomic Whipple bicycle

dynamics of the general form:
(
M MT

M m

)(
η̇

r̈

)
=
(
f

Q

)
+
(
AT

BT

)
λ ,

ġ = gη̂ .
(3)

The bottom-equation of (3) stands for a kinematic model allowing to reconstruct the trajectory
of the MMS in C from the time-evolution of its velocity (ηT , ṙT )T ∈ se(3)× TrS, itself governed
by the top equation of (3). In (3), we find from left to right, the inertia matrix of the system
in (se(3)∗ ×Rn)⊗ (se(3)×Rn), the vector of accelerations in se(3)×Rn, the vector of inertial,
external and control forces which is detailed as:(

f
Q

)
=
(

fin
Qin

)
+
(

fext
Qext

)
+
(

06
τ

)
, (4)

with (fTin, QTin)T the vector of Coriolis and centrifugal forces, (fText, QText)T , that of external
(except those exerted by the contact), and (0T6 , τ1, τ2...τn)T the vector of control forces, all these
forces being in se(3)∗×Rn. Finally on the right hand side of (3), we find the vector of generalized
forces (in se(3)∗ × Rn) imposed by the ideal contacts, where λ ∈ Rm is a vector of Lagrange
multipliers modelling the reaction forces that are exerted in the physical space by the substrate
onto the MMS through the contact points. These contacts are modelled by m independent
kinematic constraints of the general form:

0m = A(g, r)η +B(g, r)ṙ , (5)

where A et B are some matrices (with m = rank(A,B)), deduced from zero-velocity conditions
between the substrate and the system in their contact points.

Remark 1: Practically, to derive the constraints (5), we first consider a each time, a set of p
contact points Ci, i = 1, 2, ..., p. These are geometric points defined as the intersection of the
current configuration of the MMS with the substrate. These points are parameterized by their
positions p0(Ci) in F0. In each of these points, the contact prevents the translations of the MMS
with respect to the substrate, along mi directions noted ul(Ci), l = 1, 2, ...,mi ≤ 3, where each
ul is a unit vector of the three-dimensional physical space R3 expressed in F0. Thus, we start
from the relations in the physical space:

uTl (Ci)v(p0(Ci)) = 0 , i = 1, 2, ..., p , l = 1, 2, ...,mi , (6)

in which, it suffices to introduce the position and velocity fields of the MMS in F0, noted p0 and
v, as functions of (g, η, r, ṙ), to obtain a set of

∑p
i=1mi constraints on SE(3) × se(3)∗ × TS∗,

from which we extract the expected m independent constraints of (5).

Remark 2: The map pairing each system configuration with the p couples (p0(Ci), u(Ci)) where
u(Ci) = (u1(Ci), u2(Ci), ..., umi(Ci)), defines the geometric model of contacts of a MMS subject
to persistent point contacts. It is formally defined as:(p0, u)(C1)

...
(p0, u)(Cp)

 = Fc(g, r) . (7)

Remark 3: In contrast to the context of [9], the A and B matrices of (5) possibly depend on
g. When this is not the case, the constraints are said to be left-invariant. Physically, this means
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that they are not affected by any rigid transformation applied to the fixed frame of space (the
ground frame in the case of the bicycle), or equivalently, they do not depend on the position-
orientation g of B0 in space, when they are expressed in terms of the F0-related net velocities
here denoted η = g−1ġ. On the dual side, if A and B are g-dependent, the reaction forces of the
right hand side (3), are no more left-invariant too. In the case of the bicycle, we will see that
the constraints imposed by the wheel-ground contacts are not left-invariant in SE(3) as soon
as its frame is tilted and its handlebar is turned. Finally, let us note after remark 1, that this
dependency of constraints with respect to g can occur if and only if the directions u(Ci) or/and
the positions of the contact points in F0, i.e. p0(Ci), are themselves g-dependent. In the case
of the bicycle, we will see that this is for the second of these reasons that the constraints (5)
are not left-invariant. Finally, let us note that for the bicycle, the dependency on g also occurs
through the gravity external forces, i.e., in the (fT , QT )T vector of (3).

3.2 Reduced dynamics of a constrained MMS

The dynamics of the mobile system can be reduced through the projection of (3) in the ker-
nel of the constraints (5). Practically, this reduction consists firstly in calculating the kernel
ker(A,B) of (5), which stands for the subspace of admissible velocities. Then, the velocities and
accelerations are reexpressed using this subspace through the relations:(

η
ṙ

)
= H(g, r)

(
ηr
ṙr

)
,
(
η̇
r̈

)
= H(g, r)

(
η̇r
r̈r

)
+ Ḣ(g, r)

(
ηr
ṙr

)
, (8)

with:
Ḣ(g, r) =

(
d

dε

)
ε=0

H(g exp(εη̂), r + εṙ) . (9)

Geometrically, the columns Hk of H(g, r) define a set of n + 6 − m independent vector fields
Hk : (g, r) ∈ SE(3)× S 7→ Hk(g, r) ∈ se(3)× TrS spanning ker(A,B)(g, r), and we write more
concisely H = ker(A,B). The components of the MMS velocities in this set of vector fields,
or distribution, are gathered in (ηTr , ṙTr )T , which defines a new vector of R6+n−m named the
vector of reduced velocities. Secondly, we introduce (8) in (3) that we project onto the space of
(virtual) velocities which, being compatible with the contacts, also satisfy (8-left). Then, since
we have HT (A,B)T = 0, we get the reduced dynamics in the form:(

Mr MT
r

Mr mr

)(
η̇r
r̈r

)
=
(
fr
Qr

)
, (10)

Which have to be supplemented with the reduced reconstruction equation, obtained by using
(2) and g−1ġ = η in (8-left): (

ġ
ṙ

)
=
(
g
1

)(
H

(
ηr
ṙr

))∧
. (11)

In (10), we have introduced the following reduced matrices:(
Mr MT

r

Mr mr

)
= HT

(
M MT

M m

)
H , (12)

(
fr
Qr

)
= HT

((
f
Q

)
−
(
M MT

M m

)
Ḣ

(
ηr
ṙr

))
. (13)

The above relations stand for the projection of the dynamics (3) into the kernel of the constraints
H. Since λ plays no role in these relations, they can be alternatively interpreted as the projection
in H of the dynamics of the system free of any contacts, or more concisely, of the free dynamics
given by (3) in which λ = 0.
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Remark 4: Equations (10) and (11) define a closed set of differential equations whose time-
integration from initial conditions gives the paths of a constrained MMS in its configuration
space C = SE(3)× S. It is worth noting that they hold for both non holonomic and holonomic
systems. However, while in the first case, the constraints (5) are non integrable, in the second,
they derive from a set of m geometric constraints Φ(g, r) = 0m, according to:

Φ̇ =
(
d

dε

)
ε=0

Φ(g exp(εη̂), r + εṙ) = A(g, r)η +B(g, r)ṙ = 0m . (14)

As a result, it is worth noting here that replacing the geometric constraints by these kinematic
ones is equivalent if and only if the dynamical system (10,11) is integrated by starting in the
constraint sub-manifold Φ(g, r) = 0m of C, i.e., if Φ(g(t0), r(t0)) = 0m where t0 is the initial
instant of the motion. In this case, since the reconstruction equation (11) progresses along
velocities lying in the tangent spaces to the constraint sub-manifold, the system will remain on
it while more generally, it will evolve in another level set such that Φ(g, r) = Φ(g(t0), r(t0)).
This context will hold for the three-dimensional bicycle since the wheel-ground contacts impose
both holonomic and non-holonomic constraints.

Remark 5: Although mathematically, the constraint sub-manifold defined by the m holonomic
constraints Φ(g, r) = 0m is preserved by (10,11), numerically the approximative time integration
of the reconstruction equation introduces a slight drift which makes progressively them violated.
As this will be illustrated later on, in the case of the bicycle, this drift can be easily suppressed
by adding a fast numerical component to the reconstruction equation (11). This corrective term
will aim at forcing the two wheel-ground vertical (holonomic) constraints without perturbing
the slow reduced bicycle dynamics.

Remark 6: The above reduction process can be generalized to several other contexts. For
instance, when a part or all the internal shape variables, or the poses of a set of rigid obstacles,
are prescribed through known time evolutions. In this case, the reduced kinematics (8-left)
contain a supplementary part which is not governed by a dynamic model (as (10)) but by a
kinematic one, accounting for the relations between the prescribed velocities and those of the
MMS. Even more, for these systems, the number of prescribed shape variables may be such
that ker(A,B) = 0. In this case, the MMS is entirely governed by a kinematic model under the
restriction that the constraints fulfill some mobility conditions. This is for instance the case of
nonholonomic platforms as the unicyle or the car-like platform [13].

Remark 7: The above reduction process stands for a modelling algorithm structured in three
stages and several steps. The first stage, in one step, consists of deriving the geometric model
of contacts (7). In the case of the bicycle, this corresponds to determine the points of the
front and rear wheels in contact with the ground as a function of the bicycle configuration in
C = SE(3)× (S1)3. The second stage starts with the derivation of the model of constraints (5),
which stands for an implicit kinematic model. In a second step, an explicit model of the form (8-
left) is deduced through the calculation of the kernel of the constraints. The next stage deals with
dynamics and start by the calculation of the model of the free dynamics, given by (3), in which
the generalized reaction forces are removed (i.e., we force λ = 0). Then, these free dynamics are
reduced according to the projection formulae (12,13). Finally, the reduced dynamic equations
(10) governing the time evolution of the reduced velocities need to be supplemented with the
reconstruction equations (11) where the explicit (reduced) kinematic model of the second stage
appears. In the rest of the article, we apply this multistage approach to the bicycle of figure 2.
In this case, we shall see that the contacts introducing m = 6 constraints of the form (5), the
algorithm will automatically generate 6 + n−m = 3 equations of the type (10), and 6 + n = 9
reconstruction equations (11).
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Figure 2: Frames and parameters of a three-dimensional bicycle. Throughout the article B0, B1,
B2, B3 are named the "frame", the "fork", and the front and rear wheel respectively.

4 Geometric model of contacts for a 3D bicycle
In the wake of remark 2, for the bicycle, in each of the two contact points, the wheel-ground
velocities are prevented (i.e. forced to be zero) along any direction of F0. Thus, by "model of
contacts" we mean a model allowing the calculation of the positions of contact points only, i.e.,
a function of the form: (

p0(C0)
p0(C1)

)
= Fc(g, r) , (15)

where p0(C0) (respectively p0(C1)) represents the position in F0 of the contact point C0 (re-
spectively, of C1) between the rear wheel (respectively, front wheel) with the planar ground.
Finally, the purpose of what follows consists of deriving the expression of Fc.

4.1 Preliminary calculation

Due to the material symmetry of the two wheels, the model of contact (15) does not depend
on r2 and r3. In other words, when deriving this model, one can consider an equivalent bicycle
where the two material wheels are replaced by two geometric discs coinciding at each instant
with the wheels. The rear and front wheels being attached to the frame B0 and the fork B1,
these two discs will be named D0 and D1 respectively. They are related by a transformation
noted g?, which referring to figure 2, maps F0 = (O0, s0, n0, a0) onto (O2, s1, n1, a1), i.e., onto a
frame attached to the fork but centered on the hub of the front wheel. This transformation is
detailed as:

g? =


sµcr1 −sµsr1 cµ h2 − h3 + l2sµcµ(cr1 − 1)
cµcr1 −cµsr1 −sµ l1 + l2(cr1cµ

2 + sµ2)
sr1 cr1 0 l2cµsr1
0 0 0 1

 , (16)

which is configuration dependent through the shape variable r1 only.

4.2 Statement of the contact problem

In this subsection, we address the following geometric problem. Let us consider the two geometric
discs D0 and D1 previously defined. Knowing the transformation (16) that maps D0 onto D1,
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that we note more generically as:

g? =
(
R? p?

0 1

)
=


R?11 R?12 R?13 p?1
R?21 R?22 R?23 p?2
R?31 R?32 R?33 p?3
0 0 0 1

 , (17)

as well as the position-orientation g of F0 in space, that we detail as:

g =
(
R p
0 1

)
=


R11 R12 R13 p1
R21 R22 R23 p2
R31 R32 R33 p3
0 0 0 1

 . (18)

What are the positions in F0 of the points C0 ∈ ∂D0 and C1 ∈ ∂D1, through which passes
a common plan P, this plane being tangent to ∂D0 and ∂D1, and coincident with the ground
plane?

4.3 Calculation of the contact points

We start by localizing C0 and C1 in the frame of the disc to which they belong, as follows:

p0(C0) = ρ0 =

h3cα0
h3sα0

0

 , 1p2(C1) = ρ1 =

h2sα1
0

h2cα1

 , (19)

where, according to figure 2, h3 and h2 denote the radius of the disc 0 and 1 whose center are O0
and O2 respectively, while their unit normal are a0 and n1 respectively. In (19), α0 (respectively,
α1) denotes the angle between the vector −−−→O0C0 (respectively, −−−→O2C1), and s0 (respectively, a1),
the two angles being oriented positively around a0 and n1 respectively. Once these vectors
defined, we deduce from them, the tangent vectors to ∂D0 and ∂D1 in C0 and C1 respectively.
These tangent vectors, noted w0 and w1, are given by:

w0 = a0 × ρ0
h3

, w1 = n1 × ρ1
h2

. (20)

Now, we consider all the affine planes containing the affine line (C0,
−→w 0) and all the affine

planes containing (C1,
−→w 1). Such planes are noted P0 and P1 respectively. All the planes P0

(respectively, all the planes P1), differ from each other by one rotation around (C0,
−→w 0) (around,

(C1,
−→w 1) respectively). Each of these rotations is parameterized by one angle, named roll angle

and noted φ0 for D0, and φ1 for D1. Each φi ∈] − π/2, π/2[, is defined as the angle between
the plane of the disc Di with the normal Ni to the contact plane Pi according to the context of
figure 3. In short, this is the angle of the rotation around (Ci,−→w i) that must be applied to −→N i

to put it in the disc plane. With this choice, the roll angle is zero when the disc is orthogonal
to its contact plane, and we have more generally:

N0 = −sφ0a0 − cφ0(ρ0/h3) , N1 = −sφ1n1 − cφ1(ρ1/h2) , (21)

or again, in terms of components in the basis of the two discs:

N0 =

−cφ0cα0
−cφ0sα0
−sφ0

 , N1 =

−cφ1sα1
−sφ1
−cφ1cα1

 . (22)
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Figure 3: Parametrization of a disc (here the rear wheel) in contact with a plane (the ground).

Finally, we seek the conditions that (φ0, φ1, α0, α1) have to satisfy in order to ensure P1 =
P0 = P, where P is the ground plane to which the frame (Oe, se, ne, ae) is attached, with se its
unit normal. To find out these conditions, it suffices to impose that the 3 planes are parallel
with a zero altitude (along se) between them, i.e., we need to have N0 = 0N1 = 0se, and
0sTe (p0(C0) − p0(Oe)) = 0sTe (p0(C1) − p0(C0)) = 0. These conditions can be detailed as the
system of two orientation equations:

−

R11
R12
R13

 =

cφ0cα0
cφ0sα0
sφ0

 , −

R11
R12
R13

 =

R?11 R?12 R?13
R?21 R?22 R?23
R?31 R?32 R?33


cφ1sα1

sφ1
cφ1cα1

 , (23)

which ensures the 3 planes to be parallel, along with the two equations of position
0sTe (ρ0 +RT p) = 0 , 0sTe (ρ0 −R?ρ1 − p?) = 0 , (24)

which ensure the altitudes between the 3 planes to be zero. Although (23) and (24) are both
needed to ensure the three planes (ground and contact planes along the two wheels) to be the
same, these two sets of equations (in position and orientation) have a different status in our
modelling approach. The two scalar position equations (24) being of the general form:

Φp(g, r) = 02, (25)

they are two holonomic constraints that according to remark 4, are satisfied through the integra-
tion of the reduced dynamics as soon as it is started from initial conditions which satisfy them.
On the other hand, the two equations of orientation (23) do not represent constraint equations,
but stand for the expected model of contacts. In fact, they allow us to find the positions of
C0 and C1 from the knowledge of (g, r1), what is always possible since (23) defines a set of 4
independent scalar conditions relating the 4 angles (φ0, φ1, α0, α1). To solve (23), we start by
considering the two first components of the first equation (from left to right) from which we
extract:

α0 = atan2(−R12;−R11) , (26)
which needs cφ0 > 0, a condition systematically satisfied since φ0 ∈]−π/2, π/2[. Moreover, (26)
has no singularity since R11 = esT0 se is zero if and only if the rear wheel lies in the ground plane
what is physically prevented. Applying the same computational process to the second equation
of (23), one obtains the expression of the angle α1:

α1 = atan2(−(R?11R11 +R?21R12 +R?31R13);−(R?13R11 +R?23R12 +R?33R13)) , (27)

in which we introduce the expression (16) of g?, and obtain:

α1 = atan2(−cr1(R11sµ+R12cµ)− sr1R13;R12sµ−R11cµ) . (28)

10
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Remark 8: In the context of the integration of the bicycle dynamics, knowing at each time
the current value of (g, r1) which satisfies (24), the expressions (26) and (28) will be used at
each instant of the simulation to calculate the two contact points C0 and C1. More formally,
using (26) and (28) in (19), allows obtaining the expression of the model of contacts (15) where
Fc stands for a numerical or a symbolic function. Consequently, in all the following, these two
points are assumed to be known and will be used in the next section to derive a kinematic model
of the bicycle.

Remark 9: Though only α0 and α1 are required in the following dynamic formulation, let us
note that solving the model of contacts (23) also gives the two roll angles φ0 and φ1. This is
easily explainable by the fact that the information about the rear wheel roll is contained in g,
while the geometric model between the two discs g? suffices to deduce the roll angle of one disc
from the knowledge of the other. To obtain the expression of φ0, it suffices to add the square
of the two first components of (23-left). This provides cφ0 = ±((R12)2 + (R11)2)1/2, that can be
combined with the third component of the same equation, to obtain:

φ0 = atan2(−R13; ((R11)2 + (R12)2)1/2) , (29)

which for the same reasons as above, has no singularity and cφ0 > 0. Finally, applying the same
calculation to (23-right), we obtain:

φ1 = atan2(R?12R11 +R?22R12 +R?32R13 ; (30)
((R?11R11 +R?21R12 +R?31R13)2 + (R?13R11 +R?23R12 +R?33R13)2)1/2) ,

that we can rewrite:

φ1 = atan2(−sµsr1R11 − cµsr1R12 + cr1R13 ; (31)
[(cr1(sµR11 + cµR12) + sr1R13)2 + (cµR11 − sµR12)2]1/2) ,

where we accounted for (16).

Remark 10: Following remark 3, the model of contacts Fc being g-dependent, we will see that
the kinematic constraints (5) of the bicycle are not left-invariant in SE(3). Moreover, looking at
the expressions (26) and (27) shows that this dependency is due to (R11, R12, R13)T = 0se, i.e.
it naturally occurs through the ground vertical direction in the bicycle frame, which breaks the
spatial symmetry. Thus, this loss of symmetry is related to the three dimensional character of
the bicycle, and should not contradict the symmetry in the ground plane. This weaker symmetry
can be exhibited by replacing SE(3) by SE(2) in the definition of our configuration space. This
may be accomplished by reconsidering the parametrization of a disc in contact with the ground
introduced in section 4.2, and to remark that the angles φ0 and α0 whose expressions as functions
of R are given by (29) and (26), are in fact the two last Euler-angles of the following sequence:

R = exp(ψŝe) exp(φ0ŵ0) exp((π − α0)â0), (32)

where ψ ∈ [0, 2π[ represents a yaw angle between ne and w0 which is defined as:

ψ = atan2(−R23;R32), (33)

and (π − α0) ∈ [0, 2π[ stands for the pitch angle between the bicycle frame axis n0 and the
ground reference w0. This remark allows introducing an alternative natural parametrization
of the bicycle kinematics where the roll and pitch rotations of the above sequence are shifted

11
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Figure 4: Top (left) and side view (right) of the rear wheel showing its yaw (ψ) and pitch angles
(π − α0) in the contact frame.

from the fiber of SE(3) × S to the shape space of SE(2) × S where the points of S are now
parameterized by (φ0, π − α0, r1, r2, r3) and where the transformations of SE(2) are simply:

g =
(

exp(ψŝe) pe(C0)
0 1

)
. (34)

Thus, in this other parametrization, which is allowed by the fact that the two unilateral con-
straints of non penetration have been replaced by bilateral iso-altitude constraints, the ref-
erence frame is no more attached to the bicycle frame but is defined as the contact frame
F0 = (C0, se, w0, se × w0) of figure 4. It is remarkable that while in the three-dimensional
parametrization, α0 stands for a kinematic observable of the model of contacts, in the planar
parametrization, α0 stands for a generalized shape coordinate. However, this is just a question
of interpretation as this is illustrated in figure 4 where depending upon whether the observer is
attached to the rear wheel contact frame or to the bicycle frame, α0 measures the bicycle frame
pitch with respect to the ground, or the rear wheel contact angle with respect to the bicycle
frame, respectively.

Remark 11: Note that all our reduction approach can be applied to this other parametrization
(g, r) with g ∈ SE(2) and r = (φ0, α0, r1, r2, r3)T . In particular, the bicycle has then dim(C) =
dim(G)+dim(S) = 3+5 = 8 DoFs, which are locally constrained by one rolling without slipping
and one no-sliding constraint in C0, along with one rolling without slipping, one no-sliding and
one no-penetrating nor lifting, i.e., 3 constraints in C1. Thus, one recovers rank(H) = 8−5 = 3
independent velocities. All these constraints are non-holonomic except the no-penetrating nor-
lifting constraint in C1 which is still given by (24-right) and can be detailed now, as: −cφ0cα0

−cφ0sα0
sφ0


T  sµcr1h2sα1 + cµh2cα1 + h2cα0 + h2 − h3 + l2sµcµ(cr1 − 1)

cµcr1h2sα1 − sµh2cα1 + h2sα0 + l1 + l2(cr1cµ
2 + sµ2)

sr1h2sα1 + l2cµsr1

 = 0, (35)

which is of the form Φp(g, r) = 01, and replaces (25) in our primary parametrisation. As regards
the model of contacts (15), in this parametrisation, it takes the form p0(C1) = FC(g, r) where
p0(C1) now denotes the position of C1 in the contact frame (C0, se, w0, w0 × se). Introducing

12
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(32) into (28), allows detailing this model as:

α1 = atan2(cr1s(α0 + µ)− sr1 tan(φ0); c(α0 + µ)) . (36)

Finally, integrating the reduced dynamics (10,11) obtained with this parametrisation, allows
reconstructing the full configuration (g, φ0, α0, r1, r2, r3), with g given by (34). This configuration
feeds the above model of contacts (36), which in turn feeds back the angle α1, so closing the
formulation of the bicycle dynamics in SE(2)× S.

Remark 12: In the literature on the bicycle, though the contact frame of the rear wheel is
almost systematically uses as reference frame F0, the pitch angle α0, and the contact angle of
the front wheel α1, which is an output of the model of contacts in the two parameterizations, are
mostly ignored. Going further, using (36) in (35), or equivalently reconsidering the inversion of
(23) to obtain cα1 and sα1 in terms of the configuration coordinates only, allows rewriting (35)
as a complex nonlinear algebraic equation which cannot be solved explicitly for the purpose of
removing α0 of the formulation. Such a nonlinear equation is derived in [36] and mentioned in
[30] as a major obstacle to the explicit derivation of a closed form of bicycle dynamics. In the
following, though this alternative parametrisation will be occasionally used, we will preferentially
use our initial definition of C as SE(3) × S. This choice has the advantage of removing the
geometric nonlinearities that would be introduced by shifting the roll and pitch to the shape
space, and to outsource them to the numerical integration of the reconstruction equation (11).
Finally, it provides a more general formulation which opens the way for modelling the bicycle
with unilateral contacts.

5 Bicycle kinematics
In this section, we derive the kinematic model of the bicycle on its configuration principal fiber
bundle C = SE(3)× S. We start by deriving the model in the implicit form (5), from which an
explicit kinematic model of the form (8) is deduced.

5.1 Implicit bicycle kinematics

In the following, we assume that the two angles α0 and α1 are known thanks to the model of
contacts of the previous section (cf. remark 10). Then, considering the bicycle of figure 2, the
kinematic constraints are derived by forcing the above vector relations:

v(p0(C1)) = V + Ω× p0(C1) + ṙ1
0a1 × 0p1(C1) + ṙ2

0a2 × 0p2(C1) = 0 ,
v(p0(C0)) = V + Ω× p0(C0) + ṙ3

0a3 × 0p3(C0) = 0 , (37)

where (V T ,ΩT )T = η, and v(p0(C0)) = 0 (respectively v(p0(C1)) = 0) stands for the zero
ground-wheel velocity at C0 (respectively at C1), both being expressed in the reference frame
F0. These two vector equations providem = 6 scalar constraints that model the non-sliding, non-
penetrating nor lifting, and rolling without slipping conditions of the two wheels with respect
to the ground. Simple algebra based on rigid body kinematics show that these constraints
can be set in the general implicit form (5), which here takes the particular expression with

13



Reduced dynamics of the non-holonomic Whipple bicycle

V = (V1, V2, V3)T , and Ω = (Ω1,Ω2,Ω3)T :

V1 +A15Ω2 +A16Ω3 +B11ṙ1 +B12ṙ2 = 0 , (38)
V2 +A24Ω1 +A26Ω3 +B21ṙ1 +B22ṙ2 = 0 , (39)
V3 +A34Ω1 +A35Ω2 +B31ṙ1 +B32ṙ2 = 0 , (40)
V1 +A46Ω3 +B43ṙ3 = 0 , (41)
V2 +A56Ω3 +B53ṙ3 = 0 , (42)
V3 +A64Ω1 +A65Ω2 = 0 , (43)

where the components of A and B are defined as

A26 = −A35 = (sα1cr1h2 + (l2cr1 − l2)cµ)sµ+ cα1h2cµ− h3 + h2 , (44)
A34 = −A16 = (sα1cr1h2 + (l2cr1 − l2)cµ)cµ− cα1h2sµ+ l2 + l1 , (45)
A15 = −A24 = l2sr1cµ+ sα1sr1h2 , (46)
A56 = −A65 = h3cα0 , (47)
A64 = −A46 = h3sα0 , (48)
B11 = −sµsr1(l2cµ+ h2sα1) , (49)
B21 = −cµsr1(l2cµ+ h2sα1) , (50)
B31 = cr1(l2cµ+ h2sα1) , (51)
B12 = h2(cr1cα1sµ− sα1cµ) , (52)
B22 = h2(cr1cα1cµ+ sα1sµ) , (53)
B32 = h2sr1cα1 , (54)
B43 = −h3sα0 , (55)
B53 = h3cα0 . (56)

Remark 13: As expected by remark 11, the components of A and B depend on both the shape
and the fiber variables. Going further into details, the above expressions depend explicitly on
the shape through r1, and implicitly on g, through the expressions of α0 and α1 given by (26)
and (28) respectively. As announced by the remark 9, this second dependency corresponds to
a loss of symmetry introduced by the geometric model of contacts which feeds the kinematic
conditions (37) through the position vectors of C0 and C1.

Remark 14: As pointed out by remark 4, two of the above kinematic constraints can be deduced
through the derivation of the two holonomic constraints (24) of the form Φp(g, r) = 02, which
impose each of the wheels to intersect the ground in one point. For confirmation of this, let us
first time-differentiate (26) and (28). We obtain for i = 0, 1:

α̇i = ȧibi − ḃiai
a2
i + b2

i

, (57)

where we introduced the notations:

a0 = −R12 , b0 = −R11 , a1 = −cr1(R11sµ+R12cµ)− sr1R13 , b1 = R12sµ−R11cµ , (58)

as well as their time-derivatives :

ȧ0 = R11Ω3 −R13Ω1 , ḃ0 = R13Ω2 −R12Ω3 ,
ȧ1 = ṙ1sr1(R11sµ+R12cµ)− sr1(R11Ω2 −R12Ω1)− ṙ1cr1R13 + cr1sµḃ0 + cr1cµȧ0 ,

ḃ1 = (R13Ω1 −R11Ω3)sµ− (R12Ω3 −R13Ω2)cµ , (59)
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which are obtained with the relation (Ṙ11, Ṙ12, Ṙ13)T = (R11, R12, R13)T × Ω. Then, using the
above expressions of α̇0 and α̇1 in the time differential of (24) gives:

0sTe v(p0(C0)) = 0 , 0sTe (v(p0(C1))− v(p0(C0))) = 0 . (60)

As expected, (60) which is a linear combinations of the rows of (38-43), define two kinematic
constraints which force the wheel-ground velocities to be zero along the ground vertical.

5.2 Explicit bicycle kinematics

Following the general modelling algorithm summarized by remark 6, in this section we calculate
the kernel of the kinematic constraints (38), with (44-56). This calculus stands for a generalized
inversion of the implicit kinematic model of constraints. As a result, it can introduce some
singularities that need to be treated apart. In the case of the bicycle such singularities do not
exist, and the inversion of (38) gives after simple algebra detailed in Appendix 1, the explicit
kinematic model of the bicycle in the form:

(
η
ṙ

)
= H(g, r)

Ω2
ṙ1
ṙ3

 , (61)

which corresponds to the instantiation of the general form (8-a) for the bicycle. Referring to the
calculations of Appendix 1, H can be detailed as:

V1
V2
V3
Ω1
Ω2
Ω3
ṙ1
ṙ2
ṙ3


=



H15
H25
H35
H45

1
H65

0
H85

0


Ω2 +



H17
H27
H37
H47

0
H67

1
H87

0


ṙ1 +



H19
H29
H39
H49

0
H69

0
H89

1


ṙ3 , (62)

whose components depend on g through the two angles α0 and α1 and on r through r1.

6 Bicycle dynamics
According to remark 7, our general algorithm continues with the calculation of the free dynamics,
i.e., the dynamics (3) with λ = 0 from which we finally deduce the reduced dynamics of the
bicycle. These reduced dynamics will be numerically integrated through several illustrative
simulations in section 7.

6.1 Calculation of the free bicycle dynamics

Among the several ways leading to the free dynamics, one can use the Poincaré equations on
the Lie group G × Rn with the internal composition law (g, r) ◦ (g′, r′) = (gg′, r + r′) as in
[12]. Though being conceptually straightforward, we here prefer to use a more computationally
efficient approach based on the Newton-Euler recursive formulation of multibody systems [19].
In this approach, assuming that the bodies are labeled in increasing order from B0 to the tip of
the branches2, and denoting j the current body index and i = a(j), that of its antecedent, the

2Note that the parametrization of figure 2 obeys these conventions.
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dynamics of the MMS of figure 1 can be restated in the alternative definition of the configuration
space C = (SE(3))n+1

For j = n, n− 1, ..., 0 : fj =Mj η̇j − fin,j − fext,j +
∑
k|a(k)=j AdTkgj

fk,

For j = 1, 2, 3..., n : eġ0 = eg0η̂0 , egj = egi
igj(rj) , ηj = Adjgi

ηi + ṙj Aj ,
(63)

whose the top row represents the balance of linear and angular kinetic momentums of each
of the bodies isolated in the structure, while in the bottom row, we find from left to right
the reconstruction equation of the reference body, along with the geometric and kinematic
constraints imposed by the holonomic joints that connect the bodies. Going further into details,
ηj ∈ se(3) denotes the velocity of Bj in Fj , Aj ∈ se(3) is the unit velocity supported by the axis
of the jth joint. Mj is the inertia matrix of Bj in se(3) ⊗ se(3)∗ while fj , fin,j , fext,j ∈ se(3)∗,
denote the inter-body wrench exerted by Bj−1 onto Bj , that of inertial (Coriolis and centrifugal)
forces, and the wrench of external (gravity) forces exerted on body j. Adg is the adjoint map of
any g ∈ SE(3) on se(3), and in the above context Adjgi

allows shifting a velocity in se(3) from
Fi to Fj . Time differentiating the kinematic constraints gives the further equations relating the
accelerations of consecutive bodies in the chain:

For j = 1, 2, ..., n : η̇j = Adjgi
η̇i + ζj + r̈j Aj , (64)

where ζj = Ȧdjgi
ηi is detailed in Appendix 2. Now we consider the top row of (63) for j = 0, and

its projection onto Aj for j 6= 0, where let us remark that τj = AT
j fj . Then, using recursively

(64) and (63-top), one can remove all the fj and η̇j for j 6= 0, from these equations according to
an elimination process detailed in Appendix 2. At the end we obtain an inverse dynamic model
in the form: (

f0
τ

)
=
(
M MT

M m

)(
η̇0
r̈

)
−
(
fin
Qin

)
−
(
fext
Qext

)
, (65)

where f0 and τ = (τ1, τ2, ..., τn)T = (AT
1 f1,AT

2 f2, ...,AT
n fn)T represent a B0-related wrench,

and a vector of joint torques that should be applied to the MMS in order to move it with
(eg0, η0, η̇0, r, ṙ, r̈). Since (eg0, η0, η̇0, r, ṙ, r̈) = (g, η, η̇, r, ṙ, r̈), the above mentioned recursive elim-
ination provides at the end, the expected expressions of all the matrices of the free dynamics
(3) with λ = 0. These expressions are detailed in Appendix 2 in the case of the bicycle.

6.2 Reduced bicycle dynamics

Applying the projection relations (12,13) to the above free dynamics gives the expected reduced
dynamics: 

η̇r
r̈r
ġ
ṙ

 =


(
Mr MT

r

Mr mr

)−1(
fr
Qr

)
(
g
1

)(
H

(
ηr
ṙr

))∧
 . (66)

Referring to remarks 4 and 7, these dynamics have to be initialized with any reduced state
(g, r, ηr, ṙr)(t = 0) whose initial configuration satisfies (25). Among these compatible config-
urations, the simplest one is given by that of figure 2, i.e., it is defined by a pair (g, r) with
r = (0, r2, r3), r2 and r3 being arbitrary, and g = (R, p), with R = 13, p = (h3, y, z) and y and
z arbitrary. This simple configuration being also statically balanced, it will be systematically
used to initialize the dynamic simulations of section 7.
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Remark 15: To find other compatible configurations, one can start from the simple configur-
ation of figure 2, and make the bicycle tilt and roll on the ground using the kinematic part of
the model only: (

ġ
ṙ

)
=
(
g
1

)H(g, r)

Ω2
ṙ1
ṙ3



∧

. (67)

In fact, this model can be interpreted as a kinematic controlled system where (Ω2, ṙ1, ṙ3) stands
for a set of control inputs. Then, it is straightforward to find out any other compatible configur-
ation by integrating (67) from the initial configuration of figure 2 while ṙ3 is fixed to zero. For
instance, one can impose a sequence of two manoeuvres. The first manoeuver consists of turning
the handlebar from r1 = 0 to a desired angular position r1d with Ω2 = 0. The second consists
of maintaining r1 = r1d while tilting the frame by applying the control Ω2 = Kφ(φ0 − φ0d) in
(67), with φ0d a desired value of the rear wheel roll angle. Alternatively, one can directly impose
ṙ3 = 0, ṙ1 = K1(r1 − r1d), and Ω2 = Kφ(φ0 − φ0d) in (67). These two control (manoeuvres or
continuous) both allow steering (67) from the compatible configuration of figure 2 to any other
(satisfying Φp(g, r) = 02) such that r1 = r1d and φ0 = φ0d. All along the time integration of (67)
controlled by this feedback law, the two angles α0 (which parameterizes the frame pitch), and
α1 (which parameterizes the contact point of the front wheel), change with the configuration g
up to reach their final value.
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Figure 5: Portrait of iso-values of the front
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wheel contact angle α0 (in degrees) in the
plane (φ0, r1).

Remark 16: The portraits of figures 5 and 6 show the iso-values of α1 and α0 as functions of the
roll angle φ0 and the steering handlebar r1, both being numerically calculated after convergence
of the above kinematic control law. For the purpose of illustration, the points A, B, C, D plotted
in these portraits indicate four particular configurations drawn in figure 9. Note that the middle
point of portraits 5 and 6 corresponds to the case when the bicycle is flat and vertical, i.e., when
it is in the configuration of figure 2 in which α1 = π + µ (here the fork angle is set to µ = π/10
rad). Then, shifting along the vertical φ0 = 0 of these portraits, by increasing r1, corresponds
to turn the handlebar on the left while maintaining the bicycle vertical. This rotation makes
the contact points C0 and C1 move frontward along the rear and front wheel periphery, while
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an angle between the line of contact points −−−→C0C1 and the rear wheel contact vector −→w 0 appears
and growths with r1 as this is illustrated by the snapshots A and B of figure 9 which display
the top views to the bicycle when φ0 = 0, r1 = 30o (A), and r1 = −30o (B). Now, descending
along φ0 = 0 in the portraits, i.e., rotating the handlebar on the right while maintaining the
bicycle vertical, the contact points C0 and C1 move in the same way along the wheels periphery,
while −−−→C0C1 and −→w0 transform symmetrically with respect to the initial flat configuration. In
particular, when the bicycle is vertical and such that µ = 0 (its fork angle is zero), then C0
and C1 become both independent of r1, and α0 and α1 remain fixed to their initial value π and
π + µ = π along the vertical φ0 = 0. In this particular case, the slop of the straight iso-values
of the portraits 5 and 6 with respect to the vertical axis φ0 = 0, are zero, and the two portraits
are straightened. Now shifting along the line r1 = 0 corresponds to configurations where the
bicycle is flat but tilted with respect to the ground normal as this is illustrated on the snapshot
C of figure 9 for which φ0 = 30o and r1 = 0. In this case, the two contact points C0 and C1
no longer move along the wheels periphery nor on the ground. Along any oblique straight line
drawn on the portraits, these two tendencies combine as this is illustrated on the snapshot D
of figure 9 for which φ0 = −30o and r1 = 45o. Finally, figures 7 and 8 display the portraits of
the yaw angle ψ and the angle β between the line of contact points and that of the rear wheel
in the (φ0, r1) plane. As expected, these plots show how the rear wheel rotates around C0, and
how −−−→C0C1 deviates from −→w 0 when the bicycle is tilted and its handlebar is turned. Finally, note
also that since π−α0 measures the pitch of the bicycle frame, the portrait of figure 6 also shows
how this angle slightly varies with the roll and handlebar angles.

Remark 17: The calculation of the reduced inertia forces (13) requires to derive Ḣ, which
involves the most complex expressions handled by the model. Since in our model of the contacts,
the g-dependency appears through the two angles α0 and α1, the general formula (9) can be
simply written as:

Ḣ =
(
∂H

∂α0

)
α̇0 +

(
∂H

∂α1

)
α̇1 +

(
∂H

∂r1

)
ṙ1, (68)

where α̇0 and α̇1 are given by (57, 58, 59).
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Figure 9: Top views to the bicycle when (φ0, r1) = (0, 30) (A), (0,−30) (B), (30, 0) (C) and
(−30, 45), all angles being in degrees. (−−) line of contact points on the ground. (− · −)
projected line of the rear-wheel plane onto the ground.

7 Simulations
In this section, we apply our modelling approach to the bicycle of figure 2, fed by the 26
parameters listed in table 1 which correspond to the benchmark bicycle proposed in [30], but
translated in our modelling framework. Apart from the geometric parameters introduced before,
in this table, m0 (respectively, m1) and (x0, y0, 0)T (respectively (x1, 0, z1)T ) denote the mass
and the position of the mass center G0 (respectively G1) of the bicycle frame (respectively, of
its fork) in F0 (in F1). The two matrices,

I0 =

I0xx I0xy 0
I0xy I0yy 0

0 0 I0zz

 , I1 =

I1xx 0 I1zx
0 I1yy 0
I1zx 0 I1zz

 ,

denote the matrices of angular inertia of the frame and fork with respect to their mobile frame F0
and F1. The front and rear wheels are modelled as two homogeneous discs of mass m2 and m3.
Their center of mass is located on the wheel hubs and their inertia matrix is diagonal with for
the front wheel (for the rear wheel), an axial inertia moment noted I2zz (I3zz) and radial inertia
moments I2xx = I2yy (I3xx = I3yy respectively). Applying the above algorithm gives the reduced
dymanic model in symbolic form. Using a quaternion parametrization for reconstruction, the
model is time-integrated numerically in Matlab with a predictor-corrector method (a fourth-
order explicit method for the prediction step and a fifth-order implicit method for the correction
step). With no optimization, the symbolic model requires a few thousand of basic operations
(=,−,+,×, /). At the end, the bicycle can be simulated in real time (with Matlab), on a intel
i7 CPU @ 3 GHz (as example 5 s of simulation takes less than 2.6 s of computation with a time
step of 0.005 s). Note that all subsequent simulations are illustrated by videos attached to this
manuscript.

19



Reduced dynamics of the non-holonomic Whipple bicycle

7.1 Kinematic reconstruction

Following remark 4, the solutions of (66) should preserve the initial altitude of the two contact
points with respect to the ground. This basic expectation is confirmed by numerical simulations.
For the purpose of its illustration, we consider a case where the bicycle simulation is started
in a straight pitched configuration, such that r1(0) = 0 and 0se(t = 0) = (−cα0, sα0, 0)T ,
with an initial pitch angle of π − α0 = −10o. This pitched bicycle is thrown with an initial
forward velocity V = (V 2

1 + V 2
2 )1/2 = 4.6 m/s. The simulation is performed on a duration of

5s with a step of 0.001s. As shown in figure 10, the two contact points do keep their altitude

x
(m

)

0
1

y(m)
0 5 10 15 20 25

Figure 10: Snapshots in the x-y plane, sampled along the path of a bicycle initialized with a
non-zero pitch angle. The time interval between each snapshot is equal to 0.5 s

constant along the motion (here in straight line). Going into details, the contact model (15) fed
with the initial configuration (g(0), r(0)) calculates the two contact angles α0 and α1 which are
used to calculate the space of admissible velocities H, these velocities ensuring each of the two
wheels to roll on a parallel plane to the ground with a constant altitude. In the present case,
because Φp(g(0), r(0)) 6= 02, these planes do not coincide with the ground but have an altitude
fixed by the initial conditions. Based on this insight, in all the following simulations, the reduced
dynamics will be initialized with the statically balanced configuration pictured in figure 2, which
trivially satisfies the two zero-altitude holonomic constraints (25). However, as this is mentioned
by remark 5, the numerical integration of the reconstruction equation introduces a slight drift
of the constraints (25) which makes progressively the bicycle lift off the ground. Though being
small, this drift can be removed by replacing the reconstruction equation of (66) by its corrected
version: (

ġ
ṙ

)
=
(
g
1

)[
H

(
ηr
ṙr

)
−
(

0ATN
0BT

N

)
K 0Φp

]∧
, (69)

where K is a 6× 6 positive matrix of high gains, and 0Φp and (0AN ,
0BN ) model the geometric

and kinematic constraints imposed by the 2 non-penetration nor detachment conditions of the
wheels along the normal to the ground, but expressed in the reference frame F0. To derive
(0AN ,

0BN ) and 0Φp we can refer to (24) and (60), and write:

0Φp =


RT

0sTe (p0(C1)− p0(C0))
0
0


RT

0sTe (p0(C0)− p0(Oe))
0
0




, 0ANη+0BN ṙ =


RT

0sTe (v(p0(C1))− v(p0(C0)))
0
0


RT

0sTe v(p0(C0))
0
0




,

(70)
where the factors of 0sTe can be easily expressed in terms of (g, r) and (η, ṙ) by using (24)
and (37). Now, if the components of K are enough high, the corrected dynamics, i.e., the set
of differential equations (66) with a dynamic stage unchanged and a kinematic stage replaced
by the corrected reconstruction equation (69), can be interpreted as a two-time scales system
with (g, r) and (ηr, ṙr) = (Ω2, ṙ1, ṙ2) the fast and slow components respectively [29]. Hence,
the (g, r)-component is steered very quickly toward the slow manifold Φp = 02, while a slow
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motion takes place on the slow manifold according to the uncorrected dynamics (66). In short,
the high-gain correction term in (69) ensures the numerical satisfaction of the two holonomic
constraints without perturbing the bicycle dynamics. In practice we took for all the subsequent
simulations:

K = 1
ε

(
10 Id3×3 0

0 Id3×3

)
, (71)

where ε is a small tuning parameter that we fixed to ε = 0.01.

Parameter Value Parameter Value
m 6 n 4
l1 0.986 m γg 9.81 m s−2

l2 0.0337 m I2xx = I2yy 0.141 kg m2

µ π/10 rad I2zz 0.28 kg m2

h2 0.35 m I3xx = I3yy 0.0603 kg m2

h3 0.3 m I3zz 0.12 kg m2

x0 0.6 m I0xx 2.8 kg m2

y0 0.3 m I0yy 9.2 kg m2

x1 0.0288 m I0zz 11.0 kg m2

z1 0.368 m I0xy −2.4 kg m2

m0 85 kg I1xx 0.0584 kg m2

m1 4 kg I1yy 0.06 kg m2

m2 3 kg I1zz 0.0076 kg m2

m3 2 kg I1zx −0.0091 kg m2

Table 1: Simulation parameters.

7.2 Passive motion on a tilted plane

In this first dynamical example, the bicycle is passive (i.e., τ1 = τ2 = τ3 = 0) and thrown
in its straight vertical configuration with an initial forward velocity of V2 = 4.6m/s along a
planar ground tilted of 10o. The simulation is performed on a duration of 4s whose the first
2.5s are visualised in figure 11 with snapshots sampled every 0.5s. The bicycle first ascends
the slope while decelerating. It stops around t = 3.40s, and then descends down the slope
while accelerating. The ground slope is accounted by tilting the gravity field in the ground
frame. The reconstruction equation being initialized in the straight vertical configuration with
(α0, α1) = (π, µ + π), the steer and lean dynamics are structurally decoupled from the rolling
ones and the excitation of the rolling dynamics does not affect the two others. Thus, the bicycle
remains straight and vertical throughout the simulation.

7.3 Passive asymptotic stabilisation of a bicycle

For this second dynamic example, we have chosen to reproduce the simulation presented in [30].
It is related to the asymptotic stabilisation of a passive bicycle, i.e., as in the previous test
τ1 = τ2 = τ3 = 0. To that end, the initial conditions are chosen as follows. The speed along
n0 (forward axis) is fixed to V2 = 4.6 m s−1 while the angular speed around n0 (roll axis) is
fixed to Ω2 = 0.5 rad s−1. A top view of the bicycle motion is displayed in figure 12. Figure
13 presents the plots of the time evolution of the rolling velocity Ω2 and forward velocity V2
of the frame, as well as the angular velocity of the handlebar ṙ1 for the same test. Starting
from their initial values, the plots of figure 13, which exactly fit with the numerical results
provided in [30], clearly show that the bicycle self-stabilizes along time. Moreover, it can be
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Figure 11: Snapshots along the ascending phase of a passive bicycle thrown on a tilted ground.
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Figure 12: Trajectory of the bicycle in the y-z plane, in the context of the asymptotic stabilisation
study case. The time interval between each snapshot is equal to 0.5 s

noticed that, while the time runs, the values of Ω2 and ṙ1 tend to zero while the forward speed
of the frame increases up to reach a constant value closed to V2 = 4.622 m s−1 which is greater
than the initial condition. As mentioned by [30], this is due to the conservation of the total
energy of the system, a property satisfied by the simulation up to machine precision. Figure 15
and 16 show the angular positions of contacts α0 and α1 on the rear and front wheels respect-
ively. Along simulation, due to the tilt of the bicycle frame, the two contact points first move
along the wheels periphery before recovering their initial position (indicated by the red dotted
line in the figures) when the bicycle converges toward its stable straight, vertical configuration.
The simulator offers also the possibility to compute the Lagrange multipliers associated to the
constraints. In our case, there are six multipliers (3 per wheel). For the purpose of illustration,
figures 20 shows the time evolution of λ4 which represents the force exerted along the axis s0,
onto the rear wheel at the contact point. This reaction force ensures the non-penetration of
the rear wheel into the ground. Let us note that the multipliers are all expressed in the frame
F0 (the bicycle frame) but can be easily expressed into the ground frame, for the purpose of
ground-tires interactions study, for instance.

Finally, we close this example by a brief study of the drift and its correction. Figure 7.3 displays
the time-evolution of the altitude of the two contact points with and without correction when
ε = 0.01 and a time step of 0.001s. As expected, with no correction, the plots of figure 7.3, which
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Figure 13: The rolling speed Ω2, the forward
speed V2 and the handlebar speed ṙ1 versus
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Figure 14: The roll angle φ0 and the yaw angle
ψ versus time t.
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Figure 15: Time-evolution of the angular po-
sition of the contact point on the front wheel
(i.e. α1) for the asymptotic stabilisation study
case.
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Figure 16: Time-evolution of the angular po-
sition of the contact point on the rear wheel
(i.e. α0) for the asymptotic stabilisation study
case.

are representative of all our simulations, show a slight drift of the contact points altitude which
increases closely linearly with time. The second column of the table 7.3 gives the averaged
vertical velocity < 0sTe v(p0(C1)) > of the front wheel contact point C1 as a function of the
integration time-step. As expected, the drift decreases with the time step and is very small
for reasonably small time steps. Note also that with ε = 0.01, the drift of figure 7.3 remains
is in the order of 10−12m which for a time-step of 0.001s falls into the precision range of our
4-order integrator. Finally, as expected, the drift correction does not affect the time evolution
of the slow dynamics as this is illustrated by the plots of figures 7.3 and 19 which show that the
corrected and uncorrected slow variables Ω2 and ṙ1, fit up to 10 digits.

7.4 Passive motion and falling on a tilted plane

In this third dynamical example, the bicycle is thrown in the conditions of test 2, except that r1
is now initialized with a very small non-zero value r1 = 10−8rad. This introduces a very slight
asymmetry in the configuration that suffices to cause the falling of the bicycle. In fact, while
the bicycle first ascends the slope as in the test 2, when stoping, instead of descending with

Figure 17: Time-evolution of the altitude of the contact points C0 and C1 in the example of the
self-stabilization with (dashed line) and without (solid line) correction of the drift. Time-step
of integration: 0.001s, ε = 0.01.
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Time-step (s) < 0sTe v(p0(C1)) > (µm/s)
0,01 0.0655 (1mm for 4.24 hours)
0,005 0.0030815 (1mm for 3.76 days)
0,0025 0.00015257 (1mm for 2.59 months)
0,001 0.00000321 (1mm for 9.87 years)
0,0005 0.00000018434 (1mm for 171.9 years)

Table 2: Drift velocity of the front wheel contact point C1 as a function of the integration
time-step for the passive asymptotic stabilisation example.

Figure 18: Decimal logarithm of the difference
between Ω2 with, and without drift correction
(ε = 0.01).

Figure 19: Decimal logarithm of the difference
between ṙ1 with, and without drift correction
(ε = 0.01).

its straight vertical configuration (r1 = 0), its configuration brutally tilts while its handlebar
quickly turns, and the bicycle falls. Since the constraints are persistent (not intermittent), when
falling, the two wheels cannot lift off the ground. As shown in figure 23, all along the simulation
(including the falling phase), the total mechanical energy E is conserved to preserve its initial
value E = T + U = 1870 Joules in our case. When falling, since the bicycle takes full three-
dimensional configurations, the two contact points quickly shift away from their initial positions
(see the ending parts of the two plots of figures 21 and 22).

7.5 Controlled turn manoeuver

Parameter Value Parameter Value
Kps 10 Nm Kis 35 Nm.s−1

Kpd 20 Nms Kid 100 Nm
r1d π/36 rad ṙ3d 20 rad.s−1

t1 0 s t2 5 s

Table 3: The simulation parameters of the controlled turn manoeuver.
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Figure 21: Time evolution of V2, Ω2 and ṙ1 of
a bicycle rolling on a tilted ground.
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Figure 22: Time evolution of ṙ2 and ṙ3 of a
bicycle rolling on a tilted ground.
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Figure 23: Time evolution of the kinetic, po-
tential and total energy of a bicycle rolling on
a tilted ground.

In this last numerical example, the handlebar and the rear wheel are actuated to ensure the bi-
cycle to perform a turn at a controlled forward speed. To do that, we use the simple proportional-
integral torque control law:

e1(t) = fs(t, t1, t2)r1d − r1 , and τ1(t) = −Kpse1(t)−Kis

∫ t

0
e1(ξ)dξ , (72)

where, Kps is a steering proportional gain, Kis is a steering integral gain, r1d is the desired
steering angle, t1 ≤ t2 are switching times used to perform a curved path, and fs(t, ti, tf ) is a
slope function defined as follows:
If t ≤ ti:

fs = 0 . (73)

Else if ti < t ≤ tf :

fs = t− ti
tf − ti

− 1
2π sin

(
2π t− ti
tf − ti

)
. (74)

Else:
fs = 1 . (75)

End.
Where ti and tf are the starting and ending times of the slope respectively.
Similarly, the torque applied on the hub of the rear wheel is defined as:

e3 = ṙ3d − ṙ3 , and τ3 = Kpde3 +Kid

∫ t

0
e3(ξ)dξ , (76)

where Kpd, Kid stand for a proportional and an integral gain, while ṙ3d is the desired rear wheel
speed. The values of the controller parameters are indicated in table 3.
As shown in figure 24, the bicycle starts from a straight vertical configuration with an initial
forward velocity V2 = ṙ3dh3 = 6 m.s−1, and performs a turn with a prescribed radius of 11.6 m
and a prescribed constant forward speed (see figure 27). When the handlebar starts to increase
following the slop from r1 = 0 to r1 ∼= r1d (see figure 26), the bicycle naturally (passively) tilts
toward the center of the curve while turning. To illustrate this, we plotted in figure 28 the
time evolution of the rolling, steering, and forward velocities which stabilize with time. As far
as the actuation torques are concerned, figure 29 and figure 30 show the time evolution of the
torques applied to the handlebar (τ1), and to the rear hub (τ3). Note that to initiate the turn,
the biker needs to apply a torque of opposite sign with respect to that of the steering angle. On
the other hand, once the desired steering angle is reached, to maintain its turning the torque
and the steering angle have the same sign. The time-evolution of the angular position of the
contact point between the front and rear wheels and the ground, are plotted in figure 31 and 32
respectively. Let us note that during the maneuver, the contact point migrates forward along
the front wheel to reach 0.04 rad ∼= 2.3o.
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Figure 24: Trajectory of the bicycle in the y-z plane when performing a controlled turn. The
time interval between each snapshot is equal to 1 s.
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Figure 25: The roll angle φ0 and the yaw angle
ψ versus time t.
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Figure 26: Time-evolution of the steering
angle r1 versus the desired value fsr1d.
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Figure 27: Time-evolution of the rear wheel
speed ṙ3 versus the setpoint ṙ3d.
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Figure 28: Time-evolution of the rolling (in
blue), steering (in red), and forward (in yel-
low) velocities during the turn manoeuver.

8 Conclusion
In this article, we proposed a new formulation of the dynamics of the Whipple bicycle. The
approach is based on the geometric mechanics of locomotion multibody systems in their principal
fiber bundle of configuration G× S. Exploiting the intrinsic character of geometric mechanics,
most of the geometric nonlinearities met in the usual model of the same system, but expressed in
coordinates, are here shifted to the numerical integration of a set of reconstruction equations from
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Figure 30: Time-evolution of the driving
torque τ3.
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Figure 31: Time-evolution of the angular po-
sition of the contact point on the rear wheel
(i.e. α0) during the turn manoeuver.
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Figure 32: Time-evolution of the angular po-
sition of the contact point on the front wheel
(i.e. α1) during the turn manoeuver.

the space of admissible velocities to G× S. Based on this idea, we used G = SE(3) to remove
the three-dimensional geometric nonlinearities of the bicycle and replaced its two holonomic
constraints of non lifting nor penetration, by their kinematic form in terms of non-integrable
velocities. This allowed us to derive the close form of the full nonlinear dynamics of the bicycle
in the form of a set of reduced dynamics equations in the kernel of the constraints imposed
by the contacts between the wheels and the ground. These equations are exact for any initial
configuration of the bicycle satisfying the two holonomic constraints. The derivation of these
equations is performed by following a multistage general modelling algorithm which starts with
the geometric model of contacts, and continues with the implicit kinematic model of constraints,
the explicit kinematic model or reduced kinematics, and finally the dynamic model of the system
free of constraints in SE(3)× S and its projection in the kernel of constraints. As a result, the
article contributes to illustrate this general framework on a non-trivial concrete system while
giving an alternative formulation of the Whipple bicycle dynamics. From that perspective, we
attempted to privilege symbolic derivations over numerical solutions. In the end, the reduced
dynamics have been obtained in a closed symbolic form and numerically integrated on several
tests representative of the bicycle dynamics including the well known test of self-stabilization.
These further numerical simulations show that the approach does preserve the constraints and
the energy as this is expected for this system.

Appendix 1: Calculation of the kernel of constraints
In this appendix, we calculate H = ker(A,B) by inverting symbolically the system that we
rewrite in the form D = (A,B)(ηT , ṙT )T = 06 where D is the 6 × 1 vector whose components
Di, i = 1, 2...6, form the left hand side of (38-43). Firstly, V1, V2 and V3 can be extracted from
D4, D5 and D6 respectively, as follows:

V1 = F16Ω3 + F19ṙ3 , (77)
V2 = F26Ω3 + F29ṙ3 , (78)
V3 = F34Ω1 + F35Ω2 , (79)
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where we introduced the notations:

F16 = −A46 , F19 = −B43 , (80)
F26 = −A56 , F29 = −B53 , (81)
F34 = −A64 , F35 = −A65 . (82)

After inserting (79) in D3, one can express Ω1 as:

Ω1 = F45Ω2 + F47ṙ1 + F48ṙ2 , (83)

with:

F45 = −A35 + F35
F34 +A34

, F47 = − B31
F34 +A34

, F48 = − B32
F34 +A34

. (84)

In a similar way, inserting (77) in D1, gives:

ṙ2 = F85Ω2 + F86Ω3 + F87ṙ1 + F89ṙ3 , (85)

with:

F85 = −A15
B12

, F86 = −A16 + F16
B12

, F87 = −B11
B12

, F89 = −F19
B12

. (86)

Inserting (85), (77) and (83) in D2, allows rewriting Ω3 as:

Ω3 = H65Ω2 +H67ṙ1 +H69ṙ3, (87)

with:

H65 = − A24F45+(A24F48+B22)F85
(B22+A24F48)F86+F26+A26

, H67 = −B21+A24F47+(A24F48+B22)F87
(B22+A24F48)F86+F26+A26

, (88)

H69 = − F29+(A24F48+B22)F89
(B22+A24F48)F86+F26+A26

. (89)

Now, inserting (87) in (77), (78) and (85) allows us to rewrite them in the following form:

V1 = H15Ω2 +H17ṙ1 +H19ṙ3 , (90)
V2 = H25Ω2 +H27ṙ1 +H29ṙ3 , (91)
ṙ2 = H85Ω2 +H87ṙ1 +H89ṙ3 , (92)

with:

H15 = F16H65 , H15 = F16H65 , H19 = F16H69 + F19 , (93)
H25 = F26H65 , H27 = F26H67 , H29 = F26H69 + F29 , (94)

H85 = F86H65 + F85 , H87 = F86H67 + F87 , H89 = F86H69 + F89 . (95)

Then, using (92) in (83) gives:

Ω1 = H45Ω2 +H47ṙ1 +H49ṙ3 , (96)

with:

H45 = F48H85 + F45 , H47 = F48H87 + F47 , H49 = F48H89 . (97)

Finally, inserting (96) into (79), we find:

V3 = H35Ω2 +H37ṙ1 +H39ṙ3 , (98)

with:

H35 = F34H45 + F35 , H37 = F34H47 , H39 = F34H49 . (99)

Finally, any vector in the kernel of the constraints can be written in the form (62) which require
the ordered calculations of (80), (81), (82), (84), (86), (88), (89), (93), (94), (95), (97), (99).
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Appendix 2: Free bicycle dynamics
We first start by calculating the acceleration of the four bodies that compose the bicycle in the
configuration space SE(3) × S. This is done by removing all the accelerations η̇j , for j 6= 0 in
the recursion on accelerations (64). After straightforward algebra we find:

η̇0 = η̇0 , (100)
η̇1 = Ad1g0 η̇0 + r̈1 A1 +ζ1 , (101)
η̇2 = Ad2g0 η̇0 + Ad2g1 A1 r̈1 + A2 r̈2 + Ad2g1 ζ1 + ζ2 , (102)
η̇3 = Ad3g0 η̇0 + A3 r̈3 + ζ3, (103)

which need to use the detail expressions of the adjoint map and its time-derivative:

Adjgi
=
(
jRi

jRi p̂i(Oj)T
0 jRi

)
, ζj =

(
(jVi + pj(Oi)× jΩi)× ṙjaj

Ωi × ṙjaj

)
, (104)

and where Aj = (0T3 , aTj )T is the (6×1) unit vector supporting the joint axis j. Now writing the
top row of (63) with k the indexes of all the bodies just after Bj when descending the structure
from B0 to its tips, we have for each of the four bodies of the bicycle:

f3 =M3η̇3 + fin,3 + fext,3 , (105)
f2 =M2η̇2 + fin,2 + fext,2 , (106)
f1 =M1η̇1 + fin,1 + fext,1 + AdT2g1

f2 , (107)
f0 =M0η̇0 + fin,0 + fext,0 + AdT3g0

f3 + AdT1g0
f1, (108)

which need the detailed expressions:

Mj =
(
mj13×3 m̂sTj
m̂sj Ij

)
, fin,j =

(
(msj × Ωj)× Ωj + Ωj × (mjVj)
Ωj × (IjΩj) +msj × (Ωj × Vj)

)
, (109)

where mj13×3 and Ij are the matrices of linear and angular inertia while msj = mjpj(Gj) is the
vector of first inertia moments that couple linear and angular accelerations, all being related to
Bj . Then, inserting (107), (106), (105), (101), (102) and (103) into (108) that we identify with
the first row of (65), we obtain:

M =
3∑
i=0

AdTig0
Mi Adig0 , (110)

MT =
( 2∑
i=1

AdTig0
Mi Adig1 A1 , AdT2g0

M2 A2 , AdT3g0
M3 A3

)
, (111)

fin =
3∑
i=0

AdTig0
fin,i +

2∑
j=1

(
2∑
i=j

AdTig0
Mi Adigj

)ζj + AdT3g0
M3ζ3 , (112)

fext =
3∑
i=0

AdTig0
fext,i . (113)

Then introducing (105)-(108) into τj = AT
j fj , gives :

τ1 = AT
1 (M1η̇1 + fin,1 + fext,1 + AdT2g1

(M2η̇2 + fin,2 + fext,2)) , (114)
τ2 = AT

2 (M2η̇2 + fin,2 + fext,2) , (115)
τ3 = AT

3 (M3η̇3 + fin,3 + fext,3), (116)
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that once identified with the second row of (65), gives the expressions below:

m =


2∑
i=1

AT
1 AdTig1

Mi Adig1 A1 AT
1 AdT2g1

M2 A2 0

AT
2 M2 Ad2g1 A1 AT

2 M2 A2 0
0 0 AT

3 M3 A3

 , (117)

Qin =


2∑
i=1

AT
1 AdTig1

fin,i +
2∑
j=1

(
2∑
i=j

AT
1 AdTig1

Mi Adigj
)ζj

AT
2 fin,2 +

2∑
i=1

AT
2 M2 Ad2gi

ζi

AT
3 fin,3 + AT

3 M3ζ3

 , Qext =


2∑
i=1

AT
1 AdTig1

fext,i

AT
2 fext,2

AT
3 fext,3

 .

Finally, once supplemented with the recursive geometric model egj = egi
igj(rj) and the kinematic

one (63-bottom), the above expressions along with (110-113) define all the matrices of the free
dynamics, or equivalently, of the left-hand-side of (3) and (4).
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