Skip to main content

Advertisement

Log in

Global Regularity for a 2D Tropical Climate Model with Fractional Dissipation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

This paper examines the global regularity problem for a 2D tropical climate model with fractional dissipation. The inviscid version of this model was derived by Frierson, Majda and Pauluis for large-scale dynamics of precipitation fronts in the tropical atmosphere. The model considered here has some very special features. This nonlinear system involves interactions between a divergence-free vector field and a non-divergence-free vector field. In addition, the fractional dissipation not only models long-range interactions but also allows simultaneous investigations of a family of system. Our study leads to the global regularity of solutions when the indices of the fractional Laplacian are in two very broad ranges. In order to establish the global-in-time bounds, we introduce an efficient way to control the gradient of the non-divergence-free vector field and make sharp estimates by controlling the regularity of related quantities simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abe, S., Thurner, S.: Anomalous diffusion in view of Einsteins 1905 theory of Brownian motion. Physica A 356(2005), 403–407 (1905)

    Google Scholar 

  • Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, vol. 343. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  • Brezis, H., Gallouet, T.: Nonlinear Schrodinger evolution equations. Nonlinear Anal. 4, 677–681 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Cao, C., Li, J., Titi, E.: Global well-posedness of the 3D primitive equations with horizontal viscosity and vertical diffusivity. arXiv:1703.02512v1 [math.AP] (2017)

  • Chamorro, D., Lemarié-Rieusset, P.G.: Quasi-geostrophic equation, nonlinear Bernstein inequalities and \(\alpha \)-stable processes. Rev. Mat. Iberoam. 28, 1109–1122 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Córdoba, A., Córdoba, D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249(3), 511–528 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Dong, B., Wang, W., Wu, J., Zhang, H.: Global regularity results for the climate model with fractional dissipation. Discrete Contin. Dyn. Syst. Ser. B (2018). https://doi.org/10.3934/dcdsb.2018102

    MATH  Google Scholar 

  • Frierson, D., Majda, A., Pauluis, O.: Large scale dynamics of precipitation fronts in the tropical atmosphere, a novel relaxation limit. Commun. Math. Sci. 2, 591–626 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Gill, A.: Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 106, 447–462 (1980)

    Article  Google Scholar 

  • Hadadifard, F., Stefanov, A.: On the global regularity of the 2D critical Boussinesq system with \(\alpha >2/3\). Commun. Math. Sci. 15, 1325–1351 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Hajaiej, H., Molinet, L., Ozawa, T., Wang, B.: Sufficient and necessary conditions for the fractional Gagliardo–Nirenberg inequalities and applications to Navier–Stokes and generalized Boson equations. In: Ozawa, T., Sugimoto, M. (eds.) RIMS Kkyroku Bessatsu B26: Harmonic Analysis and Nonlinear Partial Differential Equations, vol. 5, pp. 159–175 (2011)

  • Jara, M.: Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps. Commun. Pure Appl. Math. 62, 198–214 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Jiu, Q., Miao, C., Wu, J., Zhang, Z.: The 2D incompressible Boussinesq equations with general critical dissipation. SIAM J. Math. Anal. 46, 3426–3454 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Kenig, C., Ponce, G., Vega, L.: Well-posedness of the initial value problem for the Korteweg–de-Vries equation. J. Am. Math. Soc. 4, 323–347 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Kenig, C., Ponce, G., Vega, L.: Well-posedness and scattering results for the generalized Korteweg–de-Vries equation via the contraction principle. Commun. Pure Appl. Math. 46, 527–620 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Khouider, B., Majda, A.: A non-oscillatory well balanced scheme for an idealized tropical climate model: I. Algorithm and validation. Theor. Comput. Fluid Dyn. 19, 331–354 (2005)

    Article  MATH  Google Scholar 

  • Kozono, H., Ogawa, T., Taniuchi, Y.: The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z. 242, 251–278 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Lemarié-Rieusset, P.G.: Recent Developments in the Navier–Stokes Problem. Chapman Hall/CRC Research Notes in Mathematics, vol. 431. Chapman Hall/CRC, Boca Raton (2002)

    Book  MATH  Google Scholar 

  • Li, D.: On Kato–Ponce and fractional Leibniz. Revista Matemética Iberoamericana (in press). arXiv:1609.01780

  • Li, J., Titi, E.S.: Global well-posedness of strong solutions to a tropical climate model. Discrete Contin. Dyn. Syst. 36, 4495–4516 (2016a)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, J., Titi, E.S.: A tropical atmosphere model with moisture: global well-posedness and relaxation limit. Nonlinearity 29, 2674–2714 (2016b)

    Article  MathSciNet  MATH  Google Scholar 

  • Majda, A.: Introduction to PDEs and Waves for the Atmosphere and Ocean (Courant Lecture Notes in Mathematics), vol. 9. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  • Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  • Majda, A., Biello, J.: The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves. J. Atmos. Sci. 60, 1809–1821 (2003)

    Article  MathSciNet  Google Scholar 

  • Matsuno, T.: Quasi-geostrophic motions in the equatorial area. J. Meteorol. Soc. Jpn. 44, 25–42 (1966)

    Article  Google Scholar 

  • Mellet, A., Mischler, S., Mouhot, C.: Fractional diffusion limit for collisional kinetic equations. Arch. Ration. Mech. Anal. 199, 493–525 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Stechmann, S., Majda, A.: The structure of precipitation fronts for finite relaxation time. Theor. Comput. Fluid Dyn. 20, 377–404 (2006)

    Article  Google Scholar 

  • Ye, Z.: Global regularity for a class of 2D tropical climate model. J. Math. Anal. Appl. 446, 307–321 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Ye, Z.: Some new regularity criteria for the 2D Euler–Boussinesq equations via the temperature. Acta Appl. Math. 157, 141–169 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Ye, Z., Xu, X.: Global well-posedness of the 2D Boussinesq equations with fractional Laplacian dissipation. J. Differ. Equ. 260, 6716–6744 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees and the associated editor for their constructive comments and helpful suggestions that have contributed to the final preparation of the paper. B. Dong was partially supported by the NNSFC (No. 11871346), NSF of Guangdong Province (No. 2018A030313024) and Research Fund of Shenzhen City and Research Fund of Shenzhen University (No. 2017056). J. Wu was supported by NSF grant DMS 1614246 and the AT&T Foundation at Oklahoma State University and by NNSFC Grant No. 11471103 (a grant awarded to B. Yuan). Z. Ye was supported by the National Natural Science Foundation of China (No. 11701232) and the Natural Science Foundation of Jiangsu Province (No. BK20170224).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuan Ye.

Additional information

Communicated by Paul Newton.

Appendix A: Local Well-Posedness Theory on (1.1)

Appendix A: Local Well-Posedness Theory on (1.1)

For the sake of completeness, this Appendix presents the local existence and uniqueness result for (1.1) with initial data \((u_{0}, v_{0}, \theta _{0}) \in H^{s}({\mathbb {R}}^{2})\) with \(s>2\). More precisely, in this Appendix, we prove the following local well-posedness result.

Proposition A.1

Let \((u_{0}, v_{0}, \theta _{0}) \in H^{s}({\mathbb {R}}^{2})\) with \(s>2\) and \(\nabla \cdot u_{0}=0\). Then, there exists a positive time T depending on \(\Vert u_{0}\Vert _{H^{s}}\), \(\Vert v_{0}\Vert _{H^{s}}\) and \(\Vert \theta _{0}\Vert _{H^{s}}\) such that (1.1) admits a unique solution \((u, v, \theta )\in C([0, T]; H^{s}({\mathbb {R}}^{2}))\).

We remark that we only consider the case \(s>2\). Actually, \(s>2\) can be weakened to \(s>f(\alpha ,\,\gamma )\) with the function \(f(\alpha ,\,\gamma )\le 2\). However, to make the idea clear, we assume this condition throughout this Appendix. The proof of Proposition A.1 can be performed by the method similar to Chapter 3 in Majda and Bertozzi (2002). To prove Proposition A.1, the main step is to approximate (1.1) in order to easily produce a family of global smooth solutions. In order to do this, we may, for instance, make use of the Friedrichs method. Now we define the spectral cutoff as follows

$$\begin{aligned} \widehat{{\mathcal {J}}_{N}f}(\xi )=\chi _{B(0,N)}(\xi ){\widehat{f}}(\xi ), \end{aligned}$$

where \(N>0, \,B(0,N)=\{\xi \in {\mathbb {R}}^{2}| \, |\xi |\le N\}\) and \(\chi _{B(0,N)}\) is the characteristic function on B(0, N). Also we define

$$\begin{aligned} L^{2}_{N}\triangleq \{f\in L^{2}({\mathbb {R}}^{2})|\, \text{ supp } \,{\widehat{f}}\subset B(0,N)\}. \end{aligned}$$

Proof of Proposition A.1

The first step is to consider the following approximate system of (1.1),

$$\begin{aligned} \left\{ \begin{aligned}&\partial _{t}u^{N}+{\mathcal {P}}\mathcal {J}_{N}(({\mathcal {J}}_{N}u^{N}\cdot \nabla ) {\mathcal {J}}_{N}u^{N})+ \nu \Lambda ^{2\alpha }{\mathcal {J}}_{N}u^{N} +{\mathcal {P}}{\mathcal {J}}_{N}\nabla \cdot ( {\mathcal {J}}_{N}v^{N}\otimes {\mathcal {J}}_{N}v^{N})=0, \\&\partial _{t}v^{N}+{\mathcal {J}}_{N} ({\mathcal {J}}_{N}u^{N} \cdot \nabla ){\mathcal {J}}_{N}v^{N}- \mu \Delta {\mathcal {J}}_{N}v^{N}+\nabla {\mathcal {J}}_{N}\theta ^{N}+ {\mathcal {J}}_{N} ({\mathcal {J}}_{N}v^{N}\cdot \nabla ){\mathcal {J}}_{N}u^{N}=0,\\&\partial _{t}\theta ^{N}+{\mathcal {J}}_{N} ({\mathcal {J}}_{N}u^{N} \cdot \nabla ) {\mathcal {J}}_{N}\theta ^{N}+ \eta \Lambda ^{2\gamma }{\mathcal {J}}_{N}\theta ^{N}+\nabla \cdot {\mathcal {J}}_{N}v^{N}=0,\\&\nabla \cdot u^{N}=0,\\&u^{N}(x, 0)={\mathcal {J}}_{N}u_{0}(x), \quad v^{N}(x,0)={\mathcal {J}}_{N}v_{0}(x), \quad \theta ^{N}(x,0)={\mathcal {J}}_{N}\theta _{0}(x), \end{aligned}\right. \end{aligned}$$
(A.1)

where \({\mathcal {P}}\) denotes the standard projection onto divergence-free vector fields. Taking advantage of the Cauchy–Lipschitz theorem (Picard’s Theorem, see Majda and Bertozzi 2002), we can find that for any fixed N, there exists a unique local solution \((u^{N},v^{N},\theta ^{N})\) on \([0,\,T_{N})\) in the functional setting \(L^{2}_{N}\) with \(T_{N}=T(N, u_{0}, v_{0},\theta _{0})\). Due to \({\mathcal {J}}_{N}^{2}={\mathcal {J}}_{N},\,\mathcal {P}^{2}={\mathcal {P}}\) and \({\mathcal {P}}{\mathcal {J}}_{N}=\mathcal {J}_{N}{\mathcal {P}}\), we find that \(({\mathcal {J}}_{N}u^{N},\,\mathcal {J}_{N}v^{N},\,\mathcal {J}_{N}\theta ^{N})\) is also a solution to (A.1) with the same initial datum. Thanks to the uniqueness, we thus find

$$\begin{aligned} {\mathcal {J}}_{N}u^{N}=u^{N},\ \ \ {\mathcal {J}}_{N}v^{N}=v^{N}, \ \ \ {\mathcal {J}}_{N}\theta ^{N}=\theta ^{N}. \end{aligned}$$

Consequently, approximate system (A.1) reduces to

$$\begin{aligned} \left\{ \begin{aligned}&\partial _{t}u^{N}+{\mathcal {P}}\mathcal {J}_{N}((u^{N}\cdot \nabla )u^{N})+ \nu \Lambda ^{2\alpha }u^{N} +{\mathcal {P}}{\mathcal {J}}_{N}\nabla \cdot (v^{N}\otimes v^{N})=0, \\&\partial _{t}v^{N}+{\mathcal {J}}_{N} (u^{N} \cdot \nabla )v^{N}- \mu \Delta v^{N}+\nabla \theta ^{N}+ {\mathcal {J}}_{N} ( v^{N}\cdot \nabla ) u^{N}=0,\\&\partial _{t}\theta ^{N}+{\mathcal {J}}_{N} ( u^{N} \cdot \nabla ) \theta ^{N}+ \eta \Lambda ^{2\gamma } \theta ^{N}+\nabla \cdot v^{N}=0,\\&\nabla \cdot u^{N}=0,\\&u^{N}(x, 0)={\mathcal {J}}_{N}u_{0}(x), \quad v^{N}(x,0)={\mathcal {J}}_{N}v_{0}(x), \quad \theta ^{N}(x,0)={\mathcal {J}}_{N}\theta _{0}(x). \end{aligned}\right. \end{aligned}$$
(A.2)

A basic energy estimate implies \((u^{N},v^{N},\theta ^{N})\) of (A.2) satisfies

$$\begin{aligned}&\Vert u^{N}(t)\Vert _{L^{2}}^{2}+\Vert v^{N}(t)\Vert _{L^{2}}^{2}+\Vert \theta ^{N}(t)\Vert _{L^{2}}^{2}+ \int _{0}^{t}{ (\Vert \Lambda ^{\alpha } u^{N}\Vert _{L^{2}}^{2}+\Vert \nabla v^{N}\Vert _{L^{2}}^{2}+\Vert \Lambda ^{\gamma }\theta ^{N}\Vert _{L^{2}}^{2})(\tau )\,\hbox {d}\tau } \\&\quad \le \Vert u_{0}\Vert _{L^{2}}^{2}+\Vert v_{0}\Vert _{L^{2}}^{2}+\Vert \theta _{0}\Vert _{L^{2}}^{2}. \end{aligned}$$

Therefore, the local solution can be extended into a global one, by the standard Picard extension theorem (see, e.g., Majda and Bertozzi 2002). Moreover, by direct \(H^s\)-estimates, we have

$$\begin{aligned}&\frac{\hbox {d}}{\hbox {d}t}\left( \Vert u^{N}(t)\Vert _{H^{s}}^{2} +\Vert v^{N}(t)\Vert _{H^{s}}^{2}+\Vert \theta ^{N}(t)\Vert _{H^{s}}^{2} \right) +\Vert \Lambda ^{\alpha }u^{N}\Vert _{H^{s}}^{2} +\Vert \nabla v^{N} \Vert _{H^{s}}^{2}+\Vert \Lambda ^{\gamma }\theta ^{N}\Vert _{H^{s}}^{2}\nonumber \\&\quad \le C(\Vert \nabla u^{N}\Vert _{L^{\infty }}+\Vert \nabla v^{N}\Vert _{L^{\infty }}+\Vert \nabla \theta ^{N}\Vert _{L^{\infty }}+\Vert v^{N}\Vert _{L^{\infty }}^{2}) (\Vert u^{N}\Vert _{H^{s}}^{2}+\Vert v^{N}\Vert _{H^{s}}^{2}+\Vert \theta ^{N}\Vert _{H^{s}}^{2})\nonumber \\&\quad \le C(\Vert u^{N}\Vert _{H^{s}}+\Vert v^{N}\Vert _{H^{s}}+\Vert \theta ^{N}\Vert _{H^{s}}+\Vert v^{N}\Vert _{H^{s}}^{2}) (\Vert u^{N}\Vert _{H^{s}}^{2}+\Vert v^{N}\Vert _{H^{s}}^{2}+\Vert \theta ^{N}\Vert _{H^{s}}^{2}) \nonumber \\&\quad \le C (\Vert u^{N}\Vert _{H^{s}}^{2}+\Vert v^{N}\Vert _{H^{s}}^{2}+\Vert \theta ^{N}\Vert _{H^{s}}^{2})^{2}, \end{aligned}$$
(A.3)

where here and in what follows we use the fact that, in 2D case

$$\begin{aligned} \Vert \nabla f\Vert _{L^{\infty }}\le C\Vert f\Vert _{H^{s}},\quad s>2. \end{aligned}$$

Notice that in (A.3) we assume that \(\Vert u^{N}\Vert _{H^{s}}+\Vert v^{N}\Vert _{H^{s}}+\Vert \theta ^{N}\Vert _{H^{s}}\ge 1\), otherwise we replace \(\Vert u^{N}\Vert _{H^{s}}+\Vert v^{N}\Vert _{H^{s}}+\Vert \theta ^{N}\Vert _{H^{s}}\) by \(1+\Vert u^{N}\Vert _{H^{s}}+\Vert v^{N}\Vert _{H^{s}}+\Vert \theta ^{N}\Vert _{H^{s}}\). For the convenience of notation, we denote

$$\begin{aligned} X(t)\triangleq {\Vert u^{N}(t)\Vert _{H^{s}}^{2}+\Vert v^{N}(t)\Vert _{H^{s}}^{2}+\Vert \theta ^{N}(t)\Vert _{H^{s}}^{2}}. \end{aligned}$$

Consequently, (A.3) becomes

$$\begin{aligned} \frac{\hbox {d}}{\hbox {d}t}X(t) \le {\widetilde{C}}X(t)^{2}, \end{aligned}$$

where \({\widetilde{C}}>0\) is an absolute constant. Standard calculations show that for all N

$$\begin{aligned} \sup _{0\le t\le T}( {\Vert u^{N}(t)\Vert _{H^{s}}^{2}+\Vert v^{N}(t)\Vert _{H^{s}}^{2}+\Vert \theta ^{N}(t)\Vert _{H^{s}}^{2}}) \le \frac{ {\Vert u_{0}\Vert _{H^{s}}^{2}+\Vert v_{0}\Vert _{H^{s}}^{2}+\Vert \theta _{0}\Vert _{H^{s}}^{2}}}{1-{\widetilde{C}}T({\Vert u_{0}\Vert _{H^{s}}^{2} +\Vert v_{0}\Vert _{H^{s}}^{2}+\Vert \theta _{0}\Vert _{H^{s}}^{2}})}. \end{aligned}$$

Therefore, the family \((u^{N},v^{N},\theta ^{N})\) is uniformly bounded in \(C([0, T]; H^{s})\) with \(s>2\), provided that

$$\begin{aligned} T<\frac{1}{{\widetilde{C}}(\Vert u_{0}\Vert _{{H}^{s}}^{2}+\Vert b_{0}\Vert _{H^{s}}^{2}+ \Vert \theta _{0}\Vert _{H^{s}}^{2})}. \end{aligned}$$

Thus, it is not hard to see that

$$\begin{aligned} \partial _{t}u^{N},\,\,\partial _{t}v^{N},\,\,\partial _{t}\theta ^{N}\in L_{t}^{\infty } ([0, T]);\,H_{x}^{-\sigma }({\mathbb {R}}^{2})\quad \text{ for } \text{ some } \,\, \sigma \ge 2. \end{aligned}$$

Since the embedding \(L^{2}\hookrightarrow H^{-\sigma }\) is locally compact, the well-known Aubin–Lions argument allows us to conclude that, up to extraction, subsequence \((u^{N},v^{N},\theta ^{N})_{N\in {\mathbb {N}}}\) satisfies

$$\begin{aligned} \Vert u^{N}-u^{N'}\Vert _{L^{2}},\quad \Vert v^{N}-v^{N'}\Vert _{L^{2}},\quad \Vert \theta ^{N}-\theta ^{N'}\Vert _{L^{2}}\rightarrow 0,\quad as\quad N,\,\,N'\rightarrow \infty . \end{aligned}$$

Thanks to the interpolation (\(\Vert f\Vert _{H^{s'}}\le C \Vert f\Vert _{L^{2}}^{1-\frac{s'}{s}}\Vert f\Vert _{H^{s}}^{\frac{s'}{s}}\) for any \(s'<s\)), we deduce that

$$\begin{aligned} \Vert u^{N}-u^{N'}\Vert _{H^{s'}},\quad \Vert v^{N}-v^{N'}\Vert _{H^{s'}},\quad \Vert \theta ^{N}-\theta ^{N'}\Vert _{H^{s'}}\rightarrow 0,\quad as\quad N,\,\,N'\rightarrow \infty , \end{aligned}$$

which imply that we have strong convergence limit \((u, v,\theta )\in C([0, T]; H^{s'})\) for any \(s'<s\). Therefore, this is enough for us to show that up to extraction, sequence \((u^{N},v^{N},\theta ^{N})_{N\in {\mathbb {N}}}\) has a limit \((u,\,v,\,\theta )\) satisfying

$$\begin{aligned} \left\{ \begin{aligned}&\partial _{t}u+{\mathcal {P}}((u\cdot \nabla )u)+ \nu \Lambda ^{2\alpha }u +{\mathcal {P}}\nabla \cdot (v\otimes v)=0, \\&\partial _{t}v+(u\cdot \nabla )v- \mu \Delta v+\nabla \theta +(v\cdot \nabla ) u=0,\\&\partial _{t}\theta +(u\cdot \nabla )\theta + \eta \Lambda ^{2\gamma } \theta +\nabla \cdot v=0,\\&\nabla \cdot u=0,\\&u(x, 0)=u_{0}(x), \quad v(x,0)=v_{0}(x), \quad \theta (x,0)=\theta _{0}(x). \end{aligned}\right. \end{aligned}$$
(A.4)

Moreover, one may show that \((u, v, \theta )\in L^{\infty }([0, T]; H^{s}({\mathbb {R}}^{2}))\). Finally, we claim that \((u, v, \theta )\in C([0, T]; H^{s}({\mathbb {R}}^{2}))\); namely, \((u,v,\theta )\) is strongly continuous in \(H^{s}({\mathbb {R}}^{2})\) in time. It suffices to consider \(u\in C([0, T]; H^{s}({\mathbb {R}}^{2})\) as the same fashion can be applied to v and \(\theta \) to obtain the desired result. From the above argument, we first have

$$\begin{aligned} \sup _{0\le t\le T}(\Vert u\Vert _{H^{s}}+\Vert v\Vert _{H^{s}}+\Vert \theta \Vert _{H^{s}})<\infty . \end{aligned}$$

By the equivalent norm, it yields

$$\begin{aligned} \Vert u(t_{1})-u(t_{2})\Vert _{H^{s}}=\left\{ \left( \sum _{k<N}+ \sum _{k\ge N}\right) (2^{ks}\Vert \Delta _{k}u(t_{1})-\Delta _{k}u(t_{2})\Vert _{L^{2}})^{2} \right\} ^{\frac{1}{2}}, \end{aligned}$$
(A.5)

where the Fourier localization operator \(\Delta _{k}\) is defined through the Littlewood–Paley decomposition (see Chapter 2 in Bahouri et al. 2011 for details). Let \(\varepsilon >0\) be arbitrarily small. Due to \(u\in L^{\infty }([0, T]; H^{s}({\mathbb {R}}^{2}))\), there exists an integer \(M=M(\varepsilon )>0\) such that

$$\begin{aligned} \Big \{\sum _{k\ge M} (2^{ks}\Vert \Delta _{k}u(t_{1})-\Delta _{k}u(t_{2})\Vert _{L^{2}})^{2} \Big \}^{\frac{1}{2}}<\frac{\varepsilon }{2}. \end{aligned}$$
(A.6)

Recalling system (A.4)\(_{1}\), we obtain

$$\begin{aligned} \Delta _{k}u(t_{1})-\Delta _{k}u(t_{2}) =&\int _{t_{1}}^{t_{2}}{\frac{d}{\hbox {d}\tau } \Delta _{k}u(\tau )\,\hbox {d}\tau } \\ =&-\int _{t_{1}}^{t_{2}}{ \Delta _{k}{\mathcal {P}}[\nabla \cdot (v\otimes v)+(u\cdot \nabla ) u+\nu \Lambda ^{2\alpha } u](\tau )\,\hbox {d}\tau }. \end{aligned}$$

Therefore, we have

$$\begin{aligned}&\sum _{k<M} 2^{2ks}\Vert \Delta _{k}u(t_{1})-\Delta _{k}u(t_{2})\Vert _{L^{2}}^{2}\\&\quad = \sum _{k<M} 2^{2ks}\Big (\Big \Vert \int _{t_{1}}^{t_{2}}{ \Delta _{k}{\mathcal {P}}[\nabla \cdot (v\otimes v)+(u\cdot \nabla ) u+\nu \Lambda ^{2\alpha } u](\tau )\,\hbox {d}\tau }\Big \Vert _{L^{2}}\Big )^{2}\\&\quad \le \sum _{k<M} 2^{2ks}\Big (\int _{t_{1}}^{t_{2}}{ \Vert \Delta _{k}[\nabla \cdot (v\otimes v)+(u\cdot \nabla ) u+\nu \Lambda ^{2\alpha } u]\Vert _{L^{2}}(\tau )\,\hbox {d}\tau }\Big )^{2} \\&\quad \le \sum _{k<M} 2^{2ks}\Big (\int _{t_{1}}^{t_{2}}{ [\Vert \Delta _{k}(\nabla \cdot (v\otimes v)) \Vert _{L^{2}}+ \Vert \Vert \Delta _{k}(u\cdot \nabla u)\Vert _{L^{2}}+\nu \Vert \Vert \Delta _{k}\Lambda ^{2\alpha }u\Vert _{L^{2}}](\tau )\,\hbox {d}\tau }\Big )^{2} \\&\quad = \sum _{k<M} 2^{4k}\Big (\int _{t_{1}}^{t_{2}}{ [2^{k(s-2)}\Vert \Delta _{k}\nabla \cdot (v\otimes v) \Vert _{L^{2}}+ 2^{k(s-2)}\Vert \Delta _{k}\nabla \cdot (u\otimes u)\Vert _{L^{2}}](\tau )\,\hbox {d}\tau }\Big )^{2} \\&\qquad + \sum _{k<M} 2^{4k}\Big (\int _{t_{1}}^{t_{2}}{ \nu 2^{k(s-2+2\alpha )}\Vert \Delta _{k}u(\tau )\Vert _{L^{2}}\,\hbox {d}\tau }\Big )^{2} \\&\quad \le C\sum _{k<M} 2^{4k}\Big (\Vert vv\Vert _{L_{t}^{\infty }H^{s}}^{2}|t_{1}-t_{2}|^{2} +\Vert uu\Vert _{L_{t}^{\infty }H^{s}}^{2}|t_{1}-t_{2}|^{2}+ \Vert u\Vert _{L_{t}^{\infty }H^{s}}^{2}|t_{1}-t_{2}|^{2}\Big )\\&\quad \le C\sum _{k<M} 2^{4k}|t_{1}-t_{2}|^{2}\Big (\Vert v\Vert _{L_{t}^{\infty }L^{\infty }}^{2}\Vert v\Vert _{L_{t}^{\infty }H^{s}}^{2}+ \Vert u\Vert _{L_{t}^{\infty }L^{\infty }}^{2}\Vert u\Vert _{L_{t}^{\infty }H^{s}}^{2} + \nu \Vert u\Vert _{L_{t}^{\infty }H^{s}}^{2}\Big )\\&\quad \le C 2^{4M}|t_{1}-t_{2}|^{2}\Big (\Vert v\Vert _{L_{t}^{\infty }H^{s}}^{4}+\Vert u\Vert _{L_{t}^{\infty } H^{s}}^{4} +\nu \Vert u\Vert _{L_{t}^{\infty }H^{s}}^{2}\Big ). \end{aligned}$$

Thus, the following holds true

$$\begin{aligned} \Big \{\sum _{k< M} (2^{ks}\Vert \Delta _{k}u(t_{1})-\Delta _{k}u(t_{2})\Vert _{L^{2}})^{2} \Big \}^{\frac{1}{2}}<\frac{\varepsilon }{2} \end{aligned}$$
(A.7)

provided \(|t_{1}-t_{2}|\) small enough. Combining (A.5), (A.6) with (A.7) implies \(u\in C([0, T]; H^{s}({\mathbb {R}}^{2})\). The uniqueness can be easily obtained since \((u, v, \theta )\) are all in Lipschitz space. Therefore, the proof of Proposition A.1 is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, BQ., Wu, J. & Ye, Z. Global Regularity for a 2D Tropical Climate Model with Fractional Dissipation. J Nonlinear Sci 29, 511–550 (2019). https://doi.org/10.1007/s00332-018-9495-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-018-9495-5

Keywords

Mathematics Subject Classification

Navigation