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Abstract

In this paper we are concerned with the existence of invariant tori in nearly
integrable Hamiltonian systems

H = h(y) + f(x, y, t),

where y ∈ D ⊆ Rn with D being a closed bounded domain, x ∈ Tn, f(x, y, t) is a
real analytic almost periodic function in t with the frequency ω = (· · · , ωλ, · · · )λ∈Z ∈
RZ. As an application, we will prove the existence of almost periodic solutions
and the boundedness of all solutions for the second order differential equations
with superquadratic potentials depending almost periodically on time.

Keywords: Invariant tori; Hamiltonian systems; Almost periodic solutions;
Boundedness; Superquadratic potentials.

1. Introduction

In this paper we study the existence of invariant tori in the nearly integrable
Hamiltonian system

H = h(y) + f(x, y, t), (1.1)

where y ∈ D ⊆ Rn with D being a closed bounded domain, x ∈ Tn, f(x, y, t) is a
real analytic almost periodic function in t with the frequency ω = (· · · , ωλ, · · · )λ∈Z

and admits a spatial series expansion

f(x, y, t) =
∑

k∈Z
Z

S

fk(x, y)e
i〈k,ω〉t. (1.2)

Here ω = (· · · , ωλ, · · · )λ∈Z is a bilateral infinite sequence of rationally indepen-
dent frequency, that is to say, any finite segments of ω are rationally indepen-
dent, S is a family of finite subsets A of Z, which represents a spatial structure
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on Z with Z ⊆
⋃

A∈S

A depended on the Fourier exponents {Ωλ : λ ∈ Z} of a

kind of real analytic almost periodic functions similar to the almost periodic
perturbation f , and its basis is the frequency {ωλ : λ ∈ Z} which is con-
tained in {Ωλ : λ ∈ Z}, ZZ

S is the space of bilateral infinite integer sequences
k = (· · · , kλ, · · · )λ∈Z whose support supp k =

{
λ : kλ 6= 0

}
is a finite set of Z

contained in a subset A that belongs to S, 〈k, ω〉 =
∑
λ∈Z

kλωλ.

Kolmogorov-Arnold-Moser (or KAM) theory is a powerful method about the
persistence of quasi-periodic solutions and almost periodic solutions under small
perturbations. KAM theory is not only a collection of specific theorems, but
rather a methodology, a collection of ideas of how to approach certain problems
in perturbation theory connected with small divisors.

The classical KAM theory was developed for the stability of motions in
Hamiltonian systems, that are small perturbations of integrable Hamiltonian
systems. Integrable systems in their phase space contain lots of invariant tori
and the classical KAM theory establishes persistence of such tori, which carry
quasi-periodic motions. The classical KAM theory concludes that most of invari-
ant tori of integrable Hamiltonian systems can survive uner small perturbation
and with Kolmogorov’s nondegeneracy condition [1, 7, 8, 25].

Later important generalizations of the classical KAM theorem were made to
the Rüssmann’s nondegeneracy condition [3, 26–28, 32]. However, in the case of
Rüssmann’s nondegeneracy condition, one can only get the existence of a family
of invariant tori while there is no information on the persistence of frequency of
any torus.

Chow, Li, Yi [4] and Sevryuk [29] considered perturbations of moderately de-
generate integrable Hamiltonian systems and proved that the first d frequencies
(d < n, n denotes the freedom of Hamiltonian systems) of unperturbed invari-
ant n-tori can persist. Xu and You [33] proved that if some frequency satisfies
certain nonresonant condition and topological degree condition, the perturbed
system still has an invariant torus with this frequency under Rüssmann’s non-
degeneracy condition. Zhang and Cheng [36] concerned with the persistence
of invariant tori for nearly integrable Hamiltonian systems under time quasi-
periodic perturbations, they proved that if the frequency of unperturbed system
satisfies the Rüssmann’s nondegeneracy condition and has nonzero Brouwer’s
topological degree at some Diophantine frequency, then invariant torus with
frequency (Diophantine frequency and frequency of time quasi-periodic pertur-
bation) satisfying the Diophantine condition persists under time quasi-periodic
perturbations.

However there are only few results available to obtain the existence of almost-
periodic solutions via KAM theory, because it is difficult to treat small divisor
problem of infinite frequencies.

In this paper we focus on the almost periodic case, that is, the perturba-
tion in (1.1) is almost periodic in t and admits the spatial series expansion,
and want to prove most of invariant tori of the integrable Hamiltonian system
can survive under small almost periodic perturbations and with Kolmogorov’s
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nondegeneracy condition.
After we get the invariant tori theorem, as an application, we shall prove

the existence of almost periodic solutions and the boundedness of all solutions
for the differential equation

ẍ+ x2l+1 =

2l∑

j=0

pj(t)x
j , x ∈ R, (1.3)

where p0, p1, · · · , p2l are real analytic almost periodic functions with the fre-
quency ω = (· · · , ωλ, · · · )λ∈Z.

External forced problem is an important feature of the classical perturbation
for Hamiltonian systems. It is well known that the longtime behaviour of a time
dependent nonlinear differential equation

ẍ+ f(t, x) = 0, (1.4)

f being periodic in t, can be very intricate. For example, there are equations
having unbounded solutions but with infinitely many zeros and with nearby
unbounded solution having randomly prescribed numbers of zeros and also pe-
riodic solution (see [21]).

In contrast to such unboundedness phenomena one may look for conditions
on the nonlinearity, in addition to the superlinear condition that

1

x
f(t, x) → ∞ as |x| → ∞,

which allow to conclude that all solutions of (1.4) are bounded.
The problem was studied extensively for the differential equation (1.3) with

p0, p1, · · · , p2l being real analytic quasi-periodic functions in t with the frequency
ω = (ω1, ω2, · · · , ωm). The first result was due to Morris [18], who proved that
every solution of equation

ẍ+ x3 = f(t), (1.5)

with p(t + 1) = p(t) being continuous, is bounded. This result, prompted
by Littlewood in [13], Morris also proved that there are infinitely many quasi-
periodic solutions and the boundedness of all solutions of (1.5) via Moser’s twist
theorem [19]. This result was extended to (1.3) with sufficiently smooth periodic
pj(t) by Dieckerhoff and Zehnder [5]. Later, their result was extended to more
general cases by several authors. We refer to [14, 16, 22, 34, 35] and references
therein.

When p0, p1, · · · , p2l are quasi-periodic, by using the KAM iterations, Levi
and Zehnder [15], Liu and You [17] independently proved that there are in-
finitely many quasi-periodic solutions and the boundedness of all solutions for
(1.3) with p0, p1, · · · , p2l being sufficiently smooth and the frequency ω = (ω1, ω2, · · · , ωm)
being Diophantine

|〈k, ω〉| ≥
γ

|k|τ
, 0 6= k ∈ Zm,
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for some γ > 0, τ > m−1. On the other hand, by establishing the invariant curve
theorem of planar smooth quasi-periodic twist mappings in [9], we obtained the
existence of quasi-periodic solutions and the boundedness of all solutions for an
asymmetric oscillation with a quasi-periodic external force ([10]).

One knows that the Diophantine condition is crucial when applying the KAM
theory. A natural question is whether the boundedness for all solutions, called
Lagrangian stability, still holds if ω = (ω1, ω2, · · · , ωm) is not Diophantine but
Liouvillean? Wang and You [31] proved the boundedness of all solutions of (1.3)
with m = 2 and ω = (1, α), α ∈ R \Q, without assuming α to be Diophantine.

Recently, in [11] we established the invariant curve theorem of planar almost
periodic twist mappings, as an application, we proved the existence of almost
solutions and the boundedness of all solutions of (1.5) when f(t) is a real analytic
almost periodic function with frequency ω = (· · · , ωλ, · · · )λ∈Z. In [12] we also
established some variants of the invariant curve theorem on the basis of the
invariant curve theorem obtained in [11], and used them to study the existence of
almost periodic solutions and the boundedness of all solutions for an asymmetric
oscillation with an almost periodic external force.

Before ending the introduction, an outline of this paper is as follows. In
Section 2, we first define real analytic almost periodic functions and their norms,
then list some properties of them. The main invariant tori theorem (Theorem
3.3) is given in Section 3. The proof of the invariant tori theorem and the
measure estimate are given in Sections 4, 5, 6, 7 respectively. In Section 8, we
will prove the existence of almost periodic solutions and the boundedness of all
solutions for (1.3) with superquadratic potentials depending almost periodically
on time.

2. Real analytic almost periodic functions and their norms

2.1. The frequency of real analytic almost periodic functions

Throughout the paper we always assume that the real analytic almost pe-
riodic function has the Fourier exponents {Ωλ : λ ∈ Z}, and its basis is the
frequency {ωλ : λ ∈ Z} which is contained in {Ωλ : λ ∈ Z}. Then for any λ ∈ Z,
Ωλ can be uniquely expressed into

Ωλ = rλ1ωλ1 + · · ·+ rλj(λ)
ωλj(λ)

,

where rλ1 , · · · , rλj(λ)
are rational numbers. Let

S = {(λ1, · · · , λj(λ)) : λ ∈ Z}.

Thus, S is a family of finite subsets A of Z, which reflects a spatial structure on
Z ⊆

⋃
A∈S

A.

For the bilateral infinite sequence of rationally independent frequency ω =
(· · · , ωλ, · · · ),

〈k, ω〉 =
∑

λ∈Z

kλωλ,
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where due to the spatial structure of S on Z, k runs over integer vectors whose
support

supp k =
{
λ : kλ 6= 0

}

is a finite set of Z contained in a subset A which belongs to S. Moreover, we
define

ZZ

S :=
{
k = (· · · , kλ, · · · ) ∈ ZZ : supp k ⊆ A, A ∈ S

}
. (2.1)

In the following we will give a norm for real analytic almost periodic func-
tions. Before we describe the norm, some more definitions and notations are
useful.

The main ingredient of our perturbation theory is a nonnegative weight
function

[ · ] : A 7→ [A]

defined on S. The weight of a subset may reflect its size, its location or something
else. Throughout this paper, we always use the following weight function

[A] = 1 +
∑

i∈A

log̺(1 + |i|), (2.2)

where ̺ > 2 is a constant.
In this paper, the frequency ω = (· · · , ωλ, · · · ) of real analytic almost peri-

odic functions is not only rationally independent with |ω|∞ = sup{|ωλ| : λ ∈
Z} < +∞, but also satisfies the strongly nonresonant condition (2.4) below.

In a crucial way the weight function determines the nonresonance conditions
for the small divisors arising in this theory. As we will do later on by means of
an appropriate norm, it suffices to estimate these small divisors from below not
only in terms of the norm of k,

|k| =
∑

λ∈Z

|kλ|,

but also in terms of the weight of its support

[[k]] = min
supp k⊆A∈S

[A].

Then the nonresonance conditions read

|〈k, ω〉| ≥
α

∆
(
[[k]]

)
∆
(
|k|
) , 0 6= k ∈ ZZ

S ,

where, as usual, α is a positive parameter and ∆ some fixed approximation func-
tion as described in the following. One and the same approximation function is
taken here in both places for simplicity, since the generalization is straightfor-
ward. A nondecreasing function ∆ : [0,∞) → [1,∞) is called an approximation
function, if

log∆(t)

t
ց 0, t → ∞, (2.3)
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and ∫ ∞

0

log∆(t)

t2
dt < ∞.

In addition, the normalization ∆(0) = 1 is imposed for definiteness.
In the following we will give a criterion for the existence of strongly nonres-

onant frequencies. It is based on growth conditions on the distribution function

Ni(t) = card
{
A ∈ S : card(A) = i, [A] ≤ t

}

for i ≥ 1 and t ≥ 0.

Lemma 2.1. There exist a constant N0 and an approximation function Φ such
that

Ni(t) ≤





0, t < ti,

N0Φ(t), t ≥ ti

with a sequence of real numbers ti satisfying

i log̺−1 i ≤ ti ∼ i log̺ i

for i large with some exponent ̺− 1 > 1. Here we say ai ∼ bi, if there are two
constants c, C such that cai ≤ bi ≤ Cai and c, C are independent of i.

For a rigorous proof of Lemma 2.1 the reader is referred to [11, 24], we omit it
here.

According to Lemma 2.1, there exist an approximation function ∆ and a
probability measure u on the parameter space RZ with support at any prescribed
point such that the measure of the set of ω satisfying the following inequalities

|〈k, ω〉| ≥
α

∆([[k]])∆(|k|)
, α > 0, for all k ∈ ZZ

S\{0} (2.4)

is positive for a suitably small α, the proof can be found in [24], we omit it here.
Throughout this paper, we assume that the frequency ω = (· · · , ωλ, · · · )

satisfying the nonresonance condition (2.4).

2.2. The space of real analytic almost periodic functions

In order to find almost periodic solutions x for (1.3), we have to define a kind
of real analytic almost periodic functions which admit a spatial series expansion
similar to (1.2) with the frequency ω = (· · · , ωλ, · · · ).

We first define the space of real analytic quasi-periodic functions Q(ω) as in
[30, chapter 3], here the m-dimensional frequency vector ω = (ω1, ω2, · · · , ωm)
is rationally independent, that is, for any k = (k1, k2, · · · , km) 6= 0, 〈k, ω〉 =
m∑

j=1

kjωj 6= 0.
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Definition 2.2. A function f : R → R is called real analytic quasi-periodic
with the frequency ω = (ω1, ω2, · · · , ωm), if there exists a real analytic function

F : θ = (θ1, θ2, · · · , θm) ∈ Rm → R

such that f(t) = F (ω1t, ω2t, · · · , ωmt) for all t ∈ R, where F is 2π-periodic in
each variable and bounded in a complex neighborhood Πm

r = {(θ1, θ2, · · · , θm) ∈
Cm : |Im θj | ≤ r, j = 1, 2, · · · ,m} of Rm for some r > 0. Here we call F (θ) the
shell function of f(t).

We denote by Q(ω) the set of real analytic quasi-periodic functions with the
frequency ω = (ω1, ω2, · · · , ωm). Given f(t) ∈ Q(ω), the shell function F (θ) of
f(t) admits a Fourier series expansion

F (θ) =
∑

k∈Zm

fke
i〈k,θ〉,

where k = (k1, k2, · · · , km), kj range over all integers and the coefficients fk
decay exponentially with |k| = |k1|+|k2|+· · ·+|km|, then f(t) can be represented
as a Fourier series of the type from the definition,

f(t) =
∑

k∈Zm

fke
i〈k,ω〉t.

In the following we define the norm of the real analytic quasi-periodic func-
tion f(t) through that of the corresponding shell function F (θ).

Definition 2.3. For r > 0, let Qr(ω) ⊆ Q(ω) be the set of real analytic quasi-
periodic functions f such that the corresponding shell functions F are bounded
on the subset Πm

r with the supremum norm

∣∣F
∣∣
r
= sup

θ∈Πm
r

|F (θ)| = sup
θ∈Πm

r

∣∣∣
∑

k

fke
i〈k,θ〉

∣∣∣ < +∞.

Thus we define
∣∣f
∣∣
r
:=
∣∣F
∣∣
r
.

Similarly, we give the definition of real analytic almost periodic functions
with the frequency ω = (· · · , ωλ, · · · ) which is not totally arbitrary. Rather, the
frequency {ωλ : λ ∈ Z} is a basis contained in the Fourier exponents {Ωλ : λ ∈
Z}, which is given in Subsection 2.1. For this purpose, we first define analytic
functions on some infinite dimensional space (see [6]).

Definition 2.4. Let X be a complex Banach space. A function f : U ⊆ X → C,
where U is an open subset of X, is called analytic if f is continuous on U ,
and f |U∩X1 is analytic in the classical sense as a function of several complex
variables for each finite dimensional subspace X1 of X.

Definition 2.5. A function f : R → R is called real analytic almost periodic
with the frequency ω = (· · · , ωλ, · · · ) ∈ RZ, if there exists a real analytic function

F : θ = (· · · , θλ, · · · ) ∈ RZ → R,
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which admits a spatial series expansion

F (θ) =
∑

A∈S

FA(θ),

where
FA(θ) =

∑

supp k⊆A

fk e
i〈k,θ〉,

such that f(t) = F (ωt) for all t ∈ R, where F is 2π-periodic in each variable and

bounded in a complex neighborhood Πr =
{
θ = (· · · , θλ, · · · ) ∈ CZ : |Im θ|∞ ≤

r
}

for some r > 0, where |Im θ|∞ = sup
λ∈Z

|Im θλ|. Here F (θ) is called the shell

function of f(t).

Denote by AP (ω) the set of real analytic almost periodic functions with the
frequency ω defined by Definition 2.5. As a consequence of the definitions of S,
the support supp k of k, and ZZ

S , from Definition 2.5, the spatial series expansion
of the shell function F (θ) has another form

F (θ) =
∑

A∈S

∑

supp k⊆A

fke
i〈k,θ〉 =

∑

k∈Z
Z

S

fke
i〈k,θ〉.

Hence f(t) can be represented as a series expansion of the type

f(t) =
∑

k∈Z
Z

S

fke
i〈k,ω〉t. (2.5)

If we define
fA(t) =

∑

supp k⊆A

fk e
i〈k,ω〉t,

then
f(t) =

∑

A∈S

fA(t).

From the definitions of the support supp k and A, we know that fA(t) is a
real analytic quasi-periodic function with the frequency ωA =

{
ωλ : λ ∈

A
}
. Therefore the almost periodic function f(t) can be represented the sum of

countably many quasi-periodic functions fA(t) formally.

2.3. The norms of real analytic almost periodic functions

Now we can define the norm of the real analytic almost periodic function
f(t) through that of the corresponding shell function F (θ) just like in the quasi-
periodic case.

8



Definition 2.6. Let APr(ω) ⊆ AP (ω) be the set of real analytic almost periodic
functions f such that the corresponding shell functions F are real analytic and
bounded on the set Πr with the norm

‖F‖m,r =
∑

A∈S

|FA|r e
m[A] =

∑

A∈S

|fA|r e
m[A] < +∞,

where m > 0 is a constant and

|FA|r = sup
θ∈Πr

|FA(θ)| = sup
θ∈Πr

∣∣∣∣∣
∑

supp k⊆A

fk e
i〈k,θ〉

∣∣∣∣∣ = |fA|r.

Hence we define
‖f‖m,r := ‖F‖m,r.

2.4. Properties of real analytic almost periodic functions

In the following some properties of real analytic almost periodic functions
are given.

Lemma 2.7. The following statements are true:
(i) Let f(t), g(t) ∈ AP (ω), then f(t)± g(t), g(t+ f(t)) ∈ AP (ω);

(ii) Let f(t) ∈ AP (ω) and τ = βt + f(t) (β + f ′ > 0, β 6= 0), then the inverse
relation is given by t = β−1τ + g(τ) and g ∈ AP (ω/β). In particular, if β = 1,
then g ∈ AP (ω).

The detail proofs of Lemma 2.7 can be seen in [11], we omit it here.

3. The Hamiltonian setting and the main result

Consider the following Hamiltonian

H = h(y) + f(x, y, t), (3.1)

where y ∈ D ⊆ Rn, x ∈ Tn, f(x, y, t) is a real analytic almost periodic function
in t with the frequency ω = (· · · , ωλ, · · · ), D is a closed bounded domain.

After introducing two conjugate variables θ ∈ TZ and J ∈ RZ, the Hamilto-
nian (3.1) can be written in the form of an autonomous Hamiltonian as follows

H = 〈ω, J〉+ h(y) + F (x, y, θ), (3.2)

where F (x, y, θ) is the shell function of the almost periodic function f(x, y, t).
Thus, the perturbed motion of Hamiltonian (3.1) is described by the following
equations

θ̇ = HJ = ω,

ẋ = Hy = hy(y) + Fy(x, y, θ),

J̇ = −Hθ = −Fθ(x, y, θ),

ẏ = −Hx = −Fx(x, y, θ).

(3.3)
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When f = 0, the unperturbed system (3.3) has invariant tori T0 = TZ ×
Tn×{0}×{y0} with the frequency ω = (ω, ω̃), carrying an almost periodic flow
θ = ωt, x(t) = x0 + ω̃t, where ω̃ = hy(y0). The aim is to prove the persistence
of invariant tori under small perturbations.

We now make the assumption that this system is nondegenerate in the sense
that

det hyy = det
∂hy

∂y
6= 0

on D. Then hy is an open map, even a local diffeomorphism between D and
some open frequency domain O ⊆ Rn.

As in [25], instead of proving the existence of invariant tori for the Hamil-
tonian system (3.2) directly, we are going to concerned with the existence of
invariant tori of a family of linear Hamiltonians. This is accomplished by intro-
ducing the frequency as independent parameters and changing the Hamiltonian
system (3.2) to a parameterized system. This approach was first taken in [20].

To this end we write y = y0 + z and expand h around y0 so that

h(y) = h(y0) + 〈hy(y0), z〉+

∫ 1

0

(1− t)〈hyy(yt)z, z〉dt,

where yt = y0 + tz. By assumption, the frequency map is a diffeomorphism

hy : D → O, y0 7→ ω̃ = hy(y0).

Hence, instead of y0 ∈ D we may introduce the frequency ω̃ ∈ O as independent
parameters, determining y0 uniquely. Incidentally, the inverse map is given as

gω̃ : O → D, ω̃ 7→ y0 = gω̃(ω̃),

where g is the Legendre transform of h, defined by g(ω̃) = sup
y
(〈y, ω̃〉 − h(y)).

See [2] for more details on Legendre transforms.
Thus we write

H = e(ω̃) + 〈ω, J〉+ 〈ω̃, z〉+ F (x, gω̃(ω̃) + z, θ) +

∫ 1

0

(1 − t)〈hyy(yt)z, z〉dt

and the term O
(
|z|2
)
can be taken as a new perturbation, we obtain the family

of Hamiltonians H = N + P with

N = e(ω̃) + 〈ω, J〉+ 〈ω̃, z〉,

P (θ, x, z; ω̃) = F (x, gω̃(ω̃) + z, θ) +

∫ 1

0

(1− t)〈hyy(gω̃(ω̃) + tz)z, z〉dt.

They are real analytic in the coordinates (θ, x, J, z) in TZ × Tn × RZ × B, B
some sufficiently small ball around the origin in Rn, as well as the frequency ω̃
taken from a parameters domain O in Rn.
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From the definition of shell function of almost periodic function, P admits
a spatial series expansion

P (θ, x, z; ω̃) =
∑

A∈S

PA(θ, x, z; ω̃) =
∑

A∈S

∑

supp k⊆A

PA,k(x, z; ω̃) e
i〈k,θ〉.

Expanding PA,k(x, z; ω̃) into a Fourier series at x ∈ Tn, therefore P admits a
spatial series

P (θ, x, z; ω̃) =
∑

A∈S

PA(θ, x, z; ω̃)

=
∑

A∈S

∑

supp k⊆A

k̃∈Z
n

PA,k,k̃(z; ω̃)e
i(〈k,θ〉+〈k̃,x〉),

where k̃ = (k̃1, k̃2, · · · , k̃n). Let B = {1, 2, · · · , n} be a finite subset of Z, and

supp k̃ ⊆ B for all k̃ ∈ Zn. Denote S̃ = {A × B : A ∈ S}, then P can be
represented as a spatial series of the type

P =
∑

Ã∈S̃

PÃ =
∑

Ã∈S̃

∑

supp (k,k̃)⊆Ã

PÃ,k,k̃(z; ω̃)e
i(〈k,x〉+〈k̃,θ〉), (3.4)

where supp (k, k̃) = supp k × supp k̃, PÃ,k,k̃ = PA,k,k̃(z; ω̃). Moreover, we define

ZZ

S̃
:=
{
(k, k̃) ∈ ZZ × Zn : supp (k, k̃) ⊆ Ã, Ã ∈ S̃

}

and
[[(k, k̃)]] = min

supp (k,k̃)⊆Ã∈S̃
[Ã].

To state the invariant tori theorem, we therefore singer out the subsets Oα ⊆
O denote the set of all ω̃ satisfying

|〈k, ω〉+ 〈k̃, ω̃〉| ≥
α

∆
(
[[(k, k̃)]]

)
∆
(
|k|+ |k̃|

) , for all (k, k̃) ∈ ZZ

S̃
\{k̃ = 0},

(3.5)
with fixed ω, where ∆ is an approximation function.

Remark 3.1. For the frequency ω being fixed, there is an approximation func-
tion ∆ such that the set Oα is a set of positive Lebesgue measure provided that
α is small (See Theorem 7.5 in Section 7).

Remark 3.2. From the proofs of Theorem 7.5 and the measure of the set of
ω in [24], we know that there is the same approximation function ∆ such that
(2.4) and (3.5) hold simultaneously.
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To state the basic result quantitatively we need to introduce a few notations.
Let

Dr,s =
{
(θ, x, J, z) : |Im θ|∞ < r, |Im x| < r, |J |w < s, |z| < s

}

⊆ CZ/2πZZ × Cn/2πZn × CZ × Cn

and
Oh = {ω̃ : |ω̃ −Oα| < h} ⊂ Cn,

where
|θ|∞ = sup

λ∈Z

|θλ|, |J |w =
∑

λ∈Z

|Jλ|e
w[λ],

| · | stands for the sup-norm of real vectors respectively, where w ≥ 0 is another
parameter, and the weights at the individual lattice sites are defined by [λ] =
min

λ∈A∈S
[A].

Its size is measured in terms of the weighted norm

|||P |||m,r,s,h =
∑

Ã∈S̃

‖PÃ‖r,s,h e
m[Ã],

where
‖PÃ‖r,s,h =

∑

supp (k,k̃)⊆Ã

∣∣PÃ,k,k̃

∣∣
s,h

er(|k|+|k̃|),

the norm | · |s,h is the sup-norm over |z| < s and ω̃ ∈ Oh.
Now, the Hamiltonians

H(θ, x, J, z; ω̃) = N + P = e(ω̃) + 〈ω, J〉+ 〈ω̃, z〉+ P (θ, x, z; ω̃), (3.6)

P is real analytic on Dr,s × Oh. The corresponding Hamiltonian system (3.3)
becomes

θ̇ = HJ = ω,

ẋ = Hz = ω̃ + Pz(θ, x, z; ω̃),

J̇ = −Hθ = −Pθ(θ, x, z; ω̃),

ż = −Hx = −Px(θ, x, z; ω̃).

Thus, the persistence of invariant tori for nearly integrable Hamiltonian system
(3.3) is reduced to the persistence of invariant tori for the family of Hamiltonian
systems (3.6) depending on the parameter ω̃. Our aim is to prove the persistence
of the invariant torus

T0 = TZ × Tn × {0, 0}

of maximal dimension together with its constant vector field (ω, ω̃).
The smallness condition of the following theorem is expressed in terms of

two functions Ψ0,Ψ1 that are defined on the positive real axis entirely in terms
of the approximation function ∆ and reflect the effect of the small divisors in
solving the nonlinear problem. See Appendix A in [24] for their definition.

Now we are in a position to state our main result.
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Theorem 3.3. Suppose that P admits a spatial expansion as in (3.4), is real
analytic on Dr,s ×Oh and satisfies the estimate

s−1|||P |||m,r,s,h ≤
αε∗

Ψ0(µ)Ψ1(ρ)
≤

h

26

for some 0 < µ ≤ m−w and 0 < ρ < r/2, where ε∗ = 2−22 is an absolute positive
constant, Ψ0(µ),Ψ1(ρ) is defined by (6.1). Then there exists a transformation

F : Dr−2ρ,s/2 ×Oα → Dr,s ×Oh

that is real analytic and symplectic for each ω̃ and uniformly continuous in ω̃,
such that

(N + P ) ◦ F = e∗ + 〈ω, J〉+ 〈ω̃, z〉+ · · · ,

where the dots denote terms of higher order in z. Consequently, the perturbed
system has a real analytic invariant torus of maximal dimension and with a
vector field conjugate to (ω, ω̃) for each frequency vector ω̃ in Oα. These tori
are close of order s−1|||P |||m,r,s,h to the torus T0 with respect to the norm | · |w.

4. Outline of the Proof of Theorem 3.3

Theorem 3.3 is proven by the familiar KAM-method employing a rapidly
converging iteration scheme [1, 8, 20]. At each step of the scheme, a Hamiltonian

Hj = Nj + Pj

is considered, which is a small perturbation of some normal form Nj . A trans-
formation Fj is set up so that

Hj ◦ Fj = Nj+1 + Pj+1

with another normal form Nj+1 and a much smaller error term Pj+1. For
instance,

|||Pj+1||| ≤ Cj |||Pn|||
κ

for some κ > 1. This transformation consists of a symplectic change of coor-
dinates Φj and a subsequent change ϕj of the parameters ω̃ and is found by
linearising the above equation. Repetition of this process leads to a sequence of
transformations F0,F1, · · · , whose infinite product transforms the initial Hamil-
tonian H0 into a normal form N∗ up to first order.

Here is a more detailed description of this construction. To describe one
cycle of this iterative scheme in more detail we now drop the index j.

Approximating the perturbation P in a suitable way we write

H = N + P

= N +R+ (P −R).
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In particular, R is chosen such that its spatial series expansion is finite, hence
all subsequent operations are finite dimensional.

The coordinate transformation Φ is written as the time-1-map of the flow
Xt

F of a Hamiltonian vector field XF :

Φ = Xt
F

∣∣
t=1

.

This makes Φ symplectic. Moreover, we may expand H ◦Φ = H ◦Xt
F

∣∣
t=1

with
respect to t at 0 using Taylor’s formula. Recall that

d

dt
G ◦Xt

F = {G,F} ◦Xt
F ,

the Poisson bracket of G and F evaluated at Xt
F . Thus we may write

(N +R) ◦ Φ = N ◦Xt
F

∣∣
t=1

+R ◦Xt
F

∣∣
t=1

= N + {N,F}+

∫ 1

0

(1− t){{N,F}, F} ◦Xt
F dt

+ R+

∫ 1

0

{R,F} ◦Xt
F dt

= N +R+ {N,F}+

∫ 1

0

{(1− t){N,F}+R,F} ◦Xt
F dt.

The last integral is of quadratic order in R and F and will be part of the new
error term.

The point is to find F such that N + R + {N,F} = N+ is a normal form.

Equivalently, setting N+ = N + N̂ , the linear equation

{F,N}+ N̂ = R (4.1)

has to be solved for F and N̂ , when R is given. Given such a solution, we obtain
(1− t){N,F}+R = (1− t)N̂ + tR and hence H ◦ Φ = N+ + P+ with

P+ =

∫ 1

0

{(1− t)N̂ + tR, F} ◦Xt
F dt+ (P −R) ◦ Φ.

Setting up the spatial expansions for F and N̂ of the same form as that for
R, the linearized equation (4.1) breaks up into the component equations

i
(
〈k, ω〉+ 〈k̃, ω̃〉

)
FÃ + N̂Ã = RÃ.

Their solution is well-known and straightforward. These equations introduce
the small divisor, which in our case are zero if and only if (k, k̃) is zero by the
nonresonance conditions. It therefore suffices to choose

N̂Ã = [RÃ]

14



the mean value of RÃ over TÃ, and to solve uniquely

i
(
〈k, ω〉+ 〈k̃, ω̃〉

)
FÃ = RÃ − [RÃ], [FÃ] = 0.

We obtain

FÃ =
∑

supp (k,k̃)⊆Ã

(k,k̃) 6=0

RÃ,k,k̃

i
(
〈k, ω〉+ 〈k̃, ω̃〉

)ei(〈k,θ〉+〈k̃,x〉), (4.2)

where RÃ,k,k̃ are the Fourier coefficients of RÃ.
The truncation of P will be chosen so that R is independent of J and of first

order in z. Hence the same is true of each of the N̂Ã and so

N̂ =
∑

Ã∈S

N̂Ã = ê+ 〈v(ω̃), z〉.

It suffices to change parameters by setting

ω̃+ = ω̃ + v(ω̃) (4.3)

to obtain a new normal form N+ = N + N̂ . This completes one cycle of the
iteration.

By the same truncation, F is independent of J and of first order in z. It
follows that Φ = Xt

F

∣∣
t=1

has the form

θ = θ+,

x = U1(θ+, x+),

J = U2(θ+, x+) + U3(θ+, x+)z+,

z = U4(θ+, x+) + U5(θ+, x+)z+,

where the dependence of all coefficients on ω̃ has been suppressed. This map is
composed with the inverse ϕ of the parameter map (4.3) to obtain F .

Such symplectic transformations form a group under composition. So, if
F0,F1, · · · ,Fj−1 belong to this group, then so does F j = F0 ◦ F1 ◦ · · · ◦ Fj−1

and the limit transformation F for j → ∞.

5. The KAM step

Before plunging into the details of the KAM-construction we observe that it
suffices to consider some normalized value of α, say

α̃ = 2

Indeed, stretching the time scale by the factor 2/α the Hamiltonians H and
N are scaled by the same amount, and so is the frequency ω̃. By a similar
scaling of the action-variables J, z the radius s may also be normalized to some
convenient value. We will not do this here.
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5.1. The set up

Consider a Hamiltonian of the form

H = N + P = e(ω̃) + 〈ω, J〉+ 〈ω̃, z〉+ P (θ, x, z; ω̃),

where
P =

∑

Ã∈S̃

PÃ =
∑

Ã∈S̃

∑

supp (k,k̃)⊆Ã

PÃ,k,k̃e
i(〈k,x〉+〈k̃,θ〉).

Assume that P is real analytic on the complex domain

Dr,s ×Oh : |Im θ|∞ < r, |Im x| < r, |J |w < s, |z| < s, |ω̃ −O∗| < h,

whereO∗ is a closed subset of the parameter space Rn consisting of the frequency
ω̃ that satisfying

|〈k, ω〉+ 〈k̃, ω̃〉| ≥
α̃

∆
(
[[(k, k̃)]]

)
∆
(
|k|+ |k̃|

) , for all (k, k̃) ∈ ZZ

S̃
\{k̃ = 0},

(5.1)
where α̃ = 2. Moreover, assume that for some m > w,

|||H −N |||m,r,s,h = |||P |||m,r,s,h ≤ ε (5.2)

is sufficiently small. The precise condition will be given later in the course of
the iteration.

Unless stated otherwise the following estimates are uniform with respect to
ω̃. Therefore the index h is usually dropped.

5.2. Truncating the perturbation

Let µ and ρ be two small and K a large positive parameter to be chosen
during the iteration process. The Fourier series of the Ã-component PÃ of

the perturbation is truncated at order (|k| + |k̃|) ≤ 〈Ã〉 which is the smallest
nonnegative number satisfying

µ[Ã] + ρ〈Ã〉 ≥ K. (5.3)

Thus, the larger [Ã] the more Fourier coefficients are discarded. If [Ã] is suf-

ficiently large the whole Ã-component is dropped. The upshot is that for the
remaining perturbation Q one has

|||P −Q|||m−µ,r−ρ,s ≤ e−K |||P |||m,r,s.

Next, each Fourier coefficient of Q is linearized with respect to z at the origin.
Denoting the result of this truncation process by R we obtain

|||P −R|||m−µ,r−ρ,ηs ≤
(
e−K +

η2

1− η

)
|||P |||m,r,s (5.4)

for 0 < µ < m, 0 < ρ < r and 0 < η < 1. Moreover, the estimate

|||R|||m,r,s ≤ 2|||P |||m,r,s (5.5)

obviously holds.
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5.3. Extending the small divisor estimate

We claim that, if

h ≤ min
Ã∈S̃

1

∆([Ã])〈Ã〉∆(〈Ã〉)
(5.6)

with 〈Ã〉 as in the previous subsection 5.2, then the estimates

|〈k, ω〉+ 〈k̃, ω̃〉| ≥
1

∆
(
[[(k, k̃)]]

)
∆
(
|k + k̃|

) ,

µ[[(k, k̃)]] + ρ(|k|+ |k̃|) ≤ K, (k, k̃) ∈ ZZ

S̃
\{k̃ = 0}

(5.7)

hold uniformly in ω̃ on the complex neighbourhood Oh of the set O∗.
The proof is simple. Given ω̃ in Oh there exists an ω̃0 in O∗ such that

|ω̃ − ω̃0| < h. Given (k, k̃) there exists an Ã in S̃ containing the support of

(k, k̃) such that [[(k, k̃)]] = [Ã]. It follows that |k|+ |k̃| ≤ 〈Ã〉 and hence

|〈k̃, ω̃〉−〈k̃, ω̃0〉| ≤ |k̃| |ω̃−ω̃0| ≤ 〈Ã〉h ≤
1

∆([Ã])∆(〈Ã〉)
≤

1

∆([[(k, k̃)]])∆(|k| + |k̃|)

by the monotonicity of ∆. The claim follows from the estimate (5.1) for 〈k̃, ω̃0〉.

5.4. Solving the linearized equation

The KAM-theorem is proven by the usual Newton-type iteration procedure,
which involves an infinite sequence of coordinate changes and is described in
some detail for example in [23]. Each coordinate change Φ is obtained as the
time-1-map Xt

F |t=1 of a Hamiltonian vector field XF . Its generating Hamilto-

nian F as well as some correction N̂ to the given normal form N are a solution
of the linearized equation

{F,N}+ N̂ = R,

which is the subject of this subsection.
The linearized equation {F,N} + N̂ = R is broken up into the component

equations i
(
〈k, ω〉+ 〈k̃, ω̃〉

)
FÃ + N̂Ã = RÃ with supp (k, k̃) ⊆ Ã, (k, k̃) 6= 0, and

solved for FÃ and N̂Ã as described in Section 4. Clearly, N̂Ã = [RÃ], which is

the mean value of RÃ over TÃ and ‖N̂Ã‖r,s ≤ ‖RÃ‖r,s. Hence

|||N̂ |||m,r,s ≤ |||R|||m,r,s (5.8)

by putting pieces together.
The normalized Fourier series expansion of FÃ is given by (4.2). By the

extended small divisor estimate (5.7) and nonresonance condition (2.4) with
α = α̃ = 2,

‖FÃ‖r−ρ,s ≤
∑

supp (k,k̃)⊆Ã

(k,k̃) 6=0

∆
(
[[(k, k̃)]]

)
∆
(
|k|+ |k̃|

)
|RA,k,k̃|s e

(r−ρ)(|k|+|k̃|)

≤ ∆
(
[Ã]
)
Γ0(ρ)‖R‖r,s,
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where Γ0(ρ) = sup
t≥0

∆(t)e−ρt. Similarly, for the convenience of later estimates,

∑

λ∈A

‖∂θλFÃ‖r−ρ,s ≤
∑

supp (k,k̃)⊆Ã

(k,k̃) 6=0

∆
(
[[(k, k̃)]]

)
|k|∆

(
|k|+ |k̃|

)
|RA,k,k̃|s e

(r−ρ)(|k|+|k̃|)

≤ ∆
(
[Ã]
)
Γ1(ρ)‖R‖r,s,

‖∂xFÃ‖r−ρ,s ≤
∑

supp (k,k̃)⊆Ã

(k,k̃) 6=0

∆
(
[[(k, k̃)]]

)
|k̃|∆

(
|k|+ |k̃|

)
|RA,k,k̃|s e

(r−ρ)(|k|+|k̃|)

≤ ∆
(
[Ã]
)
Γ1(ρ)‖R‖r,s,

where Γ1(ρ) = sup
t≥0

(1 + t)∆(t)e−ρt. Putting the spatial components together,

|||F |||m−µ,r−ρ,s ≤
∑

Ã∈S̃

∆
(
[Ã]
)
Γ0(ρ)‖R‖r,se

(m−µ)[Ã]

≤ Γ0(µ)Γ0(ρ)|||R|||m,r,s

and
∑

λ

|||∂θλF |||m−µ,r−ρ,s, |||∂xF |||m−µ,r−ρ,s ≤ Γ0(µ)Γ1(ρ)|||R|||m,r,s

for 0 < µ < m.
In view of the estimate Γ0(ρ) ≤ ρΓ1(ρ) in Lemma 6 in [24] we may summarize

these estimates by writing

ρ−1|||F |||m−µ,r−ρ,s ≤ ΓµΓρ|||R|||m,r,s,

∑

λ

|||∂θλF |||m−µ,r−ρ,s ≤ ΓµΓρ|||R|||m,r,s,

|||∂xF |||m−µ,r−ρ,s ≤ ΓµΓρ|||R|||m,r,s

(5.9)

with

Γµ = Γ0(µ) = sup
t≥0

∆(t)e−ρt, Γρ = Γ1(ρ) = sup
t≥0

(1 + t)∆(t)e−ρt. (5.10)

5.5. The derivatives of F

On the domain Dr−ρ,s we obtain the estimate

|∂θF |w =
∑

λ

|∂θλF |ew[λ] ≤
∑

λ

∑

A∋λ

||∂θλFÃ||r−ρ,se
w[A]

≤
∑

λ

|||∂θλF |||w,r−ρ,s

(5.11)
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and
|∂xF | ≤ |||∂xF |||m−µ,r−ρ,s. (5.12)

Similarly, on the domain Dr−ρ,s/2 we obtain estimate

|∂JF |∞ = 0 (5.13)

and

|∂zF | ≤ |||∂zF |||m−µ,r−ρ,s/2 ≤
2

s
|||F |||m−µ,r−ρ,s. (5.14)

Requiring that
m− µ ≥ w (5.15)

and recalling the estimates (5.2), (5.5), (5.9), (5.11), (5.12), (5.13), (5.14) we
thus have

1

ρ
|∂JF |∞,

1

ρ
|∂zF |,

2

s
|∂θF |w,

2

s
|∂xF | ≤

2

s
ΓµΓρ|||R|||m,r,s ≤ 4 ΓµΓρ

ε

s

uniformly on the domain Dr−ρ,s/2.
These estimates are expressed more conveniently by means of a weighted

phase space norm. Let

|(θ, x, J, z)|P = max
(
|θ|∞, |x|, |J |w, |z|),

W = diag(ρ−1IZ, ρ
−1In, 2s

−1IZ, 2s
−1In).

Then the above estimates are equivalent to

|WXF |P ≤ 4 ΓµΓρE, E =
ε

s

on Dr−ρ,s/2.

5.6. Transforming the coordinates

The |W · |P -distance of the domain

DL = Dr−2ρ,s/4 ⊂ DL = Dr−ρ,s/2

to the boundary of DL is exactly one half. Hence, if 16 ΓµΓρE ≤ 1, then
|WXF |P is less than or equal one fourth on DL and consequently

Xt
F : DL → DL, 0 ≤ t ≤ 1.

In particular, the time-1-map Φ is a symplectic map from DL into DL, for which
the estimate

|W (Φ− id)|P;DL
≤ 4 ΓµΓρE (5.16)

holds.
In fact, under the present smallness condition on E this statement holds as

well for the larger domain Dr−κρ,κs/4 instead of DL, where κ = 3/2. The |W · |P
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-distance of its boundary to DL is exactly one fourth. Applying the general
Cauchy inequality of Appendix B in [24] to the last estimate it follows that in
addition,

|W (DΦ− I)W−1|P;DL
≤ 16 ΓµΓρE,

where the norm of derivative is the operator norm induced by |·|P , see Appendix
A in [24] for its definition. Finally, if we require

4 ΓµΓρE ≤ η ≤
1

2
,

then
Xt

F : Dβ = Dr−2ρ,ηs/2 → Dη = Dr−ρ,ηs, 0 ≤ t ≤ 1

by the same arguments as before.

5.7. Transforming the frequencies

To put N+ = N + N̂ into normal form, the frequency parameters are trans-

formed by setting ω̃+ = ω̃+v(ω̃). Proceeding just as in (5.8) the estimate for N̂

implies that |v|h/2 = |∂zN̂ |h/2 ≤ 4E. Referring to Lemma 11 in [24] or Lemma
A.3 in [25] it follows that for

E ≤
h

16
(5.17)

and the map id+ v has a real analytic inverse

ϕ : Oh/4 → Oh/2, ω̃+ 7→ ω̃

with the estimate

|ϕ− id|,
h

4

∣∣∣Dϕ− Id
∣∣∣ ≤ 4E (5.18)

uniformly on Oh/4.

5.8. Estimating the new error term

The new error term is

P+ =

∫ 1

0

{Rt, F} ◦Xt
F dt+ (P −R) ◦X1

F ,

where Rt = (1− t)N̂ + tR. By Lemma 10 in [24] and estimate (5.9),

|||G ◦Xt
F |||m−µ,r−2ρ,ηs/2 ≤ 2|||G|||m−µ,r−ρ,ηs, 0 ≤ t ≤ 1,

provided that

4C0 ΓµΓρE ≤ η ≤
1

2
, (5.19)

where C0 = 8 is a constant. Hence, with this assumption,

|||P+|||m−µ,r−2ρ,ηs/2 ≤ 2|||{Rt, F}|||m−µ,r−ρ,ηs + 2|||(P −R)|||m−µ,r−ρ,ηs.
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Obviously, |||Rt|||m,r,s ≤ 2ε for 0 ≤ t ≤ 1 by the estimates for N̂ and F , and
therefore by (5.2), (5.5), (5.9), we get

|||∂xRt|||m−µ,r−ρ,ηs |||∂zF |||m−µ,r−ρ,ηs ≤
2ε

ρ

2

s
|||F |||m−µ,r−ρ,s ≤ 8 ΓµΓρEε,

|||∂zRt|||m−µ,r−ρ,ηs |||∂xF |||m−µ,r−ρ,ηs ≤
2

s
2ε|||∂xF |||m−µ,r−ρ,s ≤ 8 ΓµΓρEε.

Hence

|||{Rt, F}|||m−µ,r−ρ,ηs ≤ |||∂xRt|||m−µ,r−ρ,ηs |||∂zF |||m−µ,r−ρ,ηs

+ |||∂zRt|||m−µ,r−ρ,ηs |||∂xF |||m−µ,r−ρ,ηs

≤ 16 ΓµΓρEε

in view of (5.13) and Rt independent of J . Combined with (5.2), (5.4) we
altogether obtain

|||P+|||m−µ,r−2ρ,ηs/2 ≤ 32 ΓµΓρEε+ 2e−Kε+ 4η2ε (5.20)

for the new error term.

6. Iteration and Convergence

6.1. The iterative construction

To iterate the KAM step infinitely often we now choose sequences for the
pertinent parameters. Let a = 13, b = 4, c = 6, d = 8, e = 22 and κ = 3/2.
The choice of these integer constants will be motivated later in the course of the
proof of the iterative lemma.

Given 0 < µ ≤ m − w and 0 < ρ < r/2 there exist sequences µ0 ≥ µ1 ≥
· · · > 0 and ρ0 ≥ ρ1 ≥ · · · > 0 such that

Ψ0(µ)Ψ1(ρ) =

∞∏

ν=0

Γκν

µν
Γκν

ρν
(6.1)

with
∞∑

ν=0

µν = µ,

∞∑

ν=0

ρν = ρ, κν =
κ− 1

κν+1

where Γµν
= Γ0(µν) and Γρν

= Γ1(ρν), Γ0,Γ1 is defined by (5.10). Fix such
sequences, and for j ≥ 0 set

Γj = 2j+aΓµj
Γρj

, Θj =

j−1∏

ν=0

Γκν

ν , Ej = (ΘjE0)
κj

,

where Θ0 = 1. Furthermore, set

mj = m−

j−1∑

ν=0

µj , rj = r − 2

j−1∑

ν=0

ρν ,
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sj = s

j−1∏

ν=0

ην
2
, hj = 2j+cEj , (6.2)

where η2j = 4−bΓjEj . Then mj ↓ m − w, r ↓ r − 2ρ and sj ↓ 0, hj ↓ 0. These
sequences define the complex domains

Dj = Drj ,sj , Oj = Ohj
.

Finally, we introduce an extended phase space norm,

|(θ, x, J, z, ω̃)|P̄ = max
(
|θ|∞, |x|, |J |w, |z|, |ω̃|),

and the corresponding weight matrices,

W̄j = diag(ρ−1
j IZ, ρ

−1
j In, 2s

−1
j IZ, 2s

−1
j In, h

−1
j In).

Then we can state the Iterative Lemma.

Lemma 6.1 (Iterative Lemma). Suppose that

s−1|||H −N |||m,r,s,h ≤
α̃ε∗

Ψ0(µ)Ψ1(ρ)
≤

h

2c
, (6.3)

where α̃ = 2 and ε∗ = 2−e. Then for each j ≥ 0 there exists a normal form Nj

and a real analytic transformation

F j = F0 ◦ F1 ◦ · · · ◦ Fj−1 : Dj ×Oj → D0 ×O0

of the form described in Section 4, which is symplectic for each ω̃, such that
H ◦ F j = Nj + Pj with

s−1
j |||Pj |||mj ,rj ,sj ,hj

≤ Ej . (6.4)

Moreover,

|W̄0(F
j+1 −F j)|P̄ ≤ 4 max

(
21−a−jΓjEj , 2Ej/hj

)
(6.5)

on Dj+1 ×Oj+1.

Before giving the proof of Iterative Lemma 6.1 we collect some useful facts.
The κν satisfy the identities

∞∑

ν=0

κν = 1,
∞∑

ν=0

νκν =
1

κ− 1
.

This and the monotonicity of the Γ -function imply that

Γj =

∞∏

ν=j

Γκνκ
j

j ≤

(
∞∏

ν=j

Γκν

j

)κj

.
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Together with the definition of Ej and (6.1) we obtain the estimate

ΓjEj ≤

(
∞∏

ν=0

Γκν
ν E0

)κj

=
(
22+aΨ0Ψ1E0)

)κj

. (6.6)

Moreover,
Γκ−1
j Eκ

j = Ej+1 (6.7)

by a straightforward calculation.
Proof of Iterative Lemma 6.1: Lemma 6.1 is proven by induction. Choosing
F0 = id and

E0 =
α̃ε∗

Ψ0(µ)Ψ1(ρ)
,

there is nothing to prove for j = 0. Just observe that h0 ≤ h by the very
definition of h0 and E0.

Let j ≥ 0. To apply the KAM-step to Hj = H ◦ F j and Nj we need to
verify its assumptions (5.6), (5.15), (5.17) and (5.19). Clearly, mj − µj ≥ w by
construction, and Ej ≤ hj/16 in view of the definition of hj and c ≥ 4, so the
second and third requirements are met. Taking squares, the fourth requirement
is equivalent to

42−a−jC2
0Γ

2
jE

2
j ≤ 4−bΓjEj ≤

1

4
.

This holds for all j ≥ 0, since C0 = 8,

ΓjEj ≤ 23+a−e (6.8)

by (6.2), (6.3), (6.6) and a ≥ b+ 2, b ≥ 0, e ≥ a+ 9.
As to the first requirement, define Kj by e−Kj = 2−d ΓjEj and subsequently

〈·〉 as in (5.3). For arbitrary Ã in S̃ with 〈Ã〉 > 0 we then have

1

〈Ã〉∆(〈Ã〉)∆([Ã])
=

e−ρj〈Ã〉e−µj [Ã]

〈Ã〉∆(〈Ã〉)e−ρj〈Ã〉∆([Ã])e−µj [Ã]

≥
e−Kj

Γµj
Γρj

=
2−dΓjEj

2−j−2Γj
= 2j+a−dEj ≥ hj ,

(6.9)

since a ≥ c + d. This estimate holds even more when 〈Ã〉 = 0. Hence, also
requirement (5.6) is satisfied.

The KAM-construction now provides a normal form Nj+1, a coordinate
transformation Φj and a parameter transformation ϕj . By the definition of
rj and sj , Φj maps Dj+1 into Dj , while ϕj maps Oj+1 into Oj , since

hj+1

hj
=

2Ej+1

Ej
= 2(ΓjEj)

κ−1 ≤ 21+(3+a−e)/2 ≤
1

4

in view of (6.8) and κ = 3/2, e ≥ a+ 9. Setting

F j+1 = F j ◦ Fj, Fj = Φj ◦ ϕj ,
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we obtain a transformation F j+1 from Dj+1 ×Oj+1 into D0 ×O0. For the new
error term

Pj+1 = H ◦ F j+1 −Nj+1 = Hj ◦ Fj −Nj+1,

we obtain
|||Pj+1|||j+1 ≤ 32 Γµj

Γρj
Ejεj + 2e−Kjεj + 4η2j εj

≤ (25−a + 21−d + 22−2b)ΓjEjεj .

Dividing by sj+1 = ηjsj/2 this yield

s−1
j+1|||Pj+1|||j+1 ≤ 21+b(25−a + 21−d + 22−2b)Γκ−1

j Eκ
j

= (26−a+b + 22+b−d + 23−b)Ej+1

≤ Ej+1,

since η2j = 4−bΓjEj , Ej = εj/sj, a ≥ b+ 8, b ≥ 4, d ≥ b+ 4, κ = 3/2 and (6.7).
To prove the first of the estimates, write

|W̄0(F
j+1 −F j)|j+1 = |W̄0(F

j ◦ Fj −F j)|j+1

≤ |W̄0D̄F jW̄−1
j |j |W̄j(Fj − id)|j+1,

(6.10)

where | · |j = | · |P̄,Dj×Oj
, where D̄ denotes differentiation with respect to

(x, θ, z, J, ω̃). By (5.16), (5.18) and the definition of Γj ,

|W̄j(Fj − id)|j+1 ≤ max
(
|Wj(Φj − id)|P , h

−1
j |ϕ− id|

)

≤ max
(
22−a−jΓjEj , 4Ej/hj

)
.

(6.11)

It remains to show that the first factor is bounded by 2. By the inductive
construction, F j = F0 ◦ F1 ◦ · · · ◦ Fj−1, and

|W̄νD̄FνW̄
−1
ν |ν+1 ≤ max

(
|WνD̄ΦνW

−1
ν |P + hν |Wν∂ω̃Φν |P , |∂ω̃ϕν |

)

≤ max
(
1 + 25−a−νΓνEν , 1 + 16Eν/hν

)

≤ 1 + 24−c−ν.

By (5.16), (5.18), (6.8). Since the weights of W̄−1
ν do not decrease as ν decreases,

and since c ≥ 6, we obtain

|W̄0D̄F jW̄−1
j |j ≤

j−1∏

ν=0

|W̄νD̄FνW̄
−1
ν+1|ν+1 ≤

∞∏

ν=0

(1 + 24−c−ν) ≤ 2. (6.12)

By (6.10), (6.11), (6.12), the conclusion (6.5) holds. This completes the proof
of the Iterative Lemma 6.1. �
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6.2. Convergence

By the estimates of the iterative lemma the F j converge uniformly on
⋂

j≥0

Dj ×Oj = D∗ ×O∗, D∗ = Dr−2ρ,0

to mappings F∗ that are real analytic in x, θ and uniformly continuous in ω̃.
Moreover,

|W̄0(F∗ − id)|P̄ ≤
1

2

on D∗ ×O∗ by the usual telescoping argument.
But by construction, the F j are affine linear in each fiber over TZ×Tn×O∗.

Therefore they indeed converge uniformly on any domain Dr−2ρ,σ × O∗ with
σ > 0 to a map F∗ that is real analytic and symplectic for each ω̃. In particular,

F∗ : Dr−2ρ,s/2 ×O∗ → Dr,s ×Oh

by piecing together the above estimates.
Going to the limit in (6.4) and using Cauchy’s inequality we finally obtain

H ◦ F∗ = e∗ + 〈ω, J〉+ 〈ω̃, z〉+ · · · .

This completes the proof of Theorem 3.3.

6.3. Estimates

The scheme so far provides only a very crude estimate of F∗ since the actual
size of the perturbation is not taken into account in the estimates of the iterative
lemma. But nothing changes when all inequalities are scaled down by the factor
ε/E ≤ 1, where

ε = s−1|||H −N |||m,r,s,h ≤ E =
αε∗
ΨµΨρ

.

It follows that
|W̄0(F∗ − id|P̄ ≤

ε

E

uniformly on Dr−2ρ,s/2 ×O∗.

7. The measure estimate

In this section the measure estimate of the frequency ω̃ satisfying inequalities
(3.5) will be given. Firstly, we give some useful lemmas.

Lemma 7.1 (Lemma 2 in [24]). For every given approximation function Θ,
there exists an approximation function ∆ such that

∑

Ã∈S̃,card(Ã)=i

1

∆([Ã])
≤

2N0

Θ(ti)
, i ≥ 1,

where N0, ti are given in Lemma 2.1.
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Lemma 7.2 (Lemma 4 in [24]). There is an approximation function ∆ such
that ∑

ℓ∈Zi\{0}

1

∆(|ℓ|)
≤ M i log log i

for all sufficiently large i with some constant M , where ℓ = (ℓ1, ℓ2, · · · , ℓi) and
|ℓ| = |ℓ1|+ |ℓ2|+ · · ·+ |ℓi|.

Remark 7.3. Of course, Lemma 7.2 also gives a bound for all small i, since
the left hand side is monotonically increasing with i.

Remark 7.4. From the proofs of Lemma 7.1 and Lemma 7.2, we know that
there is the same approximation function ∆ such that Lemma 7.1 and Lemma
7.2 hold simultaneously. The detail proofs of Lemma 7.1 and Lemma 7.2 can be
found in [24].

Theorem 7.5. There is an approximation function ∆ such that for suitable α
, the set Oα of ω̃ satisfying (3.5) has positive measure.

Proof. Choose the frequency ω = (· · · , ωλ, · · · ) satisfying the nonresonance
condition (2.4). For any bounded O ∈ Rn, let Oα ⊆ O denote the set of all
ω̃ satisfying (3.5) with fixed ω. Then complement of the open dense set Rα,
where

Rα =
⋃

(k,k̃)∈Z
Z

S̃
\{k̃=0}

Rk,k̃
α

=
⋃

(k,k̃)∈Z
Z

S̃
\{k̃=0}

{
ω̃ ∈ Rn :

∣∣∣〈k, ω〉+ 〈k̃, ω̃〉
∣∣∣ < α

∆
(
[[(k, k̃)]]

)
∆
(
|k|+ |k̃|

)
}
.

Now we estimate the measure of the set Rk,k̃
α . Since (k, k̃) ∈ ZZ

S̃
\{k̃ = 0},

then k̃ 6= 0, set |k̃max| = max
1≤ı≤n

|k̃ı| 6= 0, then there exists some 1 ≤  ≤ n such

that |k̃| = |k̃max|. Therefore, we have

Rk,k̃
α =

{
ω̃ ∈ Rn :

∣∣∣〈k, ω〉+ 〈k̃, ω̃〉
∣∣∣ < α

∆
(
[[(k, k̃)]]

)
∆
(
|k|+ |k̃|

)
}

=

{
ω̃ ∈ Rn :

∣∣∣k̃maxω̃ +
∑

ı6=

k̃iω̃i + 〈k, ω〉
∣∣∣ < α

∆
(
[[(k, k̃)]]

)
∆
(
|k|+ |k̃|

)
}

=
{
ω̃ ∈ Rn : |ω̃ + bk,k̃| < δk,k̃

}

=
{
ω̃ ∈ Rn : −bk,k̃ − δk,k̃ < ω̃ < −bk,k̃ + δk,k̃

}
,
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where bk,k̃ = 1

k̃max

(
∑
ı6=

k̃ıω̃ı + 〈k, ω〉

)
and δk,k̃ = α

∆
(
[[(k,k̃)]]

)
∆
(
|k|+|k̃|

) 1

|k̃max|
.

Obviously, for any bounded domain O ⊂ Rn, we have the Lebesgue measure
estimate

meas
(
Rk,k̃

α ∩ O
)
≤ C0δk,k̃ =

C0α

∆
(
[[(k, k̃)]]

)
∆
(
|k|+ |k̃|

) 1

|k̃max|

with some positive constant C0.
Since |k̃max| 6= 0, k̃max ∈ Z, which means |k̃max| ≥ 1, then we have the

following measure estimate

α−1meas
(
Rk,k̃

α ∩ O
)
≤

C0

∆
(
[[(k, k̃)]]

)
∆
(
|k|+ |k̃|

) .

Next we estimate the measure of the set Rα. From the definition of ZZ

S̃
,

there exists a nonempty set Ã ∈ S such that supp (k, k̃) ⊆ Ã, we get

α−1meas(Rα ∩ O) ≤
∑

Ã∈S̃

∑

supp (k,k̃)⊆Ã

k̃ 6=0

α−1meas
(
Rk,k̃

α ∩ O
)

≤ C0

∑

Ã∈S̃

∑

supp (k,k̃)⊆Ã

k̃ 6=0

1

∆
(
[[(k, k̃)]]

)
∆
(
|k|+ |k̃|

)

≤ C0

∑

Ã∈S

(
1

∆([Ã])

∑

supp (k,k̃)⊆Ã

k̃ 6=0

1

∆
(
|k|+ |k̃|

)
)

≤ C0

∑

Ã∈S

(
1

∆([Ã])

∑

supp (k,k̃)⊆Ã

(k,k̃) 6=0

1

∆
(
|k|+ |k̃|

)
)

≤ C0

+∞∑

i=1

((
∑

Ã∈S,card(Ã)=i

1

∆([Ã])

)
∑

ℓ∈Zi\{0}

1

∆(|ℓ|)

)
.

Thus the sum is broken up with respect to the cardinality and the weight of the
spatial components of S. Each of these factors is now studied separately.

By applying Lemma 7.1, Lemma 7.2 and Remark 7.3, we arrive at

α−1meas(Rα ∩O) ≤ C + C

+∞∑

i=i0

M i log log i

Θ(ti)
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with some constant C and i0 so large that ti ≥ i log̺−1 i for i ≥ i0, ̺ > 2 by
hypotheses. Here we are still free to choose a suitable approximation function
Θ, and choose

Θ(t) = exp

(
t

log t log̺−1 log t

)
, t > e, ̺ > 2,

the infinite sum does converge. Thus there is an approximation function ∆ such
that

α−1meas(Rα ∩O) < +∞.

Hence,
meas(Rα ∩ O) ≤ O(α)

and
Oα → O as α → 0.

This completes the proof of Theorem 7.5. �

8. Application

In this section we will apply Theorem 3.3 to the differential equation with
superquadratic potentials depending almost periodically on time

ẍ+ x2l+1 =
2l∑

j=0

pj(t)x
j , (8.1)

where p0, p1, · · · , p2l are real analytic almost periodic functions with the fre-
quency ω = (· · · , ωλ, · · · ) and admit a spatial series expansion similar to (2.5).

8.1. Rescaling

We first rescale the time variable t and the space variable x to get a slow
system. Let u = εx, τ = ε−lt. Then equation (8.1) becomes

u′′ + u2l+1 = ε

2l∑

j=0

ε2l−jpj(τ)u
j , (8.2)

where ′′ stands for d2

dτ2 , p0, p1, · · · , p2l are real analytic almost periodic functions
in τ with the frequency ω̂ = εlω. Without causing confusion, in the following we
still use t instead of τ . Equation (8.2) is equivalent to the following Hamiltonian
system 




u′ = v,

v′ = −u2l+1 + ε

2l∑

j=0

ε2l−jpj(t)u
j ,

(8.3)
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and the corresponding Hamiltonian function is

h(u, v, t) =
1

2
v2 +

1

2l+ 2
u2l+2 − ε

2l∑

j=0

ε2l−j

j + 1
pj(t)u

j+1. (8.4)

It is obvious that (8.4) is a perturbation of the integrable Hamiltonian

h0(u, v, t) =
1

2
v2 +

1

2l+ 2
u2l+2, (8.5)

for ε > 0 small. Our aim is to construct, for every sufficiently small ε > 0,
invariant cylinders tending to the infinity for (8.4) close to {h0(u, v, t) = C}×R

in the extended phase space, which prohibit any solution from going to the
infinity. For this purpose, we will introduce the action-angle variables first.

8.2. Action and angle variables

We consider the following integrable Hamiltonian system

{
u′ = v,

v′ = −u2l+1,
(8.6)

with Hamiltonian function (8.5). Suppose (C(t), S(t)) is the solution of (8.6)
satisfying the initial condition (C(0), S(0)) = (1, 0). Let T∗ > 0 be its minimal
period, which is a constant. Then these analytic functions C(t), S(t) satisfy

(i) C(t+ T∗) = C(t), S(t+ T∗) = S(t) and C(0) = 1, S(0) = 0;

(ii) Ċ(t) = S(t), Ṡ(t) = −C2l+1(t);

(iii) (l + 1)S2(t) + C2l+2(t) = 1;

(iiii) C(−t) = C(t), S(−t) = −S(t).
The action and angle variables are now defined by the map Ψ : R+ × T →

R2 \ {0} via (̺, φ) = Ψ(u, v) is given by the formula

Ψ :
u = c

1
l+2

1 ̺
1

l+2C
(
T∗φ
2π

)
,

v = c
l+1
l+2

1 ̺
l+1
l+2S

(
T∗φ
2π

)

with c1 = 2π(l+2)
T∗

> 0, ̺ > 0 and φ ∈ T. We can check that Ψ is a sym-

plectic diffeomorphism from R+ × T onto R2 \ {0}. Under this transformation,
Hamiltonian function (8.4) becomes

H(̺, φ, t) = h(Ψ(̺, φ), t)

=
1

2l+ 2
c

2l+2
l+2

1 ̺
2l+2
l+2 − ε

2l∑

j=0

ε2l−j

j + 1
c

j+1
l+2

1 ̺
j+1
l+2 Cj+1

(T∗φ

2π

)
pj(t).

(8.7)
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After introducing two conjugate variables θ ∈ TZ and J ∈ RZ, the Hamilto-
nian (8.7) can be written in the form of an autonomous Hamiltonian as follows

H = 〈ω̂, J〉+
1

2l + 2
c

2l+2
l+2

1 ̺
2l+2
l+2 − ε

2l∑

j=0

ε2l−j

j + 1
c

j+1
l+2

1 ̺
j+1
l+2 Cj+1

(T∗φ

2π

)
Pj(θ),

where Pj(θ) is the shell function of the almost periodic function pj(t).
Let [C1,C2] ⊆ R+ be any bounded interval without 0, not depending on ε.

For any ̺0 ∈ [C1,C2], we denote ̺ = ̺0 + I and do Taylor expansion at ̺0 for
|I| < ̺0/2. Then we have

H(θ, φ, J, I) = 〈ω̂, J〉+
1

2l+ 2
c

2l+2
l+2

1 ̺
2l+2
l+2

0 +
1

l+ 2
c

2l+2
l+2

1 ̺
l

l+2

0 I +O(I2)

− ε

2l∑

j=0

ε2l−j

j + 1
c

j+1
l+2

1 (̺0 + I)
j+1
l+2 Cj+1

(T∗φ

2π

)
Pj(θ).

(8.8)

Denote ω̃ = 1
l+2c

2l+2
l+2

1 ̺
l

l+2

0 , for any ̺0 ∈ [C1,C2], we get

∂ω̃

∂̺0
=

l

(l + 2)2
c

2l+2
l+2

1 ̺
−2
l+2

0 6= 0.

We therefore singer out the subsets Oα ⊆ O := [ 1
l+2c

2l+2
l+2

1 C

l
l+2

1 , 1
l+2c

2l+2
l+2

1 C

l
l+2

2 ] is
the set of ω̃ satisfying

|〈k, εlω〉+ k̃ ω̃| ≥
α

∆
(
[[(k, k̃)]]

)
∆
(
|k|+ |k̃|

) , for all (k, k̃) ∈ ZZ

S̃
\{k̃ 6= 0})

with fixed ω. From the measure estimate in Section 7 with n = 1, it follows
that the set Oα is a set of positive Lebesgue measure provided that α is small.
Let Oh : |ω̃ −Oα| < h denote complex neighborhoods of Oα.

Similar to Section 3, we can rewrite the Hamiltonian function (8.8) as

H(θ, φ, J, I; ω̃) = N + P

= e(ω̃) + 〈ω̂, J〉+ ω̃ I + P (θ, φ, I; ω̃),
(8.9)

where

P (θ, φ, I; ω̃) =
1

2l+ 2
c

2l+2
l+2

1

(
(̺0 + I)

2l+2
l+2 − ̺

2l+2
l+2

0 −
2l+ 2

l + 2
̺

l
l+2

0 I
)

− ε

2l∑

j=0

ε2l−j

j + 1
c

j+1
l+2

1 (̺0 + I)
j+1
l+2 Cj+1

(T∗φ

2π

)
Pj(θ)

with ̺0 = gω̃(ω̃).
Hence P is periodic in θ, φ with the period 2π, and real-analytic in (θ, φ, I) ∈

TZ × T × R. Then there exist r > 0, such that P admits analytic extension in
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the complex neighborhood {(θ, φ) : |Im θ|∞ < r, |Im φ| < r} of TZ × T. Taking
s = ε1/2, then there exists C∗ > 0, depending on l, T∗, r, h, but not on ε, such
that for any |Im θ|∞ < r, |Im φ| < r, |I| < s, ω̃ ∈ Oh, we have |||P |||m,r,s,h < C∗ε.
Without losing the generality, we can assume |||P |||m,r,s,h ≤ ε, which means
s−1|||P |||m,r,s,h ≤ ε1/2.

8.3. The main results

Theorem 8.1. Every solution of (8.1) with a real analytic almost periodic func-
tion f(t) ∈ APr(ω), ω satisfying the nonresonance condition (2.4) is bounded.
Moreover (8.1) has infinitely many almost periodic solutions.

Proof : If the conditions of Theorem 8.1 hold and 0 < ε <
(

αε∗
Ψ0(µ)Ψ1(ρ)

)2
, then

s−1|||P |||m,r,s,h ≤ ε1/2 <
αε∗

Ψ0(µ)Ψ1(ρ)

for some 0 < µ ≤ m − w and 0 < ρ < r/2, where ε∗ = 2−22 is an absolute
positive constant, Ψ0(µ)Ψ1(ρ) is defined by (6.1), therefore the assumptions
of the Theorem 3.3 are met. Hence the existence of the invariant tori of the
Hamiltonian system (8.9) is guaranteed by Theorem 3.3, the Hamiltonian system
(8.9) has a real analytic invariant torus of maximal dimension and with a vector
field conjugate to (εlω, ω̃) for each frequency vector ω̃ ∈ Oα. These families
of invariant tori for all frequency vector ω̃ ∈ Oα can be visualized as invariant
cylinders in the space (t, x, ẋ). These cylinders are 2π-periodic in time and they
become the so-called invariant tori after the identification t ≡ t + 2π. Each
of these tori produces a family of almost periodic solution with the frequency
(εlω, ω̃), all solutions with initial datum lie in the interior of some invariant
cylinders, which implies that all solutions are bounded for all time. Then system
(8.1) has infinitely many almost periodic solutions as well as the boundedness
of solutions. �

Remark 8.2. It follows from the proof of Theorem 8.1 that if the conditions of
Theorem 8.1 hold, then system (8.1) has infinitely many almost periodic solu-
tions with the frequency {εlω, ω̃} for each frequency vector ω̃ ∈ Oα.
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