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The Cauchy two-matrix model, C-Toda lattice and CKP hierarchy

Chunxia Li∗, Shi-Hao Li†‡§

Abstract

This paper mainly talks about the Cauchy two-matrix model and its corresponding integrable hi-

erarchy with the help of orthogonal polynomials theory and Toda-type equations. Starting from the

symmetric reduction of Cauchy biorthogonal polynomials, we derive the Toda equation of CKP type (or

the C-Toda lattice) as well as its Lax pair by introducing time flows. Then, matrix integral solutions to

the C-Toda lattice are extended to give solutions to the CKP hierarchy which reveals the time-dependent

partition function of the Cauchy two-matrix model is nothing but the τ -function of the CKP hiearchy.

At last, the connection between the Cauchy two-matrix model and Bures ensemble is established from

the point of view of integrable systems.

Contents

1 Introduction 2

2 Symmetric reduction of Cauchy biorthogonal polynomials 3

2.1 Cauchy biorthogonal polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The symmetric reduction of CBOPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 The Toda equation of CKP type 5

3.1 The t-deformations of sCBOPs and the C-Toda lattice . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Lax pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Cauchy two-matrix model and CKP hierarchy 10

4.1 Matrix integral solutions to the C-Toda lattice . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Matrix integral solutions to the CKP hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 The Cauchy two-matrix model and integrable systems . . . . . . . . . . . . . . . . . . . . . . 12

5 From Cauchy to Bures—A version of integrable systems 13

6 Conclusion and Discussion 14

A Proofs of Propositions 3.1 and Proposition 3.3 by Pfaffians 15

Key words. Matrix Models, Cauchy biorthogonal polynomials, C-Toda lattice, CKP hierarchy, τ -function
theory

∗School of Mathematical Sciences, Capital Normal University, Beijing 100048, CHINA
†LSEC, Institute of Computational Mathematics and Scientific Engineering Computing, AMSS, Chinese Academy of Sci-

ences, P.O.Box 2719, Beijing 100190, CHINA
‡Department of Mathematical Sciences, University of the Chinese Academy of Sciences, Beijing, CHINA
§Corresponding author: Shi-Hao Li (lishihao@lsec.cc.ac.cn)

1

http://arxiv.org/abs/1801.00538v1


1 Introduction

The theory of matrix models have been an incredibly fertile ground for the intriguing connections between
theoretical physics, statistics, analysis and combinatorics in the past thirty years. It has been continuously
studied since matrix models provide possible models for non-perturbative string theory and two-dimensional
gravity [10,14]. One of the most attractive features is their connections with integrable theory which indicates
partition functions of certain matrix models are τ -functions of integrable systems. Moreover, the partition
function of the matrix model can be cancelled by the Borel Virasoro algebra, which provides us a way to
reformulate the matrix models in terms of more invariant terms and obtain the corresponding Virasoro
constraints. This approach can also be obtained in terms of vertex operator in [2, 3].

In 2009, Bertola et al. proposed a new matrix model called the Cauchy two-matrix model [7]. The
Cauchy two-matrix model is an analogue to the Itzykson-Zuber-Harish-Chandra (IZHC) model. Different
from the IZHC model whose metric between two matrices is

dµ(M1,M2) = dM1dM2e
−NTr(V1(M1)+V2(M2)−M1M2),

the Cacuhy two-matrix model is equipped with the metric

dµ(M1,M2) = dM1dM2
α(M1)β(M2)

det(M1 +M2)N

with M1, M2 being positive Hermitian matrices of size N . As is known, the partition function of IZHC model
is related to the KP hierarchy (or 2d-Toda hierchy) [3], so it is natural for us to ask what the corresponding
integrable hierarchy is related to the Cauchy two-matrix model.

For this purpose, we will use the method based on the orthogonal polynomials theory [3, 15]. This
method is based on the fact that the Toda-type equation, whose τ -function is the most general in an
integrable hierarchy, can be derived from orthogonal polynomial theory. According to Sato theory, if we
choose suitable higher-order time flows, then the τ -function of the Toda-type equation can be generalized
to the corresponding integrable hierarchy. Some famous examples include the 2d-Toda lattice and the KP
hierarchy [3], the 1d-Toda lattice and the KdV hierarchy [15], the Toeplitz lattice and the mKdV hierarchy [4]
and so on. Therefore, the connections between matrix models and integrable hierarchies can be transformed
into the problems of relationships between orthogonal polynomials and Toda-type equations.

As the average characteristic polynomials of the Cauchy two-matrix model, the Cauchy biorthogonal
polynomials (CBOPs for brevity) are taken into consideration [7]. This family of polynomials are firstly
proposed to solve the Hermite-Padé type approximation problems associated with the inverse spectral prob-
lem for the peakon solution of Degasperis-Procesi (DP) equation [6, 8]. Later on, the Christoffel-Darboux
identity is established and the determinant point process related to the Cauchy two-matrix model is found.
In contrast with the standard orthogonal polynomials, a charming character of CBOPs is the four-term re-
currence relation which can characterize the corresponding Riemann-Hilbert problem and provide a spectral
problem for integrable hierarchies. In [23], Miki and Tsujimoto derived two discrete integrable systems from
the discrete spectral transformations of CBOPs.

In this paper, we will give an evolutionary perspective and derive the corresponding semi-discrete lattice
by imposing a time deformation in measure or weight function. The equation, which is produced by CBOPs,
is called the Toda lattice of CKP type (or C-Toda lattice) in this paper because it enjoys the same τ -function
as that of CKP hierarchy. Furthermore, with a suitable choice of higher-order time flow, we find that the
partition function of the Cauchy two-matrix model indeed can act as the τ -function of the CKP hierarchy
and give the answer to the question which is mentioned above.

Besides, Bertola et al. [7] realized that there may exist some connections between the Cauchy two-matrix
model and Bures ensemble on the level of correlation functions. A direct proof of the relation between Cauchy
and Bures ensemble was given in [13] based on the relations between determinants and Pfaffians. Since as
was shown in [17], the time-dependent partition function of Bures ensemble can be viewed as the τ -function
of the BKP hierarchy and in this paper we have shown that the partition function of the Cauchy ensemble
can be viewed as the τ -function of the CKP hierarchy, then another natural question is whether there is
a correspondence between the BKP hierarchy and the CKP hierarchy that can associate Bures ensemble
with Cauchy ensemble? An affirmative answer is given in the Hirota’s book [16] for the correspondence
between Sawada-Kotera equation and Kaup-Kuperschmidt equation which are the first members of the
reduced BKP and CKP hierarchy, respectively. Therefore, we will use the reduction theory proposed by
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Jimbo and Miwa [18] in the matrix integral method and present the modified Kaup-Kuperschmidt equation
connecting Bures ensemble with Cauchy ensemble.

This paper is organized as follows. In Section 2, we recall some known facts of CBOPs briefly and present
the four-term recurrence relation for the symmetric reduction of CBOPs (sCBOPs) in details. In Section 3,
we establish the C-Toda lattice by introducing continuous time variables into sCBOPs and derive its Lax
pair. In Section 4, matrix integral solutions are presented to the C-Toda lattice and extended to give solutions
to the CKP hierarchy. In Section 5, the connection between the Cauchy ensemble and Bures ensemble is
clarified from the viewpoint of integrable systems. Section 6 is devoted to conclusions and discussions. In
Appendix, direct proofs of Proposition 3.1 and Proposition 3.3 are given by using Pfaffians.

2 Symmetric reduction of Cauchy biorthogonal polynomials

Cauchy biorthogonal polynomials were firstly proposed by Lundmark and Szmigielski by studying the multi-
peakon flows of Degasperis-Procesi equation [19]. Since then, CBOPs have drawn much attention not only in
integrable systems but also in random matrix theory and field theory [9]. In this section, we will give a brief
review of some known facts on CBOPs and then restrict ourselves to the symmetric reduction of CBOPs
and present the corresponding four-term recurrence relation with explicit determinant expressions.

2.1 Cauchy biorthogonal polynomials

Definition 2.1. Consider the bilinear inner product 〈·, ·〉 defined on R[x]× R[x] → R by

〈f(x), g(y)〉 =

∫∫

R
2
+

f(x)g(y)

x+ y
dρ1(x)dρ2(y), (2.1)

where dρ1(x), dρ2(y) are two Stieltjes measures on R+. Then the pair of the sequences of the monic poly-

nomials ({pm(x)}∞m=0, {qn(y)}
∞
n=0) are called CBOPs with respect to the bilinear form 〈·, ·〉 if they satisfy

〈pn(x), qm(y)〉 = hnδn,m. (2.2)

Denote the moments

Ii,j = 〈xi, yj〉 =

∫∫

R
2
+

xiyj

x+ y
dρ1(x)dρ2(y),

which are required to satisfy the following conditions:

1. The moment Ii,j is finite for all i, j ∈ Z≥0,

2. The determinant of the moment matrix is non-zero, i.e. det(〈xi, yj〉)ni,j≥0 6= 0 for all n ∈ Z≥0,

and the constraints of the moment sequences are equal to the well-posedness of the CBOPs.
Assume that pn(x) and qm(y) are monic polynomials in the form of

pn(x) = xn + an,1x
n−1 + · · ·+ an,0,

qm(y) = ym + bm,1y
m−1 + · · ·+ bm,0.

In this setting, CBOPs can be uniquely determined based on the orthogonal relation (2.2) [9, 27]. Denote
τk = det(Ii,j)i,j=0,··· ,k−1. Then pn(x), qn(y) can be expressed in terms of determinants as

pn(x) =
1

τn

∣

∣

∣

∣

∣

∣

∣

∣

∣

I0,0 I0,1 · · · I0,n
...

...
...

In−1,0 In−1,1 · · · In−1,n

1 x · · · xn

∣

∣

∣

∣

∣

∣

∣

∣

∣

, qn(y) =
1

τn

∣

∣

∣

∣

∣

∣

∣

∣

∣

I0,0 · · · I0,n−1 1
I1,0 · · · I1,n−1 y
...

...
...

In,0 · · · In,n−1 yn

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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and hn can be also written as a ratio of two determinants as

hn =
τn+1

τn
.

A remarkable feature of CBOPs is due to the rank-1 shift condition of the moments

Ii,j+1 + Ii,j+1 = αiβj , αi =

∫

R+

xidρ1(x), βj =

∫

R+

yjdρ2(y), (2.3)

from which a four-term recurrence relation and related Riemann-Hilbert problem can be characterized [9].

2.2 The symmetric reduction of CBOPs

The symmetric reduction we take here is to let dρ1(x) = dρ2(x) = α(x)dx in Definition (2.1) for CBOPs
which means the measures are equal so that the moments are symmetric, i.e.

Ii,j =

∫∫

R
2
+

xiyj

x+ y
α(x)α(y)dxdy

such that Ii,j = Ij,i and αi = βi in (2.3). Hereafter, we call them the symmetric reduction of Cauchy
biorthogonal polynomials and denote as sCBOPs for simplicity. For self-consistency, we shall re-prove that
sCBOPs satisfy four-term recurrence relations and give explicit expressions in terms of determinants for
coefficients in four-term recurrence relations.

Proposition 2.1. By assuming

an = −

∫

R+
pn+1(x)α(x)dx

∫

R+
pn(x)α(x)dx

,

sCBOPs satisfy the following four-term recurrence relations

x(pn+1(x) + anpn(x)) = pn+2(x) + bnpn+1(x) + cnpn(x) + dnpn−1(x), n ≥ 0 (2.4)

with p−1(x) = 0 and constants bn, cn, dn being uniquely determined based on the orthogonality condition.

Proof. Since {pn(x)}
∞
n=0 constitute of the basis of the polynomials space R[x], we assume that

x(pn+1(x) + anpn(x)) = pn+2(x) +
n+1
∑

i=0

γipi(x).

By noticing

an = −

∫

R+
pn+1(x)α(x)dx

∫

R+
pn(x)α(x)dx

,

we have
∫∫

R
2
+

(pn+1(x) + anpn(x))qm(y)α(x)α(y)dxdy =

∫

R+

(pn+1(x) + anpn(x))α(x)dx

∫

R+

qm(y)α(y)dy = 0.

Further we have

〈x(pn+1(x)+anpn(x)), qm(y)〉

=

∫∫

R
2
+

x(pn+1(x) + anpn(x))qm(y)

x+ y
α(x)α(y)dxdy

=

∫∫

R
2
+

(pn+1(x) + anpn(x))qm(y)α(x)α(y)dxdy − 〈pn+1(x) + anpn(x), yqm(y)〉

= −〈pn+1(x) + anpn(x), yqm(y)〉.
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Due to the orthogonality condition (2.2), it is obvious that

〈

pn+2(x) +

n+1
∑

i=0

γipi(x), qm(y)

〉

= −〈pn+1(x) + anpn(x), yqm(y)〉 = 0, for m < n− 1,

from which we can draw the conclusion that γm = 0 for m < n− 1. Therefore, we have four-term recurrence

relations

x(pn+1(x) + anpn(x)) = pn+2(x) + γn+1pn+1(x) + γnpn(x) + γn−1pn−1(x). (2.5)

To avoid confusion of notations, we use (2.4) instead of (2.5) as the four-term recurrence relation for sCBOPs.

Denote wi =
∫

R+
xiα(x)dx and

σn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

I0,0 · · · I0,n
...

...
...

In−1,0 · · · In−1,n

w0 · · · wn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, τ̃n =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

I0,0 · · · I0,n−1

...
...

...

In−2,0 · · · In−2,n−1

In,0 · · · In,n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.6)

By taking the orthogonality condition (2.2) into account, constants an, bn, cn and dn in (2.4) can be expressed

explicitly. From the determinant expression of pn(x), one can see that

∫

R+

pn(x)α(x)dx =
σn

τn
, an = −

∫

R+
pn+1(x)α(x)dx

∫

R+
pn(x)α(x)dx

= −
σn+1τn
σnτn+1

.

Taking inner products of (2.5) with qn−1(y), qn(y) and qn+1(y), respectively and comparing coefficients of

both sides, we can get bn, cn and dn expressed in terms of τn, τ̃n and σn as































bn = −
σn+1τn
σnτn+1

+
τ̃n+2

τn+2
−

τ̃n+1

τn+1
,

cn = −
τnτn+2

τ2n+1

−
σn+1τn
σnτn+1

[

τ̃n
τn

−
τ̃n+1

τn+1

]

,

dn =
σn+1τn−1

σnτn
.

(2.7)

The symmetric reduction of Stieltjes measures is firstly considered here which is helpful to find out the
connection between C-Toda lattice and CKP hierarchy. Coefficients an, bn, cn and dn in the four-term
recurrence relation (2.4) are expressed in terms of τn, τ̃n and σn. Later on, we will see that τ̃n and τn are
closely related after introducing time flows, which makes it possible to express an, bn, cn and dn only in
terms of τn and σn.

3 The Toda equation of CKP type

Recall that our main goal in this paper is to establish the connection between integrable hierarchy with
Cauchy matrix model, which is equal to establish the relationship between CBOPs and corresponding Toda-
type equation. Therefore, in this section, we will focus on how to derive the Toda equation of CKP type, or
the C-Toda lattice from sCBOPs. Moreover, a Lax pair of C-Toda lattice will be obtained by introducing
time deformation in measure or weight function of sCBOPs.
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3.1 The t-deformations of sCBOPs and the C-Toda lattice

To build the C-Toda lattice, we introduce the continuous time variable t into the weight function α(x) such
that α(x; t) has the form

α(x; t) = exp(V (x) + xt),

where the function V (x) is required to ensure the convergency of moments or equivalently, we introduce the
time deformation on the measure ρ(x; t) such that

dρ(x; t) = extdρ(x; 0).

Consequently, the bimoments Ii,j and single moments ωi are dependent of time t such that

Ii,j =

∫∫

R
2
+

xiyj

x+ y
α(x; t)α(y; t)dxdy, ωi =

∫

R+

xiα(x; t)dx,

d

dt
Ii,j = Ii+1,j + Ii,j+1 = ωiωj ,

d

dt
ωi = ωi+1.

In this setting, pn(x) and qm(y) become time-dependent functions as well as τn, τ̃n and σn. Particularly, τn
and τ̃n are closely related to each other.

Proposition 3.1. The functions τn and τ̃n given by (2.6) satisfy the following formula

d

dt
τn = 2τ̃n.

Remark. Here we would like to mention that we will give a proof of Proposition 3.1 by Pfaffian techniques

in Appendix. A different proof by determinant techniques can be referred to [11].

With the help of this formula, we can reformulate an, bn, cn and dn in terms of τn and σn as

an = −
σn+1τn
σnτn+1

, bn = −
σn+1τn
σnτn+1

+
1

2

d

dt
log

τn+2

τn+1
,

cn = −
τnτn+2

τ2n+1

+
1

2

σn+1τn
σnτn+1

d

dt
log

τn+1

τn
, dn =

σn+1τn−1

σnτn
.

As integrable systems are the compatibility condition of spectral problem and time deformation, therefore,
it is necessary for us to consider the time deformations of pn(x; t), for which we have the following proposition.

Proposition 3.2. For the sCBOPs, it follows

d

dt
pn+1(x; t) + an

d

dt
pn(x; t) = an

d

dt
(log hn)pn(x; t). (3.1)

Proof. Given the following equality

〈pn+1(x; t) + anpn(x; t), qm(y; t)〉 = hn+1δn+1,m + anhnδn,m,

differentiating it with respect to t, we have

〈

d

dt
(pn+1(x; t) + anpn(x; t)), qm(y; t)

〉

+

〈

pn+1(x; t) + anpn(x; t),
d

dt
qm(y; t)

〉

=
d

dt
hn+1δn+1,m +

d

dt
(anhn)δn,m, (3.2)

where we have used the fact

〈(x + y)(pn+1(x; t) + anpn(x; t)), qm(y; t)〉 = 0, ∀m ∈ Z≥0.
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It is obvious that the t-derivative of qm(y; t) is a polynomial of degree m− 1 in variable y. In the case of

0 ≤ m ≤ n− 1, both the right hand side of (3.2) and the second term in the left hand side of (3.2) are equal

to zero. Therefore, (3.2) becomes

〈

d

dt
(pn+1(x; t) + anpn(x; t)), qm(y; t)

〉

= 0, 0 ≤ m ≤ n− 1. (3.3)

Noticing the t-derivative of pn+1(x; t) + anpn(x; t) is of degree n, we can assume

d

dt
(pn+1(x; t) + anpn(x; t)) =

n
∑

i=0

Γipi(x; t), (3.4)

By substituting (3.4) into (3.3), we conclude that Γi = 0 for 0 ≤ i ≤ n− 1 which implies

d

dt
(pn+1(x; t) + anpn(x; t)) = Γnpn(x; t).

When m = n, we know that

〈

d

dt
(pn+1(x; t) + anpn(x; t)), qn(y; t)

〉

= Γnhn =
d

dt
(anhn).

Therefore, Γn = 1
hn

d
dt
(anhn) and

d

dt
(pn+1(x; t) + anpn(x; t)) =

1

hn

d

dt
(anhn)pn(x; t),

or equivalently,

d

dt
pn+1(x; t) + an

d

dt
pn(x; t) = an

d

dt
(log hn)pn(x; t). (3.5)

By comparing the coefficients of xn in (3.5), we find that

−
1

2

d2

dt2
log τn+1 = an

d

dt
(log hn) (3.6)

Moreover, if we take m = n+ 1 in (3.2) and it follows

−
1

2
anhn

d2

dt2
log τn+1 =

d

dt
hn+1. (3.7)

Equations (3.6) together with (3.7) can be rewritten equivalently as

{

Dtτn+1 · τn = σ2
n,

D2
t τn+1 · τn+1 = 4σn+1σn,

(3.8)

where Hirota’s bilinear operator D is defined by Dn
t f(t) · g(t) =

∂n

∂sn
f(t + s)g(t − s)|s=0. We call (3.8) the

C-Toda lattice and conclude the obtained results with the following propostion.

Remark. Here we would like to remark that this method for deriving integrable systems from orthogonal

polynomials can be found in many other cases and one can refer to [15] for more examples, which include

the derivation of Lotka-Volterra lattice (or so-called Kac-van Moerbeke lattice) and Toeplitz lattice and so

on.
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Proposition 3.3. The C-Toda lattice

Dtτn+1 · τn = σ2
n, D2

t τn+1 · τn+1 = 4σn+1σn

admits the following determinant solutions

τn =

∣

∣

∣

∣

∣

∣

∣

∣

I0,0 · · · I0,n−1

...
...

In−1,0 · · · In−1,n−1

∣

∣

∣

∣

∣

∣

∣

∣

, σn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

I0,0 · · · I0,n
...

...

In−1,0 · · · In−1,n

w0 · · · wn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.9)

with the time evolutions

d

dt
Ii,j = Ii+1,j + Ii,j+1 = ωiωj ,

d

dt
ωi = ωi+1. (3.10)

A direct proof of this proposition will be given in Appendix. Indeed, the function σn in the C-Toda lattice
(3.8) is indeed an auxiliary function which can be eliminated and equation (3.8) is actually characterized by
the function τn and is governed by the following single equation

16(Dtτn+2 · τn+1)(Dtτn+1 · τn) = (D2
t τn+1 · τn+1)

2.

Remark. It should be mentioned that the motivation of derivation C-Toda lattice doesn’t only lie in the

connection with sCBOPs, but in the study of the positive flow of Degasperis-Procesi peakon equation. A

detailed discussion about the relationship between C-Toda lattice and Degasperis-Procesi equation can be

referred to [11].

3.2 Lax pair

As an important integrable property, Lax pair of the C-Toda lattice (3.8) is necessary to be given from the
point of view of orthogonal polynomials. Usually, Lax pair can be always given by the four-term recurrence
relationship (2.4) and the time deformations of sCBOPs (3.1). By setting φn = pn(0; t), the Lax pair of the
C-Toda lattice can be written as







φn+2 + bnφn+1 + cnφn + dnφn−1 = 0,

d

dt
φn+1 + an

d

dt
φn = an

d

dt
log hnφn.

(3.11)

Unfortunately, this form of Lax pair is difficult for us to compute its compatibility condition. It pushes us
to find a suitable time evolution part.

Proposition 3.4. There exists a mixed spectral transformation of pn(x, t) as

d

dt
pn(x; t) = pn+1(x; t) − (x+ an−1 − bn−1)pn(x; t) +

dn
an

pn−1(x; t). (3.12)

Proof. Consider the equality

〈pn(x; t), qk(y; t)〉 = 0, k < n

and differentiate it with respect to t, we get
〈

d

dt
pn(x; t), qk(y; t)

〉

+ 〈xpn(x; t), qk(y; t)〉+ 〈pn(x; t), yqk(y; t)〉 = 0. (3.13)

Since 〈pn+1(x; t), yqk(y; t)〉 = 0 for k < n, we have

〈pn(x; t), yqk(y; t)〉 =
1

an
〈pn+1(x; t) + anpn(x; t), ypk(y; t)〉 = −

1

an
〈x(pn+1(x; t) + anpn(x; t)), qk(y; t)〉,

8



from which we have
〈

d

dt
pn(x; t) + xpn(x; t)−

x

an
(pn+1(x; t) + anpn(x; t)), qk(y; t)

〉

=

〈

d

dt
(pn(x; t))−

x

an
pn+1(x; t), qk(y; t)

〉

= 0.

By using the four-term recurrence relationship and orthogonality, we have

〈

d

dt
pn(x; t)−

x

an
pn+1(x; t), qk(y; t)

〉

=

〈

d

dt
pn(x; t) −

1

an
(xpn+1(x; t)− pn+2(x; t)), qk(y; t)

〉

=

〈

d

dt
pn(x; t) −

1

an
(bnpn+1(x; t) + cnpn(x; t) + dnpn−1(x; t)− anxpn(x; t)), qk(y; t)

〉

=

〈

d

dt
pn(x; t) + xpn(x; t) −

dn
an

pn−1(x; t), qk(y; t)

〉

=

〈

d

dt
pn(x; t) + xpn(x; t) − pn+1(x; t) + (an−1 − bn−1)pn(x; t)−

dn
an

pn−1(x; t), qk(y; t)

〉

= 0.

Assume f(x) is a polynomial in variable x and deg(f(x)) ≤ n − 1 and satisfies 〈f(x), qk(y)〉 = 0 for

arbitrary 0 ≤ k ≤ n− 1, then it is sufficient for us to have f(x) = 0. From the last step, it is not difficult to

see that the first expression in the inner product is of degree (n− 1) at most, thus we have

d

dt
pn(x; t) = pn+1(x; t) − (x+ an−1 − bn−1)pn(x; t) +

dn
an

pn−1(x; t). (3.14)

Remark. Indeed, the Lax pair of the form (3.11) can construct a matrix form of Lax form which is exhibited

in [11]. Only in the polynomials form (or so-called matrix form) can it be used to derive the compatibility

of C-Toda lattice. In the wave-function form, it is so hard for one to compute its compatibility condition.

Remark. In the proposition, we call the transformation (3.12) is a mixed spectral problem since it is not

only a spectral problem but also evolves the time deformation part. Moreover, many types of orthogonal

polynomials have this kind of mixed spectral problem. In the case of skew-orthogonal polynomials (SOPs),

the recurrence relationship of SOPs is firstly given as a mixed spectral problem [1].

By choosing x = 0 and φn = pn(0) in (2.4) and (3.14), we are able to derive the Lax pair for the C-Toda
lattice (3.8):







φn+2 + bnφn+1 + cnφn + dnφn−1 = 0,

φn,t = φn+1 + (bn−1 − an−1)φn +
dn
an

φn−1.
(3.15)

Denote the column vector Φn = (φn+1, φn, φn−1)
t. The Lax pair (3.15) of the C-Toda lattice can be rewritten

in the following matrix form

Φn+1 = AnΦn,
d

dt
Φn = BnΦn,

with An and Bn being 3× 3 matrices

An =





−bn −cn −dn
1 0 0
0 1 0



 , Bn =







−an
dn+1

an+1
− cn −dn

1 bn−1 − an−1
dn

an

− 1
an−1

1− bn−1

an−1
bn−2 − an−2 −

cn−1

an−1






.
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4 Cauchy two-matrix model and CKP hierarchy

Toda equation, which plays an important role in modern physics, exhibits the most general algebraic and
geometric structures in integrable theory. Several important facts have been revealed in [2, 15, 20]. In
these work, the authors demonstrated the partition function of the random matrix generated by Hermite
ensemble gives rise to the KP/Toda hierarchy together with their Virasoro algebra. These work reflects that
there exists a deep connection between random matrix theory/matrix model and integrable systems. In our
previous work, we have also found partition functions of Gaussian orthogonal or symplectic ensembles and
Bures ensemble can act as matrix integrals solutions to DKP hierarchy and BKP hierarchy, respectively. A
brief review can be found in [17] and in this part we will develop along this line further and give another
example of matrix models related to a hierarchy of integrable systems.

4.1 Matrix integral solutions to the C-Toda lattice

Before we proceed to show that the partition function of the Cauchy two-matrix model plays the role of the
τ -function to the CKP hierarchy, we will first find matrix integral solutions to the C-Toda lattice. Recall
that the bi-moments Ii,j and single moments wi are

Ii,j =

∫∫

R
2
+

xiyj

x+ y
dρ(x; t)dρ(y; t), ωi =

∫

R+

xidρ(x; t).

According to Heine’s formula [21, 22], we see that τn and σn in (3.9) can be expressed in terms of matrix
integrals [8], i.e.

τn = det(Ii,j)i,j=0,··· ,n−1 =
∑

σ∈S(n)

ǫ(σ)

∫

R
2n
+

n
∏

j=1

x
σj−1
j yj−1

j

1

xj + yj
dρ(xj ; t)dρ(yj ; t)

=
1

n!

∫

R
2n
+

∆n(X)∆n(Y )

n
∏

j=1

dρ(xj ; t)dρ(yj ; t)

xj + yj

=
1

(n!)2

∫

R
2n
+

∆n(X)∆n(Y ) det

(

1

xi + yj

)

1≤i,j≤n

n
∏

i,j=1

dρ(xi; t)dρ(yj ; t)

=

∫

T

(∆n(X)∆n(Y ))2
n
∏

i,j=1

1

xi + yj
dρ(xi; t)dρ(yj ; t), (4.1)

where ǫ(σ) denotes the sign of the permutation σ, ∆n(X) =
∏

i<j(xi − xj) and the integral region T ⊂
R

n
+ × R

n
+ is given by

T = {(x1, · · · , xn; y1, · · · , yn)|0 < x1 < · · · < xn, 0 < y1 < · · · < yn}.

In a similar manner, one can get

σn =

∫

T′

(∆n+1(X)∆n(Y ))2
n+1
∏

i=1

n
∏

j=1

1

xi + yj
dρ(xi; t)dρ(yj ; t),

and the integral region is a subset of Rn+1
+ × R

n
+ such that

T
′ = {(x1, · · · , xn+1; y1, · · · , yn)|0 < x1 < · · · < xn+1, 0 < y1 < · · · < yn}.

4.2 Matrix integral solutions to the CKP hierarchy

As is indicated in last subsection, the solution of the C-Toda lattice can be expressed as matrix integrals.
From the viewpoint of τ -function theory, it is known that the τ -function of Toda hierarchy is the most
general τ -function of each integral sytem in the corresponding hierarchy [5]. Therefore, it is natural for us
to think whether we can generalize the τ -function of the C-Toda lattice to the one of the CKP hierarchy.
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The answer is positive. We find that the C-Toda lattice admits a τ -function which is also the τ -function of
the CKP hierarchy and this is the reason that why we call equation (3.8) the Toda of CKP type.

Firstly, we would like to show that τn given before satisfies the CKP equation which is the first member
of the CKP hierarchy. Consider the CKP equation

(D4
t1
− 4Dt1Dt3)f · f + 6fg = 0,

(D6
t1
+ 144Dt1Dt5 − 80D2

t3
− 20D3

t1
Dt3)f · f − 90D2

t1
f · g = 0, (4.2)

where g is actually an auxiliary function which can be eliminated from the first equation. In other words, f
plays the role of τ -function in the CKP equation. In what follows, we will demonstrate the CKP equation
owns matrix integral solutions.

Proposition 4.1. The equation (4.2) admits the following solution

f = det(A) = det

(∫ t1

−∞

φiφjdt1

)

0≤i,j≤N−1

, g = 2







∣

∣

∣

∣

∣

0 ΦT

−Φt1t1t1 A

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

0 ΦT
t1

−Φt1t1 A

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

0 0 ΦT
t1

0 0 ΦT

−Φt1 −Φ A

∣

∣

∣

∣

∣

∣

∣






,

with ΦT = (φ0, φ1, · · · , φN−1) and each φi (i = 0, 1, · · · , N − 1) being an arbitrary function satisfying the

dispersion relations

∂φi

∂t3
=

∂3φi

∂t31
,

∂φi

∂t5
=

∂5φi

∂t51
.

This proposition has been proven by Wang in [25]. Let us take φi (i = 0, 1, · · · , N − 1) to be a single
moment with the following time-dependent weight function

φi =

∫

R+

xiα(x; t)dx, α(x; t) = exp(V (x) + xt) = exp(V (x) +
∑

k=1,3,5

tkx
k). (4.3)

Here V (x) is required to be indepedent of t and is chosen to ensure the convergency of the integral. Then
the elements ai,j in the matrix A can be rewritten as

ai,j =

∫ t1

−∞

φiφjdt1 =

∫ t1

−∞

(

∫∫

R
2
+

xiyjα(x; t)α(y; t)dxdy

)

dt =

∫∫

R
2
+

xiyj

x+ y
α(x; t)α(y; t)dxdy,

which is nothing but the bimoments of sCBOPs. Therefore, by using the Heine’s formula (4.1), the τ -function
f can be transformed into matrix integrals. In this sense, we have obtained matrix integral solutions to the
CKP equation.

From Sato theory, we know that τ -functions of a hierarchy of soliton equations share similar properties of
its members. Next, we would like to show how to construct matrix integral solutions to the CKP hierarchy
starting from the CKP equation.

Proposition 4.2. If we introduce the neutral bose fields ξj(j ∈ Z) such that

[ξi, ξj ] = (−1)jδi+j,−1,

where ξi (i < 0) are the annihilation operators and ξi (i ≥ 0) are the creation operators, then the Hamiltonian

H(t+) =
1

2

+∞
∑

i=1,odd

∑

j∈Z

(−1)j−1tiξjξ−i−j−1

will give the τ -function of CKP hierarchy by

τ(t) = 〈eH(t+)g〉−2

with arbitrary group-like elements g.
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This proposition is firstly given in [12], and a renewed version can be referred to [24]. From this propo-
sition, we know that if τ(t) is a τ -function of the CKP equation, then it is also the τ -function of the CKP
hierarchy after introducing higher-order time flows which are compatible with the CKP equation. A suitable
choice of higher order time flow is set by

α(x; t) =
+∞
∑

k=1,odd

tkx
k.

Therefore, we have the following proposition.

Proposition 4.3. The τ -function of the CKP hierarchy has the determinant solution

τN = det

(

∫∫

R
2
+

xiyj

x+ y
α(x; t)α(y; t)dxdy

)

0≤i,j≤N−1

.

Or equivalently, it has the matrix integral form

τN =

∫

T

(∆N (X)∆N (Y ))
2

N
∏

i,j=1

1

xi + yj
α(xi; t)α(yj ; t)dxidyj ,

where T is a subset of RN
+ × R

N
+ indicated before.

Proof. From Proposition 4.1, we know that

τN = det

(

∫∫

R
2
+

xiyj

x+ y
α(x; t)α(y; t)dxdy

)

0≤i,j≤N−1

.

is the solution of the CKP equation. According to Proposition 4.2, τN also gives the τ -function of the CKP

hierarchy. Moreover, the seed functions φi in (4.3) satisfy the dispersion relations

∂φi

∂tm
=

∂mφi

∂tm1
, m ∈ 2Z+ 1.

Thus the τ -function of the CKP hierarchy is indeed the same as the one of the CKP equation with higher-

order time flows.

4.3 The Cauchy two-matrix model and integrable systems

In [7], the authors proposed the concept of the Cauchy two-matrix model related to a special determinant
point process with the Cauchy kernel. The correlation function of this model is defined by

Rr,k(x1, · · · , xr; y1, · · · , yk) =

N !
∏r

j=1 α(xj)
∏k

j=1 β(yj)

(N − r)!(N − k!)ZN

∫ N
∏

l=r+1

α(xl)dxl

N
∏

j=k+1

β(yj)dyj∆N (X)∆N (Y ) det[K(xi, yj)]1≤i,j≤N ,

where K(x, y) is the Cauchy kernel in the form of K(x, y) = 1
x+y

and ZN is the normalization constant. Here

we would like to mention that the (r, k)-point correlation function allows one to compute the probability of
having r eigenvalues of the first matrix and k eigenvalues of the second matrix in measurable sets of the real
axis. Usually, we call the normalization constant ZN the partition function which has the form

ZN =
1

N !

∫

RN×RN

∆N (X)∆N (Y ) det[K(xi, yj)]1≤i,j≤Nα(X)β(Y )dXdY.

Indeed, by using the Cauchy determinant formula

det[K(xi, yj)]1≤i,j≤N =
∆N (X)∆N (Y )
∏N

i,j=1(xi + yj)
,
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we find that ZN is exactly the matrix integral representation of the τ -function of the CKP hierarchy if we
impose the symmetric reduction α(X) = β(X) on ZN and the time evolutions satisfy α(x; t) = extα(x; 0).

According to the underlying infinite dimensional Lie algebras, integrable systems are classified into the
KP hierarchy, the BKP hierarchy, the CKP hierarchy and the DKP hierarchy. So far, the corresponding
matrix models have all been found. The following table demonstrates this fact.

Table 1: Matrix models related to integrable hierarchies

Integrable Hierarchies Ensembles

KP hierarchy Hermite ensemble (2d-gravity matrix models)

BKP hierarchy Bures ensemble (2d-quantum gravity matrix models)

CKP hierarchy Cauchy ensemble (Cauchy two-matrix models)

DKP hierarchy Gaussian Orthogonal/Symplectic ensemle

5 From Cauchy to Bures—A version of integrable systems

In [7], the authors realized there may exist some connections between the Cauchy two-matrix model and
Bures ensemble on the level of correlation functions. Forrester and Kieburg gave the first explaination upon
this topic in [13]. They noticed that the correlation function of Cauchy two-matrix model can be expressed
in terms of determinants and that of Bures ensemble can be expressed in Pfaffians. Based on the relations
between determinants and Pfaffians, they found the connection between Cauchy two-matrix model and Bures
ensemble and thus giving the connection between determinant point process and Pfaffian point process. In
this section, we will give another explaination of the relationship between the Cauchy two-matrix model
and Bures ensemble from the view of point of integrable systems based on the reductive theory proposed by
Jimbo and Miwa [18].

As one of the members of the BKP hierarchy, the following equation

(D6
t1
− 5D3

t1
Dt3 − 5D2

t3
+ 9Dt1Dt5)τN · τN = 0 (5.1)

shares the same matrix integral solutions as the BKP hierarchy. As is known, matrix integral solutions to
the BKP hiearchy are given by [17]

τN =

∫

R
N
+

∏

1≤i<j≤N

(xi − xj)
2

xi + xj

N
∏

i=1

α(xi; t)dxi (5.2)

with α(x; t) has the same form in (4.3). Then by applying the reduction theory in integrable hierarchies, the
Sawada-Kotera equation

(D6
t1
+ 9Dt1Dt5)τN · τN = 0 (5.3)

is obtained as the 3-reduction of the BKP equation. Note that this equation is obtained from BKP equation
(5.1) by eliminating the terms with D3 directly which means to impose the following additional constraints
in terms of τ -function as

∂

∂t3j
τN (t) = 0, j = 1, 2, · · · .

This reduction confines the Lie algebra of the transformation group of Sawada-Kotera to a subalgebra of

go(∞) as an affine Lie algebra A
(2)
2 . Therefore,

τN =

∫

R
N
+

∏

1≤i<j≤N

(xi − xj)
2

xi + xj

N
∏

i=1

exp(V (xi) + xit1 + x5
i t5)dxi

is indeed the τ -function of the Sawada-Kotera equation.
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As is discussed in previous section, under certain assumptions, the partition function of the Cauchy
two-matrix model gives the τ -function of the CKP hierarchy. The τ -function to the CKP hierarchy reads as

τ ′N =

∫

R
N
+
×R

N
+

∏

1≤i,j≤N (xi − xj)
2
∏

1≤i,j≤N (yi − yj)
2

∏N
i,j=1(xi + yj)

N
∏

i=1

α(xi; t)α(yi; t)dxidyi (5.4)

with α(x; t) given in (4.3). Also by applying the reduction theory in integrable systems, the CKP equation
(4.2) can be reduced to Kaup-Kuperschmidt equation

{

D4
t1
τ ′N · τ ′N + 6τ ′Nσ = 0,

Dt1(D
5
t1
+ 144Dt5)τ

′
N · τ ′N − 90D2

t1
τ ′N · σ = 0.

(5.5)

by imposing the additional constraint on the τ -function as

∂

∂t3j
τ ′N (t) = 0, j = 1, 2, · · ·

Here we would like to remark that σ is an auxiliary function in (5.5) which can be eliminated. Therefore it
is not essential to consider σ. And the Lie algebra of the transformation group for the Kaup-Kuperschmidt

hierarchy is a subalgebra of sp(∞) which is isomorphism to the affine Lie algebra A
(2)
2 and

τ ′N =

∫

R
N
+
×R

N
+

∏

1≤i,j≤N (xi − xj)
2
∏

1≤i,j≤N (yi − yj)
2

∏N

i,j=1(xi + yj)

N
∏

i=1

α̃(xi; t)α̃(yi; t)dxidyi

with α̃(x; t) = exp(V (x) + xt1 + x5t5) being the τ -function of Kaup-Kuperschmidt equation.
It is pointed out that there exists an integrable system called the modified Kaup-Kuperschmidt equation

which links two slightly different Sawada-Kotera equation and Kaup-Kuperschmidt equation [16]. For the
Sawada-Kotera equation (5.3) and the Kaup-Kuperschmidt equation (5.5) considered here, they are linked
by the following modified Kaup-Kuperschmidt equation

9vt5 − 5(vt1v3t1 + v2t1t1 + v3t1 + 4vvt1vt1t1 + v2v3t1 − v4vt1) + v5t1 = 0. (5.6)

By taking the dependent variable transformation v = −3
(

log(τ ′N/τ2N )
)

t1
with τN and τ ′N being the τ -

functions of Sawada-Kotera equation and Kaup-Kuperschmidt equation respectively, equation (5.6) can be
transformed into











(

9D2,t5 +
1

6
D5

2,t1

)

τ ′N · τN = 0,

D2
2,t1τ

′
N · τN = 0,

(5.7)

where Dj
m,xf(x) · g(x) =

∂j

∂sj
f(x+ s)g(x−ms)|s=0. This reveals the fact that that time-dependent partition

functions of Bures ensemble and the Cauchy two-matrix model can be linked by the integrable system (5.7).

6 Conclusion and Discussion

In this paper, we mainly focus on the integrable hierarchy related to Cauchy two-matrix mode. A method
to find out this connection is based on the relationship between orthogonal polynomials theory and inte-
grable systems. To start with, we firstly consider a symmetric reduction of CBOPs. By introducing time
deformation in CBOPs, a Toda-type equation along with its Lax pair are obtained. Then we find out that
the time-dependent partition function of Cauchy two-matrix model (or Cauchy ensemble) is related to the
CKP hierarchy according to Sato’s τ -function theory. Therefore, we give a picture of the relations between
a certain integrable hierarchy and corresponding statistic model. By noting the fact that there exists an
integrable system connecting Sawada-Kotera equation with Kaup-Kuperschmidt equation whose τ -functions
are the partition functions of Bures ensemble and Cauchy ensemble respectively, we give an explanation of
the relation between Bures ensemble and Cauchy ensemble in the perspective of integrable system.
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However, there is still a lot of work remaining to study. For instance, we are now able to apply the
Borel-Virasoro algebra to the partition function of Cauchy ensemble to obtain the Virasoro constraints of
CKP hierarchy. Although there has been some work upon the Virasoro constraintes of CKP hierarchy
in literature [26], it is worth studying matrix models and corresponding integrable hierarchies from the
viewpoint of vertex operators. Furthermore, although we have found out all the main 2+1 dimensional
integrable hierarchies and their corresponding matrix models, we wonder whether there exist some other
types of matrix models connected with 1+1 dimensional integrable hierarchies such as the relation between
Kontsevich integral and the KdV equation and what the algebraic and geometric structures are underlying
these matrix models?
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A Proofs of Propositions 3.1 and Proposition 3.3 by Pfaffians

In this appendix, we would like to give a brief review on some known facts of Pfaffians and then prove
Proposition 3.1 and Proposition 3.3 by pfaffian techniques. It turns out that the C-Toda lattice is nothing
but pfaffian identities with the τ -functions given by determinants.

The term Pfaffian was introduced by Arthur Cayley in 1852, who named it after Johann Friedrich Pfaff.
Pfaffian is generally used in theoretical physics nowadays. Let us first have a look at the definition of a
pfaffian. Let A = (ai,j)1≤i,j≤2N be a 2N × 2N skew-symmetric matrix. The pfaffian of A, that is, Pf(A) is
defined as

Pf(A) = Pf(ai,j)1≤i,j≤2N = Pf











0 a1,2 · · · a1,2N
−a1,2 0 · · · a2,2N

...
...

. . .
...

−a1,2N −a2,2N · · · 0











=
∑

′sgn

(

1 2 · · · 2N
j1 j2 · · · j2N

)

aj1j2aj3j4 · · · aj2N−1j2N ,

where
∑′

means the sum over all possible combinations of pairs selected from {1, 2, · · · , 2N} satisfying
j1 < j2, · · · , j2N−1 < j2N and j1 < j3 < · · · < j2N−1. As an equivalent definition, an n-th order pfaffian
pf(1, 2, . . . , 2N) can be expanded as

pf(1, 2, . . . , 2N) =
2N
∑

j=2

(−1)jpf(1, j)pf(2, 3, . . . , ĵ, . . . , 2N)

where ĵ means that the index j is omitted. By this formula, the pfaffian pf(1, 2, . . . , 2N) may be recursively
defined when pfaffian entries pf(i, j) are given. It is obvious that pf(1, 2, . . . , 2N) = Pf(A) when (i, j) = ai,j .
In this sense, the above-mentioned two definitions can be unified.

In the remaining part, we would like to adopt the notation below to denote a pfaffian

pf(i1, i2, · · · , i2N ) = Pf











0 ai1,i2 · · · ai1,i2N
−ai1,i2 0 · · · ai2,i2N

...
...

. . .
...

−ai1,i2N −ai2,i2N · · · 0











,

where the pfaffian elements pf(ij, ik) = aij ,ik .
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It is noted that any n-th order determinant can be expressed as an n-th order pfaffian. Therefore, if we
define pfaffian entries by

pf(i, j) = pf(i∗, j∗) = 0, pf(i, j∗) = Ii,j ,

then τn and τ̃n given before can be also expressed by means of Pfaffians as

τn = pf(0, 1, . . . , n− 1, n− 1∗, . . . , 1∗, 0∗),

τ̃n = pf(0, 1, . . . , n− 2, n, n− 1∗, . . . , 1∗, 0∗).

Proposition A.1. For the pfaffian τn = pf(0, 1, · · · , n− 1, n− 1∗, · · · , 1∗, 0∗) defined above, if its pfaffian

entries satisfy the relation

d

dt
pf(i, j∗) = pf(i, j + 1∗) + pf(i+ 1, j∗),

then we have

d

dt
τn =

d

dt
pf(0, · · · , n− 1, n− 1∗, · · · , 0∗)

= 2pf(0, · · · , n− 2, n, n− 1∗, · · · , 0∗)

= 2τ̃n. (A.1)

Proof. Let us first prove the following equality

d

dt
pf(i1, · · · , iN , j∗1 , · · · , j

∗
N ) =

N
∑

k=1

pf(i1, · · · , ik + 1, · · · , iN , j∗1 , · · · , j
∗
N )

+
N
∑

k=1

pf(i1, · · · , iN , j∗1 , · · · , jk + 1∗, · · · , j∗N ) (A.2)

with the pfaffian entries defined by

pf(ik, il) = pf(j∗k , j
∗
l ) = 0,

d

dt
pf(ik, j

∗
l ) = pf(ik, jl + 1∗) + pf(ik + 1, j∗j ).

In what follows, we are going to prove (A.2) by induction. It is obvious that (A.2) is true for N = 1.

Assume that (A.2) holds for N . For N + 1, we have

d

dt
pf(i1, · · · , iN , iN+1, j

∗
1 , · · · , j

∗
N , j∗N+1)

=
d

dt
[

N+1
∑

l=1

(−1)N+lpf(iN+1, j
∗
l )pf(i1, · · · , iN , j∗1 , · · · , ĵ

∗
l , · · · , j

∗
N+1)]

=

N+1
∑

l=1

(−1)N+l [pf(iN+1 + 1, j∗l ) + pf(iN+1, jl + 1∗)] pf(i1, · · · , iN , j∗1 , · · · , ĵ
∗
l , · · · , j

∗
N+1)

+
N+1
∑

l=1

(−1)N+lpf(iN+1, j
∗
l )[

N
∑

k=1

pf(i1, · · · , ik + 1, · · · , iN , j∗1 , · · · , ĵ
∗
l , · · · , j

∗
N+1)

+
N+1
∑

k=1,k 6=l

pf(i1, · · · , iN , j1, · · · , jk + 1∗, · · · , ĵ∗l , · · · , j
∗
N+1)]

=

N+1
∑

k=1

pf(i1, · · · , ik + 1, · · · , iN+1, j
∗
1 , · · · , j

∗
N+1) +

N+1
∑

k=1

pf(i1, · · · , iN+1, j
∗
1 , · · · , jk + 1∗, · · · , j∗N+1),

So far, we have completed the proof of (A.2). Notice that pf(0, · · · , n−2, n, n−1∗, · · · , 0∗) = pf(0, · · · , n−

1, n∗, n − 2∗, · · · , 0∗) due to the symmetry Ii,j = Ij,i. Simply by taking {i1, · · · , iN} as {0, · · · , n− 1} and

{j∗1 , · · · , j
∗
N} as {n− 1∗, · · · , 0∗} in (A.2), we have (A.1).
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Although Pfaffians may be obtained from antisymmetric determinants, their properties are more varied
than those of determinants. Determinantal identities such as Plücker relations and Jacobi identities, are
extended and unified as pfaffian identities which are very useful in integrable systems. Here we list two most
useful identities:

pf(a1, a2, a3, a4, 1, . . . , 2n)pf(1, 2, . . . , 2n) =
4
∑

j=2

(−1)jpf(a1, aj , 1, . . . , 2n)pf(a2, âj , a4, 1, . . . , 2n),

pf(a1, a2, a3, 1, . . . , 2n− 1)pf(1, 2, . . . , 2n) =

3
∑

j=1

(−1)j−1pf(aj , 1, . . . , 2n− 1)pf(a1, âj , a3, 1, . . . , 2n).

As an application, we will demonstrate how to use pfaffian techniques to prove that τn and σn are solutions
to the C-Toda lattice (3.8).

Proposition A.2. The C-Toda lattice (3.8) has solutions

τn =

∣

∣

∣

∣

∣

∣

∣

∣

I0,0 · · · I0,n−1

...
...

In−1,0 · · · In−1,n−1

∣

∣

∣

∣

∣

∣

∣

∣

= pf(0, · · · , n− 1, n− 1∗, · · · , 0∗),

σn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

I0,0 · · · I0,n
...

...

In−1,0 · · · In−1,n

w0 · · · wn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)npf(d0, 0, · · · , n− 1, n∗, · · · , 0∗)

with pfaffian entries defined by

pf(d0, i) = pf(d∗0, i
∗) = pf(d0, d

∗
0) = 0, pf(d0, i

∗) = pf(d∗0, i) = wi,

d

dt
pf(i, j∗) = pf(i+ 1, j∗) + pf(i, j + 1∗) = pf(d0, d

∗
0, i, j

∗),
d

dt
pf(d0, i

∗) = pf(d0, i+ 1∗)

which correspond to the conditions d
dt
Ii,j = Ii+1,j + Ii.j+1 = ωiωj,

d
dt
ωi = ωi+1.

Proof. By using derivative formulae for Pfaffians repeatedly, it is easy to derive that

τn,t = pf(d0, d
∗
0, 0, · · · , n− 1, n− 1∗, · · · , 0∗)

= 2pf(0, · · · , n− 2, n, n− 1∗, · · · , 0∗),

τn,tt = 2pf(d0, d
∗
0, 0, · · · , n− 2, n, n− 1∗, · · · , 0∗).

Substituting the above results into the C-Toda lattice (3.8), we obtain the following two expressions

pf(d0, d
∗
0, 0, · · · , n, n

∗, · · · , 0∗)pf(0, · · · , n− 1, n− 1∗, · · · , 0∗)

−pf(0, · · · , n, n∗, · · · , 0∗)pf(d0, d
∗
0, 0, · · · , n− 1, n− 1∗, · · · , 0∗)

=pf(d0, 0, · · · , n− 1, n∗, · · · , 0∗)pf(d∗0, 0, n, n− 1∗, · · · , 0∗),

pf(d0, d
∗
0, 0, · · · , n− 1, n∗, n− 2∗, · · · , 0∗)pf(0, · · · , n− 1, n− 1∗, · · · , 0∗)

−pf(d0, d
∗
0, 0, · · · , n− 1, n− 1∗, · · · , 0∗)pf(0, · · · , n− 1, n∗, n− 2∗, · · · , 0∗)

=pf(d0, 0, · · · , n− 1, n∗, · · · , 0∗)pf(d∗0, 0, · · · , n− 1, n− 2∗, · · · , 0∗),

which are indeed two special cases of pfaffian identities mentioned above.
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