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Abstract
We give a detailed study of the symplectic geometry of a family of integrable systems obtained

by coupling two angular momenta in a non trivial way. These systems depend on a parameter
t ∈ [0, 1] and exhibit different behaviors according to its value. For a certain range of values,
the system is semitoric, and we compute some of its symplectic invariants. Even though these
invariants have been known for almost a decade, this is to our knowledge the first example of their
computation in the case of a non-toric semitoric system on a compact manifold (the only invariant
of toric systems is the image of the momentum map). In the second part of the paper we quantize
this system, compute its joint spectrum, and describe how to use this joint spectrum to recover
information about the symplectic invariants.

1 Introduction
1.1 A fundamental model in physics: coupled angular momenta
One of the most mathematically interesting and physically relevant finite dimensional integrable sys-
tems with two degrees of freedom is produced by coupling two angular momenta in a non trivial
fashion, depending on a parameter t ∈ [0, 1] encoding the different non trivial ways in which the cou-
pling can occur. To describe the system precisely, let R2 > R1 > 0 be two positive real numbers,
which represent the norms of the two angular momenta. Endow M = S2 × S2 with the coordinates
(x1, y1, z1, x2, y2, z2) and the symplectic form ω = −(R1ωS2 ⊕R2ωS2), where ωS2 is the standard sym-
plectic form on the sphere S2 (the one giving area 4π). The coupled angular momenta system is given
by the map F = (J,H) where J and H are defined as{

J = R1z1 +R2z2,

H = (1− t)z1 + t(x1x2 + y1y2 + z1z2),
(1)

with t a parameter in [0, 1]. This system has been introduced by Sadovskií and Zhilinskií [24].
It is of great relevance in physics, since it can be used to model a variety of phenomena. Even

though it is given by relatively simple formulae, its symplectic and analytic properties are very rich;
the characteristics of the system can change drastically as the parameter varies, and it displays many
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interesting features for which the available literature is minimal: passing from non-degenerate to
degenerate singularities, degeneration of elliptic fibers into nodal fibers, and so on. One of its most
interesting features, and motivation for its study in [24], is that it exhibits non trivial monodromy
for certain values of t; for these values of the parameter, we prove that it is a so-called semitoric
integrable system with one focus-focus critical value. These systems seem to be common in the physics
literature, but from the mathematical point of view, only a few examples are known. To our knowledge,
the only (non toric) system which was rigorously proven to be semitoric prior to the present paper
was the so-called Jaynes-Cummings system [21], whose phase space is S2 × R2. Hence, our paper
constitutes the first rigorous study of a semitoric system with compact phase space. Note that, in the
time interval between the first and current arXiv versions of this manuscript, Hohloch and Palmer [12]
generalized this system to obtain family of semitoric systems with two focus-focus points on S2 × S2.
The symplectic classification of semitoric systems has been understood only recently [22, 23]; it relies
on five symplectic invariants. See [20, 18] for recent surveys on integrable systems and Hamiltonian
symmetries.

1.2 Past works
To our knowledge, the computation of these invariants has been performed only in the case of the
coupling of a spin and an oscillator, the so-called Jaynes-Cummings system, so far, in which case some
computations are already heavy, in spite of the presences of nice symmetries. Part of this computation
was performed in [21], and this study was recently completed with the computation of the full Taylor
series invariant and of the twisting-index invariant by Alonso, Dullin and Hohloch [1]. We should also
mention that the computation of one of the invariants has been achieved in the case of the spherical
pendulum [8], but the latter is not a semitoric system but a generalized semitoric system, see [19].

Our first goal is to completely prove that the system at hand is semitoric for some values of the
parameter t. In addition, we also obtain a complete parameterization for the boundary of the image of
the moment map for all t, which is quite remarkable. Our second goal is to compute the five symplectic
invariants for the coupled angular momentum system, thus providing another example, the first one
on a compact phase space; it turns out that it is a quite complicated task, since the system does not
exhibit the same kind of symmetries as the spin-oscillator does. In the process of achieving these two
goals, we try to give as many details as possible, so that this paper could serve as a starting point when
one wants to compute the symplectic invariants for other semitoric systems. This choice sometimes
leads to the presence of a lot of technical details, but we think that this is a necessary evil.

Our third goal is to quantize this system and compute the associated joint spectrum, with the help
of Berezin-Toeplitz operators; besides being interesting in itself, this also constitutes a good example
for a future general study of the description of the joint spectrum of commuting self-adjoint Berezin-
Toeplitz operators near a focus-focus value of the underlying integrable system, in the spirit of the
work of Vũ Ngo.c [29] on pseudodifferential operators on cotangent bundles. This example can also
give some insight on the spectral behaviour during the transition in which an elliptic-elliptic point
becomes focus-focus.

1.3 Main results
The paper emphasizes the interplay between the symplectic geometry of a classical integrable system
and the spectral theory of the associated semiclassical integrable system. Our main results concern
both the classical coupled angular momentum system and its quantum counterpart.
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1.3.1 Symplectic geometry of classical coupled angular momenta

We will prove later that the map F : M → R2 determined by (1) is the momentum map for an
integrable system, which means that its components J andH Poisson-commute and that the associated
Hamiltonian vector fields XJ , XH are almost everywhere linearly independent.

Definition 1.1. An integrable system F = (J,H) : M → R2 on a connected four-dimensional sym-
plectic manifold (M,ω) is said to be semitoric if J is proper and is the momentum map for an effective
Hamiltonian circle action and F has only non-degenerate singularities with no hyperbolic component
(if only this last property is satisfied, the system is said to be almost toric). A semitoric integrable
system is said to be simple if there is at most one focus-focus point in each fiber of J .

Remark 1.2. This definition implies that in semitoric or almost toric systems only singularities of
elliptic-elliptic, elliptic-transverse and focus-focus type can occur (see Section 2 for more details about
singularities of integrable systems).

The symplectic classification of simple semitoric systems has been achieved by the second author
and Vũ Ngo.c [22, 23], and relies on five invariants:

1. the number of focus-focus critical values of the system,

2. a family of convex polygons obtained by unwinding the singular affine structure of the system,

3. a number h > 0 for each focus-focus singularity, the height invariant, corresponding to the height
of the image of the focus-focus critical value in any of these polygons, and measuring the volume
of some reduced space,

4. a Taylor series of the form S∞ = a1X + a2Y +
∑
i+j>1 bijX

iY j for each focus-focus singularity,

5. roughly speaking, an integer associated with each focus-focus singularity and polygon in item 2,
called the twisting index, reflecting the fact that there exists a privileged toric momentum map
in a neighborhood of the singularity. When mf = 1, one can always find a polygon in item 2
whose associated twisting index vanishes.

We will describe these invariants in more details in Section 3.1; for a complete discussion, we refer
the reader to [22] and to the recent notes by Sepe and Vũ Ngo.c [27]. As we already said before, we will
see that the system of coupled angular momenta is of toric type for certain values of the parameter t
and semitoric with exactly one focus-focus value for a range of values of t always including t = 1/2.
Our main result is the computation of some of the symplectic invariants in this case t = 1/2; this is to
our knowledge the first time those are computed for a semitoric system on a compact manifold.
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Figure 1: The symplectic invariants of [22, 23] for the coupled angular momentum system F in formula
(1) for the values of R1 = 1, R2 = 5/2. The blue dot indicates the image of the focus-focus critical
value in the polygon. The number ε ∈ {−1, 1} corresponds to a choice of vertical half-line at the
focus-focus value, as represented by the thin black segment.

Theorem 1.3. For t = 1/2, the coupled angular momentum system (J,H) is a simple semitoric
integrable system. Its symplectic invariants satisfy the following properties:

1. the number of focus-focus critical values is equal to one,

2. the polygonal invariant is represented by the two polygons ∆1 and ∆2 drawn in Figure 4,

3. if we set Θ = R2
R1

, the height invariant is equal to

h = R1

π

(
2 arccos

(
1

2
√

Θ

)
+
√

4Θ− 1− 2(Θ− 1) arctan
(

4Θ− 1−
√

4Θ− 1
(2Θ− 1)(

√
4Θ− 1− 1)

))
,

4. for R1 = 1, R2 = 5/2, the two first terms of the Taylor series invariant S are a1 = arctan( 9
13 )

and a2 = 7
2 ln 2 + 3 ln 3− 3

2 ln 5, which means that

S∞(X,Y ) = arctan
(

9
13

)
X +

(
7
2 ln 2 + 3 ln 3− 3

2 ln 5
)
Y +O(2),

where O(2) stands for terms of total degree strictly greater than one,

5. the twisting indices k1, k2 of ∆1, ∆2 satisfy k2 = k1 − 1.

This theorem follows from Propositions 2.5, 3.15, 3.18, 3.12 and 3.14 and Lemma 3.16.

Remark 1.4. We do not compute k1, k2 in the theorem. We do not compute the terms a1 and a2 in the
Taylor series invariants for general values of R1 and R2 because this would lead to overly complicated
computations, but we give detailed explanations so that the interested reader can compute them for
other fixed values of R1, R2. These results are summed up in Figure 1 for the case R1 = 1, R2 = 5/2.
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1.3.2 Spectral properties of quantum coupled angular momenta

Our second result is the construction of a quantum integrable system (Ĵk, Ĥk) quantizing (J,H),
that is the data of two commuting self-adjoint operators acting on some Hilbert space, with underlying
classical system (J,H). Note that such a quantization may not exist for a general integrable system, see
[10] for the description of some obstructions. To be more precise, since the coupled angular momentum
system is defined on a compact phase space, the relevant quantization involves the so-called geometric
quantization [13, 28] and Ĵk, Ĥk are Berezin-Toeplitz operators, see for instance [5, 6, 16, 26].

These operators act on finite dimensional Hilbert spaces Hk that we describe explicitly in Section 4
and which depend on a semiclassical parameter k, a positive integer which tends to infinity. This integer
plays the part of the inverse of the Planck constant ~. The rigourous way to express that (Ĵk, Ĥk)
quantizes (J,H) is to say that the principal symbols of Ĵk, Ĥk are equal to J and H respectively.

We sum up some of the results of Section 4 in the following theorem.

Theorem 1.5. The Hilbert space Hk has dimension 4k2R1R2. There exists a basis (g`,m) 0≤`≤2kR1−1
0≤m≤2kR2−1

of Hk such that

Ĵkg`,m =
(
R1 +R2 −

`+m+ 1
k

)
g`,m.

Furthermore, using the convention g−1,m = g2kR1,m = g`,−1 = g`,2kR2 = 0, we have that

Ĥkg`,m = 1
4k2R1R2

(
2t
√
`(2kR1 − `)(m+ 1)(2kR2 − 1−m) g`−1,m+1

+ (2(kR1 − `)− 1) (2kR2 − (2m+ 1)t)g`,m +2t
√

(`+ 1)(2kR1 − 1− `)m(2kR2 −m) g`+1,m−1

)
.

We compute numerically the joint spectrum of (Ĵk, Ĥk) using these formulas. Furthermore, we state
a conjecture regarding the description of this joint spectrum near the focus-focus critical value and
explain how to check (assuming this conjecture is true) on the joint spectrum that our computations
of the symplectic invariants of the classical system are correct.

1.4 Structure of the article
Our study is divided into three parts, and the structure of this article respects them: the general
study of the system, the computation of the semitoric symplectic invariants, and the quantization
problem. We start, in the next section, by investigating the classical properties of the system (e.g.
singularities, image of the momentum map). Ultimately, we obtain that the system is semitoric but
not of toric type for some values of the deformation parameter t, always including t = 1/2 no matter
which values R1 and R2 take; we study this particular case in the third section. As explained earlier,
the symplectic classification of semitoric systems is achieved by five symplectic invariants, and we
compute four of them for this particular example. In the last section, we explain how to quantize
the coupled angular momentum system; more precisely, we construct a pair of commuting self-adjoint
Berezin-Toeplitz operators whose principal symbols are equal to J andH respectively. We also describe
the computation of the joint spectrum of these operators, and display numerical simulations of the
latter. We conclude by stating a conjecture about the description of the joint spectrum of commuting
self-adjoint Berezin-Toeplitz operators near a focus-focus value of the underlying integrable system,
and by providing numerical evidence in favor of this conjecture.
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2 Classical properties of F

Let us study the classical system (J,H) of coupled angular momenta introduced in Equation (1).
The first observation that we make is that these two functions indeed Poisson commute. This is a
simple exercise, but it is a good way to introduce the convention that we will be using throughout
the paper. If f : M → R is a smooth function, its Hamiltonian vector field Xf is defined by the
formula df + ω(Xf , ·) = 0. The Poisson bracket of two smooth functions f, g : M → R is given by
{f, g} = LXf g = ω(Xf , Xg), where L stands for the Lie derivative.

Lemma 2.1. We have that {J,H} = 0.

Proof. Since the coordinates on the first factor Poisson commute with the ones on the second factor,
and since {z1, z1} = 0, we obtain that

{J,H} = t (R1{z1, x1x2}+R1{z1, y1y2}+R2{z2, x1x2}+R2{z2, y1y2}) ,

and by the Leibniz rule (still using the remark above):

{J,H} = t (R1x2{z1, x1}+R1y2{z1, y1}+R2x1{z2, x2}+R2y1{z2, y2}) .

With the convention above, one readily checks that the relation {xi, yi} = − 1
Ri
zi holds, as well as its

cyclic permutations, for i = 1, 2. Therefore, the previous equality yields {J,H} = 0.

In order to check that F = (J,H) forms an integrable system, we still need to understand its
singularities, which are the points where XJ , XH are not linearly independent, or equivalently where
dF has non zero corank. Since we are in dimension four, there are two cases: critical points of corank
one (i.e. where dF has corank one), and critical points of corank two, for which dF = 0, which are
usually called fixed points.

Definition 2.2. A fixed point m ∈ M is said to be non-degenerate if the Hessians d2J(m) and
d2H(m) generate a Cartan subalgebra of the Lie algebra of quadratic forms on TmM , equipped with
the linearization of the Poisson bracket, that is a maximal Abelian subalgebra c such that for every
element q ∈ c, adq is a semisimple endomorphism.

The problem with this definition is that one may ask how to check this condition in practice; this is
the purpose of the following lemma, which can be found in [4] for instance, and uses the identification
of the Lie algebra of quadratic forms and the symplectic Lie algebra sp(4,R).

Lemma 2.3. A critical point m ∈M of corank two of F is non-degenerate if and only if there exists
a linear combination A of Ω−1d2J(m) and Ω−1d2H(m) with four distinct eigenvalues (such a A will
be called regular). Here we slightly abuse notation by fixing a basis B of TmM and by identifying the
Hessians of J and H with their matrices in B, and Ω is the matrix of the symplectic form ω in B.
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If such a linear combination A exists, the Cartan subalgebra c of sp(4,R) generated by Ω−1d2J(m)
and Ω−1d2H(m) is equal to the commutant of A. The eigenvalues of A come in pairs (λ,−λ), and the
spaces E±λ = ker(A−λId)⊕ker(A+λId) associated with distinct pairs are symplectically orthogonal.
There are three distinct possibilities:

1. if λ ∈ R, there exists a symplectic basis of E±λ in which the restriction of A to E±λ has matrix(
λ 0
0 −λ

)
,

2. if λ = iα, α ∈ R, there exists a symplectic basis of E±λ in which the restriction of A to E±λ has

matrix
(

0 α
−α 0

)
,

3. if λ = α+ iβ, α, β 6= 0, then ±λ̄ are also eigenvalues of A, and there exists a symplectic basis of

TmM in which A has matrix


−α β 0 0
−β −α 0 0
0 0 α β
0 0 −β α

.

This leads to the following classification, due to Williamson [32]: there exist linear symplectic coordi-
nates (u1, u2, ξ1, ξ2) of TmM and a basis q1, q2 of c such that each qi is one of the following:

1. qi = xiξi (hyperbolic component),

2. qi = 1
2 (x2

i + ξ2
i ) (elliptic component),

3. q1 = u1ξ2 − u2ξ1 and q2 = u1ξ1 + u2ξ2 (focus-focus component).
This notion of non-degeneracy can be extended to the case of critical points of corank one, see for

instance [4, Definition 1.21].

2.1 Critical points of maximal corank
We start by looking for the critical points of maximal corank (fixed points).
Lemma 2.4. The map F has four critical points mi, i = 0, . . . , 3, of maximal corank:

m0 = (0, 0, 1, 0, 0,−1), c0 = F (m0) = (R1 −R2, 1− 2t),
m1 = (0, 0,−1, 0, 0,−1), c1 = F (m1) = (−(R1 +R2), 2t− 1),
m2 = (0, 0,−1, 0, 0, 1), c2 = F (m2) = (R2 −R1,−1),
m3 = (0, 0, 1, 0, 0, 1), c3 = F (m3) = (R1 +R2, 1).

Proof. At a critical point m = (x1, y1, z1, x2, y2, z2) of maximal corank for F , the restriction of dJ =
R1dz1 + R2dz2 to the tangent space Tm(S2 × S2) must vanish. Therefore, we must have z1, z2 = ±1.
But then the restriction of dH = (1− t)dz1 + t(z1dz2 + z2dz1) to Tm(S2 × S2) also vanishes.

We want to understand if these critical points are non-degenerate, and if it is the case, what their
Williamson types are. Let us define t−, t+ ∈ (0, 1) as

t± = R2

2R2 +R1 ∓ 2
√
R1R2

; (2)

observe that we always have t− < 1
2 < t+.
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Proposition 2.5. The critical point m0 is non-degenerate of focus-focus type when t− < t < t+,
degenerate when t ∈ {t−, t+}, and non-degenerate of elliptic-elliptic type otherwise.

These results are summed up in Figure 2. The proof will rely on the criterion stated in Lemma
2.3, and most of the time the relevant linear combination will simply be Ω−1d2H(m0).

t− 10 1
2

degenerate degenerate

t+

ellipti-ellipti fous-fous ellipti-ellipti

Figure 2: The singularity type of m0 with respect to the parameter t.

Proof. We start by computing the Hessian matrices of J and H at m0. Near this point, (x1, y1, x2, y2)
form a local coordinate system and z1 =

√
1− (x2

1 + y2
1), z2 = −

√
1− (x2

2 + y2
2). The point m0

corresponds to x1 = y1 = x2 = y2 = 0. Therefore, by using the Taylor series expansion of
√

1 + u
when u→ 0, we get

J = R1 −R2 −R1

(
x2

1 + y2
1

2

)
+R2

(
x2

2 + y2
2

2

)
+O(3)

near m0, where O(3) stands for O(‖(x1, y1, x2, y2)‖3) to simplify notation. Similarly,

H = 1− 2t+ (2t− 1)
(
x2

1 + y2
1

2

)
+ t

(
x2

2 + y2
2

2

)
+ t(x1x2 + y1y2) +O(3)

near m0. Consequently, the Hessians of J and H at m0 in the basis B of Tm0M associated with
(x1, y1, x2, y2) read

d2J(m0) =


−R1 0 0 0

0 −R1 0 0
0 0 R2 0
0 0 0 R2

 , d2H(m0) =


2t− 1 0 t 0

0 2t− 1 0 t
t 0 t 0
0 t 0 t

 .

Moreover, ωm0 = −R1dx1 ∧ dy1 + R2dx2 ∧ dy2 on Tm0M = T(0,0,1)S2 × T(0,0,−1)S2, so the matrix of
ωm0 in B is given by

Ω =


0 −R1 0 0
R1 0 0 0
0 0 0 R2
0 0 −R2 0

 .

Consequently, we obtain that

Ω−1d2J(m0) =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , Ω−1d2H(m0) =


0 2t−1

R1
0 t

R11−2t
R1

0 − t
R1

0
0 − t

R2
0 − t

R2
t
R2

0 t
R2

0

 . (3)
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The characteristic polynomial of A = Ω−1d2H(m0) is

P = X4 + (R2
1 + 4R2

2 − 2R1R2)t2 − 4R2
2t+R2

2
R2

1R
2
2

X2 + t2(t− 1)2

R2
1R

2
2

= Q(X2),

where Q is a degree two polynomial. A straightforward computation shows that the discriminant ∆
of Q satisfies

R4
1R

4
2∆ =

(
(R2

1 + 4R2
2)t2 − 2R2(R1 + 2R2)t+R2

2
)

((2R2 −R1)t−R2)2
.

The polynomial ((2R2 −R1)t−R2)2 is positive, except at t = R2/(2R2 − R1) where it vanishes. So
the sign of ∆ is given by the sign of T = (R2

1 + 4R2
2)t2 − 2R2(R1 + 2R2)t + R2

2. The discriminant ∆̃
of T satisfies ∆̃ = 4R2

2(R1 + 2R2)2 − 4R2
2(R2

1 + 4R2
2) = 16R1R

3
2 > 0, therefore T has two real roots

t± = R2(R1 + 2R2)− 2R2
√
R1R2

R2
1 + 4R2

2
.

We claim that these are the same as in Equation (2); in order to see this, we multiply both the
numerator and denominator by the quantity R2(R1 + 2R2) + 2R2

√
R1R2, and we use the fact that(

R2(R1 + 2R2)− 2R2
√
R1R2

)(
R2(R1 + 2R2) + 2R2

√
R1R2

)
= R2

2(R2
1 + 4R2

2).

When t− < t < t+ and t 6= R2/(2R2−R1), we get that ∆ < 0, which means that for such t, Q has
two complex conjugate roots, and A has four eigenvalues of the form ±α ± iβ, α, β ∈ R. Hence, for
such t, m0 is non-degenerate of focus-focus type.

When 0 < t < t− or t+ < t < 1, ∆ > 0, so Q has two real roots λ± = (−b±
√

∆)/2 where

b = (R2
1 + 4R2

2 − 2R1R2)t2 − 4R2
2t+R2

2
R2

1R
2
2

= T (t) + 2R1R2t(1− t)
R2

1R
2
2

> 0.

Let C = R4
1R

4
2(∆− b2) = T ((2R2 −R1)t−R2)2 − (T + 2R1R2t(1− t))2; then

C = T
(
(2R2 −R1)2t2 − 2R2(2R2 −R1)t+R2

2 − 4R1R2t(1− t)− T
)
− 4R2

1R
2
2t

2(1− t)2.

By expanding, one can check that (2R2 − R1)2t2 − 2R2(2R2 − R1)t + R2
2 − 4R1R2t(1 − t) = T , thus

we finally obtain that C = −4R2
1R

2
2t

2(1 − t)2 ≤ 0. Since 0 < t < t− or t+ < t < 1, C < 0, hence
λ± < 0, and A has four distinct eigenvalues of the form ±iα and ±iβ, α 6= β ∈ R. Therefore m0 is
non-degenerate of elliptic-elliptic type.

When t is equal to R2/(2R2 − R1), 0, 1, t− or t+, A has multiple eigenvalues (i.e. is not regular),
so its study is not sufficient to conclude anything. We need to investigate these cases separately.

When t = R2/(2R2−R1). Observe that t− < 1/2 < R2/(2R2−R1) < t+, so we expect m0 to be of
focus-focus type for this value of t. One way to check this is to consider the linear combination

B = Ω−1d2J(m0) + (2R2 −R1)Ω−1d2H(m0) =


0 0 0 R2

R1

0 0 −R2
R1

0
0 −1 0 −2
1 0 2 0

 .
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Its characteristic polynomial is equal to P (X2) where P = X2+ 2(2R1−R2)
R1

X+ R2
2

R2
1
, and the discriminant

of P is equal to 16(R1 −R2)/R1 < 0. Therefore, B has four distinct eigenvalues of the form ±α± iβ,
α, β ∈ R, hence m0 is non-degenerate of focus-focus type.

When t = 0. The linear combination

Ω−1d2J(m0) + Ω−1d2H(m0) =


0 −

(
1 + 1

R1

)
0 0

1 + 1
R1

0 0 0
0 0 0 −1
0 0 1 0


has four distinct eigenvalues ±i

(
1 + 1

R1

)
,±i, so m0 is non-degenerate of elliptic-elliptic type.

When t = 1. One can check that the linear combination

Ω−1d2J(m0) +R1Ω−1d2H(m0) =


0 0 0 1
0 0 −1 0
0 −R1

R2
0 −

(
1 + R1

R2

)
R1
R2

0 1 + R1
R2

0


has eigenvalues ±i,±iR1

R2
, so m0 is non-degenerate of elliptic-elliptic type.

When t = t−. For λ ∈ R, let B(λ) =
(
2R2 +R1 + 2

√
R1R2

)
λΩ−1d2J(m0) + Ω−1d2H(m0); then

B(λ) =


0 − (aλ+ b) 0 R2

R1

aλ+ b 0 −R2
R1

0
0 −1 0 − (aλ+ 1)
1 0 aλ+ 1 0


with a = 2R2 + R1 + 2

√
R1R2 and b = 1 + 2

√
R2
R1

. One can check that the characteristic polynomial
of B(λ) is P (X2) with

P = X2 +
(

2aλR1(aλ+ b+ 1) + b2R1 +R1 − 2R2

R1

)
X + (aλR1(aλR1 + b+ 1) + bR1 +R2)2

R2
1

.

The discriminant ∆ of P satisfies R1∆ = (2aλ+ b+ 1)2(R1 + b2R1 − 4R2 − 2bR1), and

R1 + b2R1 − 4R2 − 2bR1 = R1 +R1

(
1 + 4

√
R2

R1
+ 4R2

R1

)
− 4R2 − 2R1 − 4

√
R1R2 = 0,

so ∆ = 0. Consequently, B(λ) has double eigenvalues for every λ, hence m0 is degenerate.
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When t = t+. For λ ∈ R, let B(λ) =
(
2R2 +R1 − 2

√
R1R2

)
λΩ−1d2J(m0) + Ω−1d2H(m0); then

B(λ) =


0 − (aλ+ b) 0 R2

R1

aλ+ b 0 −R2
R1

0
0 −1 0 − (aλ+ 1)
1 0 aλ+ 1 0


with a = 2R2 +R1 − 2

√
R1R2 and b = 1− 2

√
R2
R1

. So as above, the characteristic polynomial is of the
form P (X2) with P a polynomial of degree two with discriminant

∆ = (2aλ+ b+ 1)2(R1 + b2R1 − 4R2 − 2bR1)
R1

.

Again, one can check that R1 + b2R1 − 4R2 − 2bR1 = 0, so ∆ = 0 and m0 is degenerate.

It turns out that the Williamson types of the three other fixed points of F do not depend on the
value of the parameter t ∈ [0, 1].

Proposition 2.6. For every t ∈ [0, 1], the critical points m1,m2 and m3 are non-degenerate of elliptic-
elliptic type.

The proof follows the same lines as the study of m0, hence we leave it to the reader.

2.2 Critical points of corank one
We now look for the points where dJ, dH are linearly dependent but dF 6= 0.

Proposition 2.7. When t /∈ {0, 1}, the critical points of corank one of F are the points (x1, y1, z1, x2, y2, z2) ∈
S2 × S2 for which there exists λ ∈ R \ {0, 1−t

R1
} such that (x2, y2) = 1−t−R1λ

R2λ
(x1, y1) and

z1 = (t2 +R2
2λ

2)(1− t−R1λ)2 − t2R2
2λ

2

2tR2λ(1− t−R1λ)2 , z2 = (t2 −R2
2λ

2)(1− t−R1λ)2 − t2R2
2λ

2

2tR2
2λ

2(1− t−R1λ)

and which are different from the points m0,m1,m2,m3 introduced earlier. When t = 1, the critical
points of corank one are either the points (x1, y1, z1, x2, y2, z2) ∈ S2 × S2 \ {m0,m1,m2,m3} such that
(x2, y2, z2) = ±(x1, y1, z1) or those for which there exists λ 6= 0 such that

(x2, y2) = −R1

R2
(x1, y1), z1 = R2

1 −R2
2 +R2

1R
2
2λ

2

2R2
1R2λ

, z2 = R2
2 −R2

1 +R2
1R

2
2λ

2

2R1R2
2λ

.

When t = 0, the critical points of corank one of F are the points of the form (0, 0,±1, x2, y2, z2) with
(x2, y2, z2) 6= (0, 0,±1) or of the form (x1, y1, z1, 0, 0,±1) with (x1, y1, z1) 6= (0, 0,±1).

Proof. If m is a critical point of corank one, there exist λ, µ1, µ2 ∈ R such that

∇H(m) = λ∇J(m) + µ1∇f1(m) + µ2∇f2(m)

11



with fi(x1, y1, z1, x2, y2, z2) = x2
i + y2

i + z2
i , i = 1, 2. We obtain the following equations:

tx2 = 2µ1x1,

ty2 = 2µ1y1,

1− t+ tz2 = λR1 + 2µ1z1,

tx1 = 2µ2x2,

ty1 = 2µ2y2,

tz1 = λR2 + 2µ2z2.

We start with the case t /∈ {0, 1}. If µ1 = 0, we immediately get that x2 = y2 = 0, which implies
that x1 = y1 = 0. Therefore z1, z2 ∈ {−1, 1}, and we find the critical points of corank two, see the
previous section. So we may assume that µ1 6= 0, and we may also assume that x1 6= 0 or y1 6= 0,
because otherwise we find the critical points of corank two again. Then, comparing either the first and
fourth equations or the second and fifth equation, we get µ2 = t2

4µ1
. Thus, combining the third and

last equations, we obtain that

1− t+ tz2 = λR1 + 2λR2µ1

t
+ tz2

which yields λ 6= 0 (since t 6= 1) and µ1 = t(1−t−R1λ)
2R2λ

. In particular, 1 − t − R1λ 6= 0. Now, a
straightforward computation gives

z2 = (1− t−R1λ)(tz1 −R2λ)
tR2λ

.

Thanks to the above results, the equality 1 = x2
2+y2

2+z2
2 reads 1 = (1−t−R1λ)2

t2R2
2λ

2

(
t2(x2

1 + y2
1) + (tz1 −R2λ)2).

Using the fact that x2
1 + y2

1 + z2
1 = 1, this allows us to derive the equality

z1 = (t2 +R2
2λ

2)(1− t−R1λ)2 − t2R2
2λ

2

2tR2λ(1− t−R1λ)2 .

When t = 1, we still find the same points when λ 6= 0, but the difference is that we can now have
λ = 0. In this case we obtain (x2, y2, z2) = 2µ1(x1, y1, z1), hence (x2, y2, z2) = ±(x1, y1, z1).

Now, in the case where t = 0, we obtain that

0 = 2µ1x1,

0 = 2µ1y1,

1 = λR1 + 2µ1z1,

0 = 2µ2x2,

0 = 2µ2y2,

0 = λR2 + 2µ2z2.

The last three equations imply that λ2R2
2 = 4µ2

2. Hence, if µ2 = 0, we also have that λ = 0 and the
first three equations imply that µ1 6= 0, so x1 = 0 = y1, and z1 = ±1. Now, if µ2 6= 0, we immediately
get that x2 = 0 = y2 and z2 = ±1. But we already know that when z1 = ±1 and z2 = ±1, we get the
critical points of maximal corank.
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2.3 Image of the momentum map
We can now use the previous results to describe the image of F ; more precisely, we will obtain a
complete parameterization of the boundary of this image. For 0 < t ≤ 1, we define two functions
f, g : R \ {0, 1−t

R1
} → R by the formulas

f(λ) = (t2 +R2
2λ

2)(1− t−R1λ)2 − t2R2
2λ

2

2tR2λ(1− t−R1λ)2 , g(λ) = (t2 −R2
2λ

2)(1− t−R1λ)2 − t2R2
2λ

2

2tR2
2λ

2(1− t−R1λ) .

We saw that the critical points of corank one of F are those for which there exists λ such that z1 = f(λ)
and z2 = g(λ). Therefore, we want to know for which values of λ the numbers f(λ) and g(λ) both
belong to [−1, 1]; in other words, we want to describe f−1([−1, 1]) ∩ g−1([−1, 1]). This is the purpose
of the following technical lemma.

Lemma 2.8. For 0 < t < 1, we define the numbers

λ±1 =
(1− 2t)R2 − tR1 ±

√
((1− 2t)R2 − tR1)2 + 4R1R2t(1− t)

2R1R2
,

and

λ±2 =
R2 − tR1 ±

√
(R2 − tR1)2 + 4R1R2t(1− t)

2R1R2
, λ±3 =

tR1 +R2 ±
√

(R2 − tR1)2 + 4t2R1R2

2R1R2
.

Then, for such t, one has λ−1 < λ−2 < 0 < λ−3 < λ+
1 < λ+

2 < λ+
3 . Moreover, for t− ≤ t ≤ t+,

f−1([−1, 1]) = [λ−1 , λ
−
2 ] ∪ [λ−3 , λ

+
1 ] ∪ [λ+

2 , λ
+
3 ]. Now, for 0 < t < t− or t+ < t < 1, let

λ±0 = (1− 2t)R2 + tR1 ±
√

(R2
1 + 4R2

2)t2 − 2R2(R1 + 2R2)t+R2
2

2R1R2
.

Then

• for 0 < t < t−, the inequalities λ−1 < λ−2 < 0 < λ−3 < λ−0 < λ+
0 < λ+

1 < λ+
2 < λ+

3 hold and
f−1([−1, 1]) = [λ−1 , λ

−
2 ] ∪ [λ−3 , λ

−
0 ] ∪ [λ+

0 , λ
+
1 ] ∪ [λ+

2 , λ
+
3 ],

• for t+ < t < 1, one has that λ−1 < λ−0 < λ+
0 < λ−2 < 0 < λ−3 < λ+

1 < λ+
2 < λ+

3 and
f−1([−1, 1]) = [λ−1 , λ

−
0 ] ∪ [λ+

0 , λ
−
2 ] ∪ [λ−3 , λ

+
1 ] ∪ [λ+

2 , λ
+
3 ],

• for t = 1, f−1([−1, 1]) =
[
− 1
R2
− 1

R1
, 1
R2
− 1

R1

]
∪
[
− 1
R2

+ 1
R1
, 1
R2

+ 1
R1

]
.

Furthermore, in all the cases above, g−1([−1, 1]) = f−1([−1, 1]).

Proof. We start with the case 0 < t < 1. Observe that

f(λ) + 1 = (t+R2λ)2(1− t−R1λ)2 − t2R2
2λ

2

2tR2λ(1− t−R1λ)2 = P (λ)Q(λ)
2tR2λ(1− t−R1λ)2 ,

where P and Q are polynomials defined as

P (λ) = (t+R2λ)(1− t−R1λ)− tR2λ, Q(λ) = (t+R2λ)(1− t−R1λ) + tR2λ.
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By expanding P , we obtain P (λ) = −R1R2λ
2 + ((1−2t)R2− tR1)λ+ t(1− t); its discriminant is equal

to ((1− 2t)R2 − tR1)2 + 4R1R2t(1− t) > 0. Therefore, P has two real roots

λ±1 =
(1− 2t)R2 − tR1 ±

√
((1− 2t)R2 − tR1)2 + 4R1R2t(1− t)

2R1R2
.

Note that λ−1 < 0 < λ+
1 , and that P (λ) ≥ 0 when λ−1 ≤ λ ≤ λ+

1 and P (λ) < 0 otherwise. Similarly,
one finds that Q also has two real roots

λ±2 =
R2 − tR1 ±

√
(R2 − tR1)2 + 4R1R2t(1− t)

2R1R2

with λ−2 < 0 < λ+
2 , Q(λ) ≥ 0 when λ−2 ≤ λ ≤ λ+

2 and Q(λ) < 0 otherwise. A similar computation
shows that

f(λ)− 1 = S(λ)T (λ)
2tR2λ(1− t−R1λ)2 ,

where S(λ) = (t − R2λ)(1 − t − R1λ) − tR2λ and T (λ) = (t − R2λ)(1 − t − R1λ) + tR2λ. One finds
that S has two real roots

λ±3 =
tR1 +R2 ±

√
(R2 − tR1)2 + 4t2R1R2

2R1R2

with 0 < λ−3 < λ+
3 , that S(λ) ≤ 0 when λ−3 ≤ λ ≤ λ+

3 and that S(λ) > 0 otherwise. The case of T is
more interesting; its discriminant is equal to ∆ = (R2

1 + 4R2
2)t2 − 2R2(R1 + 2R2)t + R2

2; we already
saw in the proof of Proposition 2.5 that ∆ ≤ 0 for t− ≤ t ≤ t+ and ∆ > 0 otherwise. Therefore, T has
no real root when t− < t < t+, has two real roots

λ±0 = (1− 2t)R2 + tR1 ±
√

∆
2R1R2

when t < t− or t > t+, and one real root λ0 when t ∈ {t−, t+}. Obviously λ−0 ≤ λ
+
0 with equality when

t ∈ {t−, t+}. Moreover, T (λ) ≥ 0 for t− ≤ t ≤ t+, and for other values of t we have that T (λ) ≤ 0
when λ−0 ≤ λ ≤ λ

+
0 , T (λ) > 0 otherwise. When t < t−, (1− 2t)R2 + tR1 > 0 since t− ≤ 1/2, and one

readily checks that ((1− 2t)R2 + tR1)2−∆ = 4R1R2t(1− t) > 0, thus λ−0 > 0. When t > t+, we have
that (2t− 1)R2 − tR1 > 2t

(
2
√
R1R2 −R1

)
> 0. Since ((2t− 1)R2 − tR1)2 −∆ = 4R1R2t(1− t) > 0,

this yields (2t− 1)R2 − tR1 >
√

∆, thus λ+
0 < 0.

In order to be able to compute the signs of f(λ)+1 and f(λ)−1 everywhere, we still need to compare
all the λ±i . The claim follows from careful computations; let us show for instance that λ−2 > λ−1 ,
the other cases involving similar methods. First, observe that we have that 2R1R2(λ−2 − λ−1 ) =√
a −
√
b + 2tR2 with a = ((1 − 2t)R2 − tR1)2 + 4R1R2t(1 − t), b = (R2 − tR1)2 + 4R1R2t(1 − t).

One readily checks that

a = b+ 4t2R2
2 − 4tR2(R2 − tR1) so

(√
a+ 2tR2

)2 − b = 4tR2
(
2tR2 +

√
a−R2 + tR1

)
.

We will prove that the right hand side of this equality is positive, which will imply that λ−2 − λ
−
1 > 0.

If R2 − tR1 − 2tR2 ≤ 0, this is obvious. Otherwise, we write

a−(R2 − tR1 − 2tR2)2 = a−(R2−tR1)2+4tR2(R2−tR1)−4t2R2
2 = b−(R2−tR1)2 = 4R1R2t(1−t) > 0.
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Consequently,
√
a > R2 − tR1 − 2tR2, and the result follows.

When t = 1, we compute

f(λ) + 1 = R2
1 −R2

2 +R2
1R

2
2λ

2 + 2R2
1R2λ

2R2
1R2λ

, f(λ)− 1 = R2
1 −R2

2 +R2
1R

2
2λ

2 − 2R2
1R2λ

2R2
1R2λ

and we conclude by checking the signs of both numerators.
We leave the verification of the last statement to the reader. Actually, the study of g is not too

difficult now because we have that

g(λ) + 1 = P (λ)T (λ)
2tR2

2λ
2(1− t−R1λ) , g(λ)− 1 = Q(λ)S(λ)

2tR2
2λ

2(1− t−R1λ)

where P,Q, S, T are the polynomials introduced above. Another useful observation is that λ+
1 < 1−t

R1
<

λ+
2 when 0 < t < 1.

Proposition 2.9. The image of F can be described as follows:

• when t = 0, F (M) is the compact domain enclosed by the parallelogram with vertices at (−(R1 +
R2),−1), (R1 −R2, 1), (R1 +R2, 1) and (R2 −R1,−1),

• when t = 1, F (M) is the compact domain enclosed by the closed curve obtained as the union of
the four following curves:

1. the horizontal segment H = 1, −(R1 +R2) ≤ J ≤ R1 +R2,
2. the horizontal segment H = −1, R1 −R2 ≤ J ≤ R2 −R1,

3. the parametrized curve J = R1R2λ,H = R2
1R

2
2λ

2−R2
1−R

2
2

2R1R2
, − 1

R2
− 1

R1
≤ λ ≤ 1

R2
− 1

R1
,

4. the parametrized curve J = R1R2λ,H = R2
1R

2
2λ

2−R2
1−R

2
2

2R1R2
, − 1

R2
+ 1

R1
≤ λ ≤ 1

R2
+ 1

R1
,

• when 0 < t < 1, the boundary of F (M) consists of the points (Jλ, Hλ) ∈ R2 with

Jλ = t(1− t)f(λ)−R2(1− t)λ+R1R2λ
2

tλ
, Hλ = t(1− t)− tR1λ+R1R2λ

2f(λ)
R2λ

for λ ∈ f−1([−1, 1]). It is a closed continuous curve C in R2, and F (M) is the compact domain
enclosed by C.

One can see what this image looks like in Figure 5. Of course, the first part of the proposition is not
surprising, since it is easy to check that the system is toric if R1 = 1, and toric up to a “vertical scaling”
(that is by modifying the second factor of the symplectic form by a multiplicative constant) otherwise
when t = 0, hence the image of the momentum map is a convex polygon [2, 11]. Observe also that the
results of this section are consistent with what we found when studying the critical points of maximal
corank of F . Indeed, when t− < t < t+, there are only three elliptic-elliptic points (corresponding
to corners on the boundary of F (M)) and the boundary of F (M) is the union of three parametrized
curves, while for 0 ≤ t < t− and t+ < t ≤ 1 there are four elliptic-elliptic points and the boundary of
F (M) is the union of four parametrized curves.
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Proof. We leave the cases t = 0 and t = 1 to the reader and assume that t /∈ {0, 1}. As the image
of a compact, connected manifold by a continuous function, F (M) is compact and connected. We
saw in the proof of Lemma 2.4 that the only critical points of J are m0,m1,m2 and m3. Hence, for
E 6= J(mi), the level set J−1(E) is a smooth compact manifold, therefore H admits a minimum and
a maximum on J−1(E). The critical points of H on J−1(E) are the critical points of corank one of
F , thus they are given by Proposition 2.7. A straightforward computation shows that their images by
J and H are the expressions Jλ and Hλ written in the statement of the proposition, and for a given
E 6= J(mi), there are exactly two values of Hλ such that Jλ = E, the minimum and the maximum
mentioned above.

Definition 2.10. An integrable system G = (g1, g2) on a compact connected four dimensional sym-
plectic manifold N is said to be of toric type if there exists an effective Hamiltonian T2-action on N
whose momentum map is of the form f ◦G, where f is a local diffeomorphism from G(N) to its image.

Corollary 2.11. The system F = (J,H) of coupled angular momenta forms an integrable system of
toric type if t < t− or t > t+, and a semitoric system with one focus-focus singularity if t− < t < t+.
It is even toric when t = 0 and R1 = 1.

Proof. We already saw that J and H Poisson commute, and that the critical points of corank two of
F are all non-degenerate. One readily checks that this is also true for its critical points of corank one,
which are therefore of elliptic-transverse type by the above considerations (see Appendix B for more
details). Hence (J,H) is an integrable system; since no singularity has hyperbolic components, it is
almost-toric. It is easy to check that the Hamiltonian flow of J at time s corresponds to the rotation
of angle s around the z1-axis in the first factor and the z2-axis in the second factor, thus J generates
an effective circle action, so the system is semitoric. By Corollary 3.5 in [31], it is of toric type for
0 ≤ t < t− and t+ < t ≤ 1 because it has no focus-focus singularity.

3 Symplectic invariants in the t = 1/2 case
It follows from the previous study that F = (J,H) is always a simple semitoric system with one
focus-focus value when t = 1/2, since we always have t− < 1/2 < t+. As already mentioned earlier,
the symplectic classification of these systems has been achieved by the second author and Vũ Ngo.c
[22, 23]; it involves five invariants that we quickly describe here for the sake of completeness.

3.1 Description of the invariants
As it is the case in our example, we will assume that (M,ω) is a compact connected symplectic
manifold; in the non-compact case, the polygonal invariant is not exactly a polygon in the usual sense.
Let F = (J,H) be a simple semitoric system on (M,ω). The first invariant is extremely simple; it is
the number mf of focus-focus critical values of F , which in our case is equal to one. Consequently,
and since the notation becomes heavy when there is more than one focus-focus critical value, we will
only state the definitions of the other invariants in the case mf = 1. We only explain here the main
ingredients appearing in these invariants; for a precise account on these, we refer the reader to [22, 27].
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The Taylor series invariant. Let m0 be the unique critical point of F of focus-focus type and let
c0 = F (m0) be the corresponding critical value. Endowing R4 with coordinates (û1, û2, ξ̂1, ξ̂2) and
symplectic form dû1 ∧ dξ̂1 + dû2 ∧ dξ̂2, it follows from Eliasson’s normal form theorem [9] that there
exist neighborhoods U of m0 in M and V of the origin in R4, a local symplectomorphism φ : V → U
sending the origin to m0, and a local diffeomorphism g = (g1, g2) : (R2, 0)→ (R2, 0) with ∂g2

∂y > 0 (note
that this sign is important and was forgotten in [22]) such that F ◦ φ = g ◦ q, where the components
of q satisfy

q1 = û1ξ̂2 − û2ξ̂1, q2 = û1ξ̂1 + û2ξ̂2. (4)

Hence there exists a global momentum map G for the singular foliation defined by F which agrees
with q ◦ φ−1 on U . Let us write G = (G1, G2) and for z ∈ R2 ' C, Λz = G−1(z). It follows from
the above normal form that near m0, the trajectories of the Hamiltonian flow of g1 must be periodic,
with primitive period 2π. For z 6= 0, let A be a point on Λz, and define the quantity τ2(z) > 0 as the
smallest positive time it takes the Hamiltonian flow of G2 to meet the trajectory of the Hamiltonian
flow of G1 passing through A. Let τ1(z) ∈ R/2πZ be the time that it takes to go back to A from this
meeting point following the flow of G1. Observe that the two numbers τ1(z), τ2(z) do not depend on
the choice of A ∈ Λz. Now, let log be some determination of the complex logarithm. It was proved in
[30, Proposition 3.1] that σ1, σ2 defined as

σ1(z) = τ1(z)−=(log z), σ2(z) = τ2(z) + <(log z)

extend to smooth single-valued functions in a neighborhood of z = 0 and that the differential form σ =
σ1dz1+σ2dz2 is closed. In fact, one must be very careful when translating the results of [30], because in
this paper another convention was adopted, namely q1 and q2 where inverted. We may, and will, choose
the lift of τ2 to R such that σ2(0) belongs to [0, 2π). Let S be the unique smooth function defined near
the origin in R2 such that dS = σ and S(0, 0) = 0; the Taylor series invariant S∞ ∈ R[[X,Y ]] is the
Taylor expansion of S at the origin. It is of the form S∞ = a1X + a2Y +

∑
i+j>1 bijX

iY j .

The polygonal invariant. We consider the plane R2 with its standard affine structure and orien-
tation. Let T ⊂ GL(2,Z) n R2 be the subgroup of integral-affine transformations leaving a vertical
line invariant; in other words, T consists of integral-affine transformations obtained by composing a
vertical translation with a transformation of the form T k, k ∈ Z, with

T =
(

1 0
1 1

)
∈ GL(2,Z).

Let Vert(R2) be the set of vertical lines in R2, and choose ` ∈ Vert(R2); it divides the plane into two
half-planes, H left on the left and Hright on the right. Let n ∈ Z. Fix an origin in `, and define the
piecewise integral-affine transformation tn` : R2 → R2 as the identity on H left and as Tn on Hright.
Now, let `0 be the vertical line passing through c0. Let G = {−1, 1}; for ε ∈ G, let `ε0 ⊂ `0 be the
vertical half-line starting at c0 and extending upwards if ε = 1 and downwards if ε = −1. From this
data, one can construct a rational convex polygon ∆, that is a convex polygon whose edges are directed
along vectors with rational coefficients, associated with F , as follows. Let B = F (M) and let Br be
the set of regular values of F , which is endowed with an integral-affine structure coming from action
variables.

Theorem 3.1 ([31, Theorem 3.8]). For every ε ∈ G, there exists a homeomorphism f = fε : B → ∆,
where ∆ = f(B) ⊂ R2, such that
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• f|B\`ε0 is a diffeomorphism into its image,

• f|Br\`ε0 sends the integral affine structure of Br to the standard integral affine structure of R2,

• f preserves J , i.e. is of the form f(x, y) = (x, f2(x, y)),

• ∆ is a rational convex polygon.

Such a ∆ is called a generalized toric moment polygon for (M,ω, F ), and µ = f ◦ F is called a
generalized toric momentum map for (M,ω, F ). This polygon ∆, however, is not yet the invariant that
we are trying to define since it is highly non unique. It depends on the choice of

• an initial set of action variables f0 near a regular Liouville torus; if we choose a different one, f
will be composed on the left with an element τ of T , and ∆ will become τ(∆),

• the choice of ε ∈ G; if we choose δ instead of ε, f will be composed on the left by tn`0 with
n = (ε− δ)/2, and ∆ will become tn`0(∆).

A weighted polygon is a triple of the form ∆weight = (∆, `λ, ε) where ∆ is a rational convex polygon,
`λ is the vertical line {x = λ} ⊂ R2 and ε ∈ G. The group G × T acts on the set of weighted polygons
via the formula

(δ, τ) · (∆, `λ, ε) =
(
tn`λ(τ(∆)), δε

)
with n = (ε − δ)/2. The G part of this action may not preserve the convexity of ∆, but when ∆ is
a generalized toric moment polygon for a semitoric system, it does. Hence we say that a weighted
polygon (∆, `λ, ε) is admissible when the convexity of ∆ is preserved by the G-action, and we define
WPolyg(R2) as the set of all admissible weighted polygons. Let (∆, `0, ε) be an admissible weighted
polygon obtained as in the above theorem; then the polygonal invariant of (M,ω, F ) is the (G×T )-orbit

(G × T ) · (∆, `0, ε) ∈ WPolyg(R2)/(G × T ).

The height invariant. Let µ be a generalized toric momentum map for (M,ω, F ), and let ∆ = µ(M)
be the associated generalized toric moment polygon. Then µ(m0) belongs to the intersection of `0 with
the interior of ∆. The vertical distance

h = π2(µ(m0))− min
p∈∆∩`0

π2(p),

where π2 : R2 → R is the projection to the second factor, does not depend on the choice of µ, and
is called the height invariant of (M,ω, F ). In fact, this height invariant has the following geometric
interpretation, which we will use to compute it. Let M red = J−1(J(m0))/S1 be the reduced manifold
with respect to the S1-action generated by J ; it is endowed with a canonical symplectic form ωred.
The height invariant h is equal to the volume of {H < H(m0)} in M red (this makes sense because H
is invariant under the S1-action), with respect to |ωred|/2π.

The twisting index invariant. We only sketch the description of the twisting index invariant, and
refer the reader to [22, Section 5.2] for more details. The key point is the existence of a privileged
toric momentum map ν in a neighborhood of m0. Now, let µ be a generalized toric momentum map
for (M,ω, F ), and let (∆, `0, ε) be the corresponding weighted polygon; there exists an integer k ∈ Z
such that µ = T kν near m0. This integer k is called the twisting index of (∆, `0, ε). If we compose µ
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on the left by an affine transformation τ ∈ T with linear part T r, the twisting index becomes k + r.
So we consider the following action of G × T on WPolyg(R2)× Z:

(δ, τ) · (∆, `λ, ε, k) = (tn(τ(∆)), `λ, δε, k + r)

where n = (ε − δ)/2 and Tr is the linear part of τ . Now let (∆, `0, ε) be a weighted polygon for
(M,ω, F ) and let k be its twisting index; the twisting index invariant of (M,ω, F ) is the (G ×T )-orbit

(G × T ) · (∆, `0, ε, k) ∈
(
WPolyg(R2)× Z

)
/(G × T )

Consequently, one can always find a weighted polygon for which the twisting index is zero; nevertheless,
one should keep in mind that fixing the representative ∆ fixes the twisting index.

Coming back to our problem, our goal is to compute some of these invariants for the system (J,H)
of coupled angular momenta when t = 1/2:

J = R1z1 +R2z2, H = 1
2 (z1 + x1x2 + y1y2 + z1z2) . (5)

Actually, we will only compute the first two terms of the Taylor series invariants, and for some fixed
value of the pair (R1, R2); however, we will describe the method carefully so that one can compute
these for other values of (R1, R2).

3.2 Parametrization of the singular fiber
We start by parametrizing F−1(c0), which is given by the points (x1, y1, z1, x2, y2, z2) ∈M such that

R1z1 +R2z2 = R1 −R2, z1 + x1x2 + y1y2 + z1z2 = 0.

Observe that neither {(0, 0,−1)} × S2 nor S2 × {(0, 0, 1)} intersects F−1(c0). Indeed, the quantity
H(0, 0,−1, x2, y2, z2) = −(1+z2)/2 vanishes if and only if z2 = −1, but in this case J(0, 0,−1, x2, y2, z2) =
−(R1 +R2) 6= R1−R2; similarly, if H(x1, y1, z1, 0, 0, 1) = z1 vanishes, then J(x1, y1, z1, 0, 0, 1) = R2 6=
R1−R2. Therefore, we can identify F−1(c0) with a subset of C2 by means of stereographic projections,
from the south pole to the equatorial plane on the first factor, and from the north pole to the equatorial
plane on the second factor. In other words, we consider the diffeomorphisms

πS : S2 \ {(0, 0,−1)} → C, (x, y, z) 7→ x− iy
1 + z

, πN : S2 \ {(0, 0, 1)} → C, (x, y, z) 7→ x+ iy

1− z .

Then we get a diffeomorphism

Ψ :
(
S2 \ {(0, 0,−1)}

)
×
(
S2 \ {(0, 0, 1)}

)
⊂M → C2

(x1, y1, z1, x2, y2, z2) 7→ (πS(x1, y1, z1), πN (x2, y2, z2)) .

We want to describe the image Λ0 := Ψ(F−1(c0)) of the singular fiber; note that one has Ψ(m0) = (0, 0).
Now, let (z, w) ∈ C2; it is standard that

π−1
S (z) = 1

1 + |z|2
(
2<z,−2=z, 1− |z|2

)
, π−1

N (w) = 1
1 + |w|2

(
2<w, 2=w, |w|2 − 1

)
. (6)

In view of Equation (5), in these coordinates, J,H read

J = R1(1− |z|2)
1 + |z|2 + R2(|w|2 − 1)

1 + |w|2 , H = (1− |z|2)|w|2 + 2<(zw)
(1 + |z|2)(1 + |w|2) , (7)

19



and a straightforward computation shows that (z, w) belongs to Λ0 if and only ifR2(1 + |z|2)|w|2 = R1|z|2(1 + |w|2),

(1− |z|2)|w|2 + 2<(zw) = 0.
(8)

We will parametrize Λ0 with the help of polar coordinates; if z = ρ exp(iθ) and w = η exp(iϕ), the
system (8) becomes R2(1 + ρ2)η2 = R1ρ

2(1 + η2),

(1− ρ2)η2 + 2ρη cos(θ + ϕ) = 0.

By using the first equation and substituting η into the second equation, we obtain

η = ρ

√
R1

R2 + (R2 −R1)ρ2 , (1− ρ2)ρ2

√
R1

R2 + (R2 −R1)ρ2 + 2ρ2 cos(θ + ϕ) = 0. (9)

When ρ 6= 0, this becomes

cos(θ + ϕ) = ρ2 − 1
2

√
R1

R2 + (R2 −R1)ρ2 . (10)

So necessarily, the right hand side of this equality belongs to [−1, 1], which is equivalent to the fact
that P (ρ2) ≤ 0 where

P (τ) = R1(τ − 1)2 − 4(R2 + (R2 −R1)τ) = R1(τ + 1)
(
τ + 1− 4R2

R1

)
.

So Equation (10) can be satisfied only if ρ belongs to I = [0, ζ], where ζ =
√

4R2
R1
− 1, and when this

is the case, we get

ϕ = ε arccos
(
ρ2 − 1

2

√
R1

R2 + (R2 −R1)ρ2

)
− θ

for ε = ±1. Consequently, we define two maps Sε : I × R/2πZ→ C2, ε = ±1, by the formula

Sε(ρ, θ) =
(
ρ exp(iθ), ρf(ρ) exp

(
i

(
ε arccos

(
ρ2 − 1

2 f(ρ)
)
− θ
)))

, f(ρ) =

√
R1

R2 + (R2 −R1)ρ2 ,

and set Λε0 = Sε(I × R/2πZ).

Proposition 3.2. For ε = ±1, the map Sε is continuous, and is a diffeomorphism from (0, ζ)×R/2πZ
to Sε((0, ζ)× R/2πZ). Moreover, Λ0 = Λ−1

0 ∪ Λ1
0 and Λ−1

0 ∩ Λ1
0 = {(0, 0)} ∪ C where

C =
{(√

4R2

R1
− 1 exp(iθ),

√
R1(4R2 −R1)
2R2 −R1

exp(−iθ)
)
, θ ∈ R/2πZ

}
.

This means that Λ0 consists of two cylinders glued along (0, 0) on one end and along C on the other
end. Therefore, Λ0 is a torus with a pinch at (0, 0) (see Figure 3); of course, we already knew it, since
a focus-focus critical fiber is always a pinched torus (see for instance [29, Proposition 6.2]).
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Λ1
0

Λ−1
0

C

(0, 0)

Figure 3: The critical fiber Λ0.

Proof. The fact that Λ0 = Λ−1
0 ∪Λ1

0 comes from the above considerations. Let us prove that Λ−1
0 ∩Λ1

0 =
{(0, 0)} ∪ C; let (z, w) ∈ C2 and assume that

(z, w) =
{

(ρ1 exp(iθ1), η1 exp(iϕ1)) ∈ Λ−1
0 ,

(ρ2 exp(iθ2), η2 exp(iϕ2)) ∈ Λ1
0.

If ρ1 = 0, then necessarily ρ2 = 0, and we get that η1 = 0 = η2, so (z, w) = (0, 0). Otherwise, we have
that ρ1 = ρ2, θ1 = θ2, η1 = η2 and ϕ1 = ϕ2. But then we have that

ϕ1 = − arccos
(
ρ2

1 − 1
2 f(ρ1)

)
− θ1, ϕ2 = arccos

(
ρ2

1 − 1
2 f(ρ1)

)
− θ1,

therefore we obtain that arccos
(
ρ2

1−1
2 f(ρ1)

)
= 0. But we saw that this only happens when ρ1 = ζ,

and in this case

(z, w) =
((√

4R2

R1
− 1
)

exp(iθ1),
√
R1(4R2 −R1)
2R2 −R1

exp(−iθ1)
)
,

i.e. (z, w) belongs to C. The other statements are easily checked.

In what follows, we will also need to compute the Hamiltonian vector fields XJ and XH of J and H
on F−1(c0)\{m0}. But we will eventually want to use our parametrization and work on Λ0\{(0, 0)}; we
will slightly abuse notation and use J,H instead of J ◦Ψ−1, H ◦Ψ−1 and XJ , XH for the pushforwards
of XJ and XH by Ψ.

Lemma 3.3. The Hamiltonian vector fields of J and H read

XJ = i

(
−z ∂

∂z
+ z̄

∂

∂z̄
+ w

∂

∂w
− w̄ ∂

∂w̄

)
, XH = i

2

(
λ1(z, w) ∂

∂z
− λ1(z, w) ∂

∂z̄
+ λ2(z, w) ∂

∂w
− λ2(z, w) ∂

∂w̄

)
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where the functions λ1, λ2 are defined as

λ1(z, w) = w̄ − 2z|w|2 − z2w

R1(1 + |w|2) , λ2(z, w) = z̄ + w − w|z|2 − zw2

R2(1 + |z|2) .

We can also simplify this when (z, w) belongs to Λ0 \ {(0, 0)}.

Lemma 3.4. On Λ0 \ {(0, 0)}, we have that XH = i
2

(
− z(z+w̄)

R2w̄
∂
∂z + z̄(z̄+w)

R2w
∂
∂z̄ −

w2

R1z̄
∂
∂w + w̄2

R1z
∂
∂w̄

)
.

These two lemmas are proved in Appendix A.

3.3 The Taylor series invariant
The description of the Taylor series invariant can seem very complicated to work with; fortunately,
one can use the following results to compute its first terms. Recall that there exist local symplectic
coordinates (û1, û2, ξ̂1, ξ̂2) (Eliasson coordinates) on a neighborhood of m0 and a local diffeomorphism
g : (R2, 0) → (R2, 0) such that F = g ◦ (q1, q2) where q1, q2 are as in Equation (4). Let κ1,0 and κ2,0
be the differential forms defined near m0 in F−1(c0) \ {m0} by the conditions

κ1,0(Xq1) = −1, κ1,0(Xq2) = 0, κ2,0(Xq1) = 0, κ2,0(Xq2) = −1.

Let S∞ = a1X + a2Y +
∑
i+j>1 bijX

iY j be the Taylor series invariant of (M,ω, F ).

Theorem 3.5 ([29, Proposition 6.8], [21, Theorem 2.5]). Let γ0 be a radial simple loop in F−1(c0),
i.e. a simple loop starting on the local unstable manifold at m0 and coming back to m0 via the local
stable manifold. Then

a1 = lim
(s,t)→(0,0)

(∫ B0=γ0(1−t)

A0=γ0(s)
κ1,0 + µB0 − νA0

)
, a2 = lim

(s,t)→(0,0)

(∫ B0=γ0(1−t)

A0=γ0(s)
κ2,0 + ln(rA0σB0)

)
(11)

where for any point C close to m0 with Eliasson coordinates (û1,C , û2,C , ξ̂1,C , ξ̂2,C), the coordinates
(rC , νC) (respectively (σC , µC)) are the polar coordinates of û1,C + iû2,C (respectively ξ̂1,C + iξ̂2,C).

At first glance, this seems easier to handle than the original definition, but these formulas involve
Eliasson coordinates, which may be extremely difficult to compute. Nevertheless, the following lemma
states that we only need to use a first order approximation of these coordinates.

Lemma 3.6 ([21, Lemma 2.13]). The theorem remains true with linear Eliasson coordinates (u1, u2, ξ1, ξ2)
instead of (û1, û2, ξ̂1, ξ̂2), i.e. local symplectic coordinates such that the Hessian of F at m0 equals
φ◦(q1, q2) for some linear map φ = (φ1, φ2) with ∂φ2

∂y > 0, where q1 = u1ξ2−u2ξ1 and q2 = u1ξ1 +u2ξ2.

So we see that in order to derive the first terms in the Taylor series invariant, the first step is to
compute linear Eliasson coordinates at the focus-focus critical point m0. For this purpose, working
with general parameters R1 and R2 leads to very complicated expressions, so it is better to fix their
values once and for all. Here we choose R1 = 1, R2 = 5/2 because it simplifies the computations,
but one could fix any other values and apply the following method. For our choice of parameters, the
symplectic form and J,H read

ω = −
(
ωS2 ⊕ 5

2ωS2

)
, J = z1 + 5

2z2, H = 1
2 (z1 + x1x2 + y1y2 + z1z2) .
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Linear Eliasson coordinates. We look for symplectic coordinates (u1, u2, ξ1, ξ2) on R4 satisfying
the requirements of Lemma 3.6.

Proposition 3.7. Let φ : Tm0M → R4 be the linear isomorphism given by the formula φ(x1, x2, y1, y2) =
(u1, u2, ξ1, ξ2) with u1 = x1 + 3y1 + 5x2, u2 = 3x1 − y1 − 5y2,

ξ1 = 1
6x1 + 1

12x2 + 1
4y2, ξ2 = − 1

6y1 + 1
4x2 − 1

12y2.

Then (φ−1)∗ωm0 = du1 ∧ dξ1 + du2 ∧ dξ2 and Hess(B ◦ (F − F (m0)) ◦ φ−1 = (q1, q2) where

B =
(

1 0
− 1

3
10
3

)
.

One could check these claims directly, using the explicit formulas

q1 = −1
2(x2

1 + y2
1) + 5

4(x2
2 + y2

2), q2 = 1
6(x2

1 + y2
1) + 5

12(x2
2 + y2

2) + 5
3(x1x2 + y1y2),

and the fact that for our choice of parameters, the quadratic parts of J and H are respectively

−1
2(x2

1 + y2
1) + 5

4(x2
2 + y2

2), 1
4(x2

2 + y2
2) + 1

2(x1x2 + y1y2),

see the proof of Proposition 2.5. However, this would not give any insight on how to obtain these
coordinates, hence we describe the general method. The idea is to find a basis of Tm0M in which the
matrix A = Ω−1d2H(m0) (again, see the proof of Proposition 2.5 for notation) becomes

−α β 0 0
−β −α 0 0
0 0 α β
0 0 −β α

 (12)

for some α, β ∈ R; then (u1, u2, ξ1, ξ2) will be the coordinates associated with this basis, and we will
have Hess(J)◦φ−1 = q1 and Hess(H)◦φ−1 = βq1 +αq2. Consequently, the matrix B in the proposition

will be given as the inverse of
(

1 0
β α

)
. The details of the computation are available in Appendix A.

Construction of a radial simple loop in Λ0. The second ingredient that we will need is a radial
simple loop γ0 in Λ0, that we will construct as an integral curve of the radial vector field Xq2 . It
follows from the previous proposition that Xq2 = (−XJ + 10XH)/3, hence Lemmas 3.3 and 3.4 yield

Xq2 = − i3

(
z(2z + w̄)

w̄

∂

∂z
− z̄(2z̄ + w)

w

∂

∂z̄
+ w(z̄ + 5w)

z̄

∂

∂w
− w̄(z + 5w̄)

z

∂

∂w̄

)
on Λ0 \ {(0, 0)}. Since we want to use the parametrization of Λ0 that we obtained in the previous
section, we need to express Xq2 in polar coordinates with z = ρ exp(iθ) and w = η exp(iϕ). One has

∂

∂z
= exp(−iθ)

2

(
∂

∂ρ
− i

ρ

∂

∂θ

)
,

∂

∂z̄
= exp(iθ)

2

(
∂

∂ρ
+ i

ρ

∂

∂θ

)
,

and similarly for ∂
∂w ,

∂
∂w̄ . A straightforward computation using these relations yields the following.
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Lemma 3.8. On Λ0 \ {(0, 0)}, we have that

Xq2 = 1
3

(
2ρ2 sin(θ + ϕ)

η

∂

∂ρ
−
(

1 + 2ρ cos(θ + ϕ)
η

)
∂

∂θ
+ 5η2 sin(θ + ϕ)

ρ

∂

∂η
−
(

1 + 5η cos(θ + ϕ)
ρ

)
∂

∂ϕ

)
.

With our choice of parameters, we parametrize Λ0 by Sε : [0, 3]×R/2πZ→ C2, for ε = ±1 and set
Λε0 = Sε([0, 3]× R/2πZ) with Sε(ρ, θ) =

(
ρ exp(iθ), η(ρ, θ) exp (iϕ(ρ, θ))

)
where η and ϕ satisfy

η(ρ, θ) = ρ

√
2

5 + 3ρ2 , ϕ(ρ, θ) = ε arccos
(

ρ2 − 1√
2(5 + 3ρ2)

)
− θ.

Lemma 3.9. On Λε0 \ {(0, 0)}, we have that

Xq2 = 1
3

(
ερ
√

(ρ2 + 1)(9− ρ2) ∂
∂ρ
− ρ2 ∂

∂θ
+

5ερ
√

2(ρ2 + 1)(9− ρ2)
(5 + 3ρ2)3/2

∂

∂η
− 8ρ2

5 + 3ρ2
∂

∂ϕ

)
.

Proof. Using the relation between θ and ϕ, we compute

cos(θ + ϕ) = ρ2 − 1√
2(5 + 3ρ2)

, sin2(θ + ϕ) = 1− (ρ2 − 1)2

2(5 + 3ρ2) = (ρ2 + 1)(9− ρ2)
2(5 + 3ρ2)

and we obtain, since θ + ϕ belongs to [0, π] if ε = 1 and to [−π, 0] if ε = −1, that

sin(θ + ϕ) = ε

√
(ρ2 + 1)(9− ρ2)

2(5 + 3ρ2) .

We get the result by substituting these formulas in the expression obtained in the previous lemma.

We define the loop γ0 : [0, 1]→ Λ0 as:

γ0(t) =
{
γ̃−1(6t) if 0 ≤ t ≤ 1

2 ,

γ̃1(6(1− t)) if 1
2 ≤ t ≤ 1.

where γ̃ε : I → Λε0 is given by γ̃ε(ρ) = Sε (ρ, θε(ρ)) = (ρ exp(iθε(ρ)), η(ρ) exp (iϕε(ρ))) with

η(ρ) = ρ

√
2

5 + 3ρ2 , θε(ρ) = ε

2 arcsin
(

4− ρ2

5

)
+ επ

4 , ϕε(ρ) = ε arccos
(

ρ2 − 1√
2(5 + 3ρ2)

)
− θε(ρ).

(13)
This means that γ0 starts at (0, 0), goes through Λ−1

0 , then through Λ1
0, and ends at (0, 0). Observe

that this loop is well-defined since θε(3) = 0 and S−1(3, 0) = S1(3, 0).

Proposition 3.10. The curve γ0 is an integral curve of Xq2 .

Proof. It suffices to prove that the vector field (γ̃ε)∗ ∂∂ρ , which by construction is tangent to the image
of γ0, is colinear to Xq2 at every point of γ0. A straightforward computation using the relation between
θε and ϕε yields

η′(ρ) = 5
√

2
(5 + 3ρ2)3/2 , θ′ε(ρ) = −ερ√

(ρ2 + 1)(9− ρ2)
, ϕ′ε(ρ) = −8ερ

(5 + 3ρ2)
√

(ρ2 + 1)(9− ρ2)
,
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which means that at the point γε(ρ),

(γ̃ε)∗
∂

∂ρ
= ∂

∂ρ
− ερ√

(ρ2 + 1)(9− ρ2)
∂

∂θ
+ 5

√
2

(5 + 3ρ2)3/2
∂

∂η
− 8ερ

(5 + 3ρ2)
√

(ρ2 + 1)(9− ρ2)
∂

∂ϕ
.

Comparing this with the expression for Xq2 displayed in the previous lemma, we obtain that

Xq2 = ε

3ρ
√

(ρ2 + 1)(9− ρ2) (γ̃ε)∗
∂

∂ρ
. (14)

One final step before computing the invariants a1, a2 is to express the linear Eliasson coordinates
of points on the image of γ0 in polar coordinates.
Lemma 3.11. Let ε = ±1 and let m = (ρ exp(iθε), η exp(iϕε)) ∈ Λε0 ∩ γ0 be a point close to m0, with
η, θε and ϕε as in Equation (13). Then the linear Eliasson coordinates (u1, u2, ξ1, ξ2) of m satisfy

u1+iu2 = 2ρ ((1 + 3i) exp(iθε) + g(ρ) exp(−iϕε))
1 + ρ2 , ξ1+iξ2 = ρ (10 exp(iθε) + (1 + 3i)g(ρ) exp(−iϕε))

30(1 + ρ2)

where g(ρ) =
√

2(5 + 3ρ2). In particular,

|u1+iu2|2 =
8ρ2

(
9 + 4ρ2 − 3ε

√
(ρ2 + 1)(9− ρ2)

)
(1 + ρ2)2 , |ξ1+iξ2|2 =

ρ2
(

9 + 4ρ2 + 3ε
√

(ρ2 + 1)(9− ρ2)
)

45(1 + ρ2)2 .

Proof. The first part follows from Proposition 3.7 and Equation (6) giving (xj , yj , zj) in terms of z, w.
The second part follows from the expressions of cos(θε + ϕε) and sin(θε + ϕε) in terms of ρ, see the
proof of Lemma 3.9.

Computation of a1. We begin by computing a1. In order to do so, we introduce two points
A = (ρ exp(iθ−1), η exp(iθ−1)) ∈ Λ−1

0 ∩ γ0 and B = (ρ exp(iθ1), η exp(iϕ1)) ∈ Λ1
0 ∩ γ0 for ρ > 0 small

enough (using the notation θ±1 from Equation (13)), and write their linear Eliasson coordinates as

u1,A + iu2,A = rA(ρ) exp(iνA(ρ)), ξ1,B + iξ2,B = σB(ρ) exp(iµB(ρ)).

Since κ1,0(Xq2) = 0, Equation (11) yields a1 = limρ→0(µB(ρ)− νA(ρ)).
Proposition 3.12. For our choice of parameters t = 1/2, R1 = 1, R2 = 5/2, the term a1 in the Taylor
series invariant satisfies a1 = arctan( 9

13 ).
Proof. It follows from Lemma 3.11 that u1,A + iu2,A = CA(ρ)z(ρ) and ξ1,B + iξ2,B = CB(ρ)w(ρ) with
CA(ρ), CB(ρ) > 0 for small enough ρ > 0 and, since θ−1 = −θ1 and ϕ−1 = −ϕ1,

z(ρ) = (1 + 3i) exp(−iθ1(ρ)) + g(ρ) exp(iϕ1(ρ)), w(ρ) = 10 exp(iθ1(ρ)) + (1 + 3i)g(ρ) exp(−iϕ1(ρ)).

Using the relations g(0) =
√

10,
√

10 exp(i arccos(− 1√
10 )) = −1 + 3i and (13), one readily checks that

z(0) = 6i exp(−iθ1(0)), w(0) = 6(3− i) exp(iθ1(0)).

Consequently, νA(0) = π
2 − θ1(0), µB(0) = − arctan( 1

3 ) + θ1(0) and

a1 = µB(0)− νA(0) = 2θ1(0)− π

2 − arctan
(

1
3

)
Since 2θ1(0) = arcsin( 4

5 ) + π
2 = arctan( 4

3 ) + π
2 , the arctan addition formula yields a1 = arctan( 9

13 ).
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Computation of a2. In order to compute a2, we start by computing the integral term in Equation
(11); since κ2,0(Xq2) = −1, Equation (14) implies that∫ B

A

κ2,0 =
∫ 3

ρ

3 dτ
τ
√

(τ2 + 1)(9− τ2)
−
∫ ρ

3

3 dτ
τ
√

(τ2 + 1)(9− τ2)
,

Lemma 3.13. We have that∫ B

A

κ2,0 = − ln 5− 2 ln ρ+ ln
(

4ρ2
1 + 9 + 3

√
(ρ2 + 1)(9− ρ2)

)
. (15)

Proof. It suffices to prove that

I =
∫ 3

ρ1

dρ

ρ
√

(ρ2 + 1)(9− ρ2)
= 1

6

(
ln
(

4ρ2
1 + 9 + 3

√
(ρ2

1 + 1)(9− ρ2
1)
)
− 2 ln ρ1 − ln 5

)
.

The successive changes of variables u = ρ2 and v = u− 4 yield

I =
∫ 9

ρ2
1

du

2u
√
−u2 + 8u+ 9

=
∫ 9

ρ2
1

du

2u
√

25− (u− 4)2
=
∫ 5

ρ2
1−4

dv

2(v + 4)
√

25− v2
.

Using the change of variables v = 5 sin θ, we can rewrite this integral as

I =
∫ π

2

arcsin
(
ρ21−4

5

) dθ

2(4 + 5 sin θ) .

This integral can be computed using the usual change of variables t = tan(θ/2):

I =
∫ 1

f(ρ1)

dt

4t2 + 10t+ 4 =
∫ 1

f(ρ1)

dt

3(2t+ 1) −
∫ 1

f(ρ1)

dt

6(t+ 2) = 1
6 ln

(
f(ρ1) + 2
2f(ρ1) + 1

)
,

where f(ρ1) reads, using the identity x tan(arcsin(x)/2) = 1−
√

1− x2,

f(ρ1) = tan

arcsin
(
ρ2

1−4
5

)
2

 = 5−
√

(ρ2
1 + 1)(9− ρ2

1)
ρ2

1 − 4 .

Consequently, we obtain that

f(ρ1) + 2
2f(ρ1) + 1 = −3 + 2ρ2

1 −
√

(ρ2
1 + 1)(9− ρ2

1)
6 + ρ2

1 − 2
√

(ρ2
1 + 1)(9− ρ2

1)
= 4ρ2

1 + 9 + 3
√

(ρ2
1 + 1)(9− ρ2

1)
5ρ2

1
.

It remains to compute the logarithmic term in (11).

Proposition 3.14. For our choice of parameters t = 1/2, R1 = 1, R2 = 5/2, the term a2 in the Taylor
series invariant satisfies

a2 = 7
2 ln 2 + 3 ln 3− 3

2 ln 5.
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Proof. It follows from Lemma 3.11 that

r2
A = 8ρ2

(1 + ρ2)2

(
9 + 4ρ2 + 3

√
(ρ2 + 1)(9− ρ2)

)
, σ2

B = ρ2

45(1 + ρ2)2

(
9 + 4ρ2 + 3

√
(ρ2 + 1)(9− ρ2)

)
.

Consequently, we obtain that

ln(rAσB) = 3
2 ln 2− ln 3− 1

2 ln 5 + 2 ln ρ− 2 ln(1 + ρ2) + ln
(

9 + 4ρ2 + 3
√

(ρ2 + 1)(9− ρ2)
)

;

this equation together with Equation (15) gives∫ B

A

κ2,0 + ln(rAσB) = 3
2 ln 2− ln 3− 3

2 ln 5 + 2 ln
(

9 + 4ρ2 + 3
√

(ρ2 + 1)(9− ρ2)
)
− 2 ln(1 + ρ2)

which implies, by taking the limit when ρ goes to zero, that a2 = 7
2 ln 2+3 ln 3− 3

2 ln 5, as announced.

3.4 The polygonal invariant
Next we compute the polygonal invariant of the system (see Section 3.1 for notation).

Proposition 3.15. For t = 1/2, the polygonal invariant is the (G × T )-orbit consisting of the two
following rational convex polygons:

1. the parallelogram ∆1 with vertices at (−(R1 +R2), 0), (R1 −R2, 2R1), (R1 +R2, 2R1) and (R2 −
R1, 0), with ε = 1,

2. the trapezoid ∆2 with vertices at (−(R1 + R2), 0), (R1 + R2, 0), (R2 − R1,−2R1) and (R1 −
R2,−2R1), with ε = −1.

These polygons are depicted in Figure 4.

Proof. We use Theorem 5.3 in [31], which allows us to compute the difference between the slopes
of the top and bottom edges at a vertex x of such a convex polygon in terms of the number of
focus-focus critical points and the isotropy weights of J at the elliptic-elliptic critical points. These
isotropy weights are defined as follows; near a critical point m of elliptic-elliptic type, there exists local
symplectic coordinates (q1, q2, p1, p2) in which J can be written as

J = J(m) + a

(
q2
1 + p2

1
2

)
+ b

(
q2
2 + p2

2
2

)
+O(3).

The numbers a, b are the isotropy weights of J at m: let us compute them in our case. One readily
checks that

J = −(R1 +R2) +R1

(
x2

1 + y2
1

2

)
+R2

(
x2

2 + y2
2

2

)
+O(3)

near m1; and since ω = R1dx1 ∧ dy1 + R2dx2 ∧ dy2 at m1, the coordinates qi =
√
Riyi, pi =

√
Rixi

are symplectic. In these coordinates,

J = −(R1 +R2) + q2
1 + p2

1
2 + q2

2 + p2
2

2 +O(3),
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hence the isotropy weights are (1, 1). Similar computations show that the isotropy weights of J at m2
and m3 are (1,−1) and (−1,−1) respectively.

We can now compute the polygonal invariant. Let us first choose ε = 1, which means that we
construct the polygon by introducing a corner above c0. We may assume that c1 is fixed, so the first
vertex of the polygon is A = (−(R1 + R2), 0). We may also assume that the bottom edge e1 leaving
A is an horizontal segment going rightwards. By the discussion above, we know that the difference
between the slope of the other edge e2 leaving A and the slope of e1 (the latter being zero) is equal to
one. Therefore the slope of e2 is equal to one; the other vertex B of e2 is the intersection of e2 with the
vertical line defined by the abscissa of c0. This means that B = (R1−R2, 2R1). The difference between
the slope of the other edge e3 leaving B and the slope of e2 is equal to −1, hence e3 is horizontal. Its
other vertex C has the same abscissa as m3, so we must have C = (R1 + R2, 2R1). The difference
between the slope of e3 and the slope of the other edge e4 leaving C is equal to −1, thus e4 has slope
1. Finally, e4 meets e1 at (R2 −R1, 0), and we obtain the parallelogram described above.

The case ε = −1 follows the same lines and is left to the reader.

(R2 −R1, 0)

(R1 −R2, 2R1)

(−(R1 +R2), 0)

(R1 +R2, 2R1)

(a) ∆1, ε = 1.

(R2 −R1,−2R1)

(R1 +R2, 0)

(R1 −R2,−2R1)

(−(R1 +R2), 0)

(b) ∆2, ε = −1.

Figure 4: The polygonal invariants.

We will not compute the twisting indices of these two polygons, but let us say a few words about

them. Let `0 be the vertical line passing through c0. Recall that T =
(

1 0
1 1

)
and that for n ∈ Z, tn`0

is the piecewise integral-affine transformation equal to the identity on the left half-space defined by
`0 and to Tn on the right half-space defined by `0. We claim that ∆2 = (t1`0 ◦ T

−1)(∆1). Therefore,
the description of the behavior of the twisting index under the (G ×T )-action in Section 3.1 yields the
following result.

Lemma 3.16. The twisting indices k1, k2 of ∆1,∆2 satisfy the equality k2 = k1 − 1.

3.5 The height invariant
Recall that the height invariant h is the volume of {H < H(m0)} = {H < 0} in the reduced manifold
M red = J−1(J(m0))/S1, with respect to |ωred|/2π, with ωred the canonical symplectic form on M red.
The S1-action is given by the Hamiltonian flow of J ; in other words, in polar coordinates,

exp(is) · (ρ exp(iθ), η exp(iϕ)) = (ρ exp(i(θ − s)), η exp(i(ϕ+ s))).
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Moreover, on J−1(J(m0)), η = ρ
√

R1
R2+(R2−R1)ρ2 . Thus an element of M red can be described by two

coordinates (ρ, α), as the equivalence class[(
ρ, ρ

√
R1

R2 + (R2 −R1)ρ2 exp(iα)
)]

.

We would like to express ωred in these coordinates; by definition, for [X], [Y ] ∈ TM red, we have
ωred([X], [Y ]) = ω(X,Y ) for any choice of representatives X,Y ∈ T (J−1(c0)). But

X = µX1
∂

∂ρ
+ µX2

2
∂

∂θ
+ R2

√
R1

(R2 + (R2 −R1)ρ2)3/2
∂

∂η
+ µX2

2
∂

∂ϕ

is a representative of [X] = µX1
∂
∂ρ + µX2

∂
∂α . Therefore,

ωred([X], [Y ]) =
(

2R1ρ

(1 + ρ2)2 + 2R2
2
√
R1η

(1 + η2)2(R2 + (R2 −R1)ρ2)3/2

)
(µX1 µY2 − µX2 µY1 ).

Writing η in terms of ρ, a straightforward computation yields

ωred([X], [Y ]) = 4R1ρ

(1 + ρ2)2 (µX1 µY2 − µX2 µY1 ), i.e. ωred = 4R1ρ

(1 + ρ2)2 dρ ∧ dα.

This is consistent with the fact that the volume ofM red with respect to |ωred|/2π is equal to the length
of the vertical segment containing the image of c0 in any polygon constructed in the previous section,
that is 2R1. Indeed, ∫ 2π

0

∫ +∞

0

4R1ρ

(1 + ρ2)2
dρ ∧ dα

2π =
∫ +∞

0

4R1ρ

(1 + ρ2)2 dρ = 2R1.

Using previous considerations, we get that the height invariant is the volume of the submanifold
consisting of all elements

[(
ρ, ρ
√

R1
R2+(R2−R1)ρ2 exp(iα)

)]
∈M red satisfying√

R1

R2 + (R2 −R1)ρ2 (1− ρ2) + 2 cosα < 0.

This inequality is possible if and only if 0 < ρ <
√

4R2
R1
− 1, and it means that

arccos
(
ρ2 − 1

2

√
R1

R2 + (R2 −R1)ρ2

)
< α < 2π − arccos

(
ρ2 − 1

2

√
R1

R2 + (R2 −R1)ρ2

)
.

Consequently, we have that

h =
∫ √4Θ−1

0

4R1ρ

2π(1 + ρ2)2

(
2π − 2 arccos

(
ρ2 − 1

2

√
R1

R2 + (R2 −R1)ρ2

))
= 2R1

(
1− 2I

π

)
,
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where Θ = R2/R1 and I is the integral

I =
∫ √4Θ−1

0

ρ

(1 + ρ2)2 arccos
(
ρ2 − 1

2

√
R1

R2 + (R2 −R1)ρ2

)
dρ.

One can compute the latter as follows.

Lemma 3.17. The integral I satisfies

I = π

2 −
1
2 arccos

(
1

2
√

Θ

)
−
√

4Θ− 1
4 +

(
Θ− 1

2

)
arctan

(
4Θ− 1−

√
4Θ− 1

(2Θ− 1)(
√

4Θ− 1− 1)

)
.

This can be checked using any computer algebra software, but we give a proof in Appendix A.
Using this lemma and the considerations before it, we finally obtain the following formula for the
height invariant.

Proposition 3.18. As above, let Θ = R2/R1. The height invariant h is given by the formula

h = R1

π

(
2 arccos

(
1

2
√

Θ

)
+
√

4Θ− 1− 2(Θ− 1) arctan
(

4Θ− 1−
√

4Θ− 1
(2Θ− 1)(

√
4Θ− 1− 1)

))
.

Coming back to our example where R1 = 1, R2 = 5/2, this formula yields

h = 1
π

(
2 arccos

(
1√
10

)
+ 3− 3 arctan

(
3
4

))
≈ 1.136.

4 Quantization of F

We now want to study a quantum version of this integrable system. Namely, we want to find two
commuting self-adjoint operators Ĵ , Ĥ acting on some Hilbert space, and quantizing J,H in some
sense. To be more precise, we will be working with a semiclassical parameter, and we will ask the
principal symbols of Ĵ , Ĥ to be J,H. Note that such operators might not exist in general, see [10],
but we will see that in our example such a pair can be constructed. Since the phase space for coupled
angular momenta is compact, the quantization procedure relies on the so-called geometric quantization
[13, 28], and the quantum observables are Berezin-Toeplitz operators [5, 6, 16, 26]. We start by briefly
reviewing these notions for the sake of completeness.

4.1 Geometric quantization and Berezin-Toeplitz operators
Let (M,ω, j) be a compact, connected, Kähler manifold. Assume thatM is quantizable, i.e. that there
exists a holomorphic, Hermitian line bundle L → M whose Chern connection ∇ has curvature −iω
(a prequantum line bundle); this is equivalent to asking the cohomology class [ω/2π] to be integral.
Let K →M be another holomorphic, Hermitian line bundle; typically, we would like to take K = δ a
half-form bundle, that is a square root of the canonical line bundle Λn,0T ∗M , but such a line bundle
might not exist globally. For any positive integer k, we consider the Hilbert space

Hk = H0(M,L⊗k ⊗K), 〈φ, ψ〉 =
∫
M

hk(φ, ψ)µ
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of holomorphic sections of the line bundle L⊗k ⊗K → M . Here hk is the Hermitian metric induced
on L⊗k ⊗K by the ones on L and K, and µ is the Liouville measure associated with ω. Since M is
compact, this space is finite dimensional. The integer k is a semiclassical parameter, representing the
inverse of Planck’s constant ~, and the semiclassical limit is k → +∞.

The quantum observables, Berezin-Toeplitz operators, are sequences of operators defined as follows.
Let L2(M,L⊗k⊗K) be the completion of the space C∞(L⊗k⊗K) of smooth sections of L⊗k⊗K →M
with respect to the scalar product 〈·, ·〉, and let Πk be the orthogonal projector from L2(M,L⊗k ⊗K)
to the quantum space Hk.

Definition 4.1. A Berezin-Toeplitz operator is a sequence of operators (Tk : Hk → Hk)k≥1 of the form
Tk = ΠkMf(·,k) + Rk for some sequence of smooth functions f(·, k) with an asymptotic expansion of
the form f(·, k) =

∑
`≥0 k

−`f` in the C∞-topology, and some sequence of operators Rk whose operator
norm ‖Rk‖ is a O(k−∞), that is a O(k−N ) for every N ≥ 1.

Here Mf stands for the operator of multiplication by f . The first term f0 in the above asymptotic
expansion is the principal symbol of Tk.

4.2 Quantization of the sphere
In order to use this recipe to quantize the sphere S2, we start by working on CP1, and consider
the tautological line bundle O(−1) =

{
([u], v) ∈ CP1 × C2 | v ∈ Cu

}
⊂ CP1 × C2, endowed with its

natural holomorphic and Hermitian structures. One can check that the associated Chern connection
has curvature iωFS , where ωFS is the Fubini-Study form on CP1 (normalized so that the area of CP1

is equal to 2π). Therefore, the dual line bundle L = O(1) is a prequantum line bundle for (CP1, ωFS).
Moreover, it is well-known that the canonical bundle can be identified with O(−2); thus δ = O(−1) is a
half-form bundle. So the Hilbert spaces that we consider are H0(CP1, L⊗k ⊗ δ) = H0(CP1,O(k − 1)).
Now, given an integer p ≥ 1, it is standard that H0(CP1,O(p)) can be identified with the space
Cp[z1, z2] of homogeneous polynomials of degree p in two complex variables. In this isomorphism, the
scalar product becomes

〈P,Q〉 =
∫
C

P (1, z)Q(1, z)
(1 + |z|2)p+2 |dz ∧ dz̄|.

To come back to S2, we use the stereographic projection (for instance from the north pole to the
equatorial plane); one can check that the pullback of ωFS by the latter is − 1

2ωS2 (actually, we already
used this result in a previous section). There exist very explicit formulas for the quantization of the
coordinates (x0, y0, z0) on S2. In what follows, we identify Cp[z1, z2] with the space of polynomials of
one complex variable z of degree less than or equal to p; the following result holds in this identification.

Lemma 4.2. The self-adjoint operators

Tp(x0) = 1
p+ 2

(
(1− z2) d

dz
+ pz

)
, Tp(y0) = i

p+ 2

(
(1 + z2) d

dz
− pz

)
, Tp(z0) = 1

p+ 2

(
2z d
dz
− p Id

)
are Berezin-Toeplitz operators acting on H0(CP1,O(p)) with respective principal symbols x0, y0, z0.

For a proof, see for instance [3, Lemma 3.4]. One readily checks that these operators satisfy the
commutation relation

[Tp(x0), Tp(y0)] = 2i
p+ 2Tp(z0) (16)
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and its cyclic permutations. Now, one can check that the family

φ` =

√
(p+ 1)

(
p
`

)
2π zp−`, 0 ≤ ` ≤ p

is an orthonormal basis of H0(CP1,O(p)). A direct computation shows the following.

Lemma 4.3. The action of Tp(x0), Tp(y0) and Tp(z0) in the basis (φ`)0≤`≤p is given by the formulas

1. Tp(x0)φ` = 1
p+2

(√
`(p− `+ 1) φ`−1 +

√
(`+ 1)(p− `) φ`+1

)
,

2. Tp(y0)φ` = −i
p+2

(√
`(p− `+ 1) φ`−1 −

√
(`+ 1)(p− `) φ`+1

)
,

3. Tp(z0)φ` =
(
p−2`
p+2

)
φ`.

Here we have used the convention φ−1 = 0 = φp+1.

4.3 Quantum coupled angular momenta
Now we want to quantize M = S2 × S2 with symplectic form −(R1ωS2 ⊗ R2ωS2). This is possible if
and only if R1 and R2 are positive half-integers. In this case, the external tensor product

L = O(2R1) �O(2R2) = p∗1O(2R1)⊗ p∗2O(2R2)

is a prequantum line bundle over CP1×CP1, where pi : CP1×CP1 → CP1, i = 1, 2, are the natural pro-
jections to the first and second factor. Moreover, the line bundle δ = O(−1)�O(−1) is a half-form bun-
dle over CP1×CP1, hence the quantum spaces areHk = H0 (CP1 × CP1,O(2kR1 − 1) �O(2kR2 − 1)

)
for k ≥ 1 integer. By a version of the Künneth formula for the Dolbeault cohomology [25], this yields

Hk = H0 (CP1,O(2kR1 − 1)
)
⊗H0 (CP1,O(2kR2 − 1)

)
.

Let us now turn to quantum observables. For i = 1, 2, we consider the operators

Xi =
(

1 + 1
2kRi

)
T2kRi−1(xi), Yi =

(
1 + 1

2kRi

)
T2kRi−1(yi), Zi =

(
1 + 1

2kRi

)
T2kRi−1(zi)

acting on H0 (CP1,O(2kRi − 1)
)
. It follows from Lemma 4.2 that the operators

Ĵk = R1Z1 +R2Z2, Ĥk = (1− t)Z1 ⊗ Id + t (X1 ⊗X2 + Y1 ⊗ Y2 + Z1 ⊗ Z2) (17)

acting on Hk are Berezin-Toeplitz operators with principal symbols J and H respectively. Indeed,
multiplying by a scalar of the form 1 +O

(
k−1) does not change the principal symbol.

Lemma 4.4. The operators Ĵk and Ĥk commute.

Proof. We have that

[Ĵk, Ĥk] = t(R1[Z1⊗ Id, X1⊗X2] +R1[Z1⊗ Id, Y1⊗Y2] +R2[Id⊗Z2, X1⊗X2] +R2[Id⊗Z2, Y1⊗Y2]).
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Using the commutation relations (16), we obtain that

[Z1 ⊗ Id, X1 ⊗X2] = [Z1, X1]⊗X2 = i

kR1
Y1 ⊗X2.

Similarly, we get

[Z1⊗Id, Y1⊗Y2] = − i

kR1
X1⊗Y2, [Id⊗Z2, X1⊗X2] = i

kR2
X1⊗Y2, [Id⊗Z2, Y1⊗Y2] = − i

kR2
Y1⊗X2.

Using these relations, we obtain that [Ĵk, Ĥk] = 0.

4.4 Joint spectrum
We want to compute the joint spectrum of (Ĵk, Ĥk), which is the set of elements (λ1, λ2) ∈ R2 such
that there exists a common eigenvector v 6= 0 ∈ Hk such that Ĵkv = λ1v and Ĥkv = λ2v. In order to
do so, we start by finding the eigenvalues of Ĵk. We start by endowing Hk with the orthonormal basis

g`,m = e` ⊗ fm, 0 ≤ ` ≤ 2kR1 − 1, 0 ≤ m ≤ 2kR2 − 1

where e`, fm are defined by

e` =

√
2kR1

(2kR1−1
`

)
2π z2kR1−1−`, fm =

√
2kR2

(2kR2−1
m

)
2π w2kR2−1−m

in the identification ofH0 (CP1,O(2kR1 − 1)
)
with the space of polynomials of degree at most 2kR1−1

in the variable z and ofH0 (CP1,O(2kR2 − 1)
)
with the space of polynomials of degree at most 2kR2−1

in the variable w.

Lemma 4.5. The eigenvalues of Ĵk are the numbers λ(k)
j for 0 ≤ j ≤ 2(k(R1 +R2)− 1), where

λ
(k)
j = R1 +R2 −

j + 1
k

.

Proof. It follows from Lemma 4.3 that

Z1e` = 2kR1 − 1− 2`
2kR1

e`, Z2fm = 2kR2 − 1− 2m
2kR2

fm.

Since Ĵkg`,m = R1Z1e` ⊗ fm +R2e` ⊗ Z2fm, this yields

Ĵkg`,m = 2k(R1 +R2)− 2− 2(`+m)
2k g`,m =

(
R1 +R2 −

`+m+ 1
k

)
g`,m.

In order to compute the joint spectrum of Ĵk and Ĥk, we need to find the eigenvalues of the
restriction of Ĥk to a given eigenspace of Ĵk. The eigenspace associated with the eigenvalue λ(k)

j is

E
λ

(k)
j

= Span {g`,m| `+m = j, 0 ≤ ` ≤ 2kR1 − 1, 0 ≤ m ≤ 2kR2 − 1} .

In order to compute an orthonormal basis for E
λ

(k)
j

, we need to separate the three following cases:
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1. if 0 ≤ j ≤ 2kR1 − 1, then E
λ

(k)
j

= Span (g0,j , g1,j−1, . . . , gj,0), which has dimension j + 1,

2. if 2kR1 ≤ j ≤ 2kR2 − 1, then E
λ

(k)
j

= Span (g0,j , g1,j−1, . . . , g2kR1−1,j−2kR1+1), which has di-
mension 2kR1,

3. if 2kR2 ≤ j ≤ 2(k(R1 + R2) − 1), then E
λ

(k)
j

= Span (gj−2kR2+1,2kR2−1, . . . , g2kR1−1,j−2kR1+1),
which has dimension 2k(R1 +R2)− (j + 1).

A direct computation using these formulas shows that the sum of the dimensions of the eigenspaces
of Ĵk is indeed equal to 4k2R1R2 = dimHk. Now that we have this very explicit description, it only
remains to understand how Ĥk acts on a basis element g`,m.

Lemma 4.6. Using the convention e−1 = 0 = e2kR1 and f−1 = 0 = f2kR2 , one has

Ĥkg`,m = 1
4k2R1R2

(
2t
√
`(2kR1 − `)(m+ 1)(2kR2 − 1−m) g`−1,m+1

+ (2(kR1 − `)− 1) (2kR2 − (2m+ 1)t)g`,m + 2t
√

(`+ 1)(2kR1 − 1− `)m(2kR2 −m) g`+1,m−1

)
.

Remark 4.7. This formula is consistent with the fact that Ĥk preserves the eigenspaces of Ĵk; indeed,
if (`,m) is such that `+m = j, the same holds for (`− 1,m+ 1) and (`+ 1,m− 1).

Proof. Again, it directly follows from Lemma 4.3 that

(Z1 ⊗ Id)g`,m = 2(kR1 − `)− 1
2kR1

g`,m, (Z1 ⊗ Z2)g`,m = (2(kR1 − `)− 1)(2(kR2 −m)− 1)
4k2R1R2

g`,m.

Therefore, we obtain that

((1− t)(Z1 ⊗ Id) + tZ1 ⊗ Z2) g`,m = (2(kR1 − `)− 1) (2kR2 − (2m+ 1)t)
4k2R1R2

g`,m.

It remains to understand how the operator X1 ⊗ X2 + Y1 ⊗ Y2 acts on g`,m. Using Lemma 4.3, we
obtain that

(X1 ⊗X2)g`,m = 1
4k2R1R2

(a`,mg`−1,m−1 + b`,mg`−1,m+1 + c`,mg`+1,m−1 + d`,mg`+1,m+1)

where a`,m =
√
`(2kR1 − `)m(2kR2 −m), b`,m =

√
`(2kR1 − `)(m+ 1)(2kR2 − 1−m),

c`,m =
√

(`+ 1)(2kR1 − 1− `)m(2kR2 −m) and d`,m =
√

(`+ 1)(2kR1 − 1− `)(m+ 1)(2kR2 − 1−m).
Similarly, we obtain that

(Y1 ⊗ Y2)g`,m = 1
4k2R1R2

(−a`,mg`−1,m−1 + b`,mg`−1,m+1 + c`,mg`+1,m−1 − d`,mg`+1,m+1) .

Consequently, (X1 ⊗X2 + Y1 ⊗ Y2)g`,m = 1
4k2R1R2

(2b`,mg`−1,m+1 + 2c`,mg`+1,m−1).
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Now we have everything that we need in order to compute the matrices of the restrictions Ĥ(j)
k of

Ĥk to the eigenspaces E
λ

(k)
j

in the bases introduced above, hence the joint spectrum

JSp
(
Ĵk, Ĥk

)
=
{(
λ

(k)
j , λ

)
| 0 ≤ j ≤ 2(k(R1 +R2)− 1), λ ∈ Sp

(
Ĥ

(j)
k

)}
.

We display this joint spectrum for certain values of the parameters in Figure 5.
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Figure 5: The blue dots constitute the joint spectrum of the quantized coupled angular momenta
(Ĵk, Ĥk) for different values of t for R1 = 1, R2 = 5/2 and k = 5. The red line indicates the boundary
of F (M); the center of the black circle corresponds to the critical value c0 = (− 3

2 , 1− 2t).
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4.5 Conjectural Bohr-Sommerfeld rules
In this section, we state a conjecture regarding the description of the joint spectrum of a pair of
commuting self-adjoint Berezin-Toeplitz operators near a focus-focus critical value of the map formed
by their principal symbols. We also give numerical evidence for this conjecture using the operators
constructed above (or, if one believes in the conjecture, numerical methods to recover the coefficient
a2 and the height invariant). Note that a similar conjecture was stated in [21, Conjecture 5.2], but we
give here a more precise version taking into account the specificities of Berezin-Toeplitz operators.

Let (M,ω) be a compact, connected four dimensional Kähler manifold, endowed with a prequantum
line bundle (L,∇) → M . In order to simplify the discussion, let us assume that there exists a half-
form bundle δ → M , with a given line bundle isomorphism ϕ : δ⊗2 → Λn,0T ∗M ; we could still state
a conjecture without this assumption, but it would be more complicated (observe also that in the
example above, such a half-form bundle exists). Let Ak, Bk be two commuting self-adjoint Berezin-
Toeplitz operators acting on Hk = H0(M,L⊗k ⊗ δ), with respective principal symbols f and g and
subprincipal symbols r and s (for a definition of the subprincipal symbol in this context, see [7]).
Assume also that (0, 0) is a critical value of focus-focus type for F = (f, g), and that there is a unique
critical point m0 on F−1(0, 0). We want to describe the joint spectrum Σk of (Ak, Bk) near (0, 0).

Let γ ⊂M be an embedded closed curve. The principal action of γ is the number c0(γ) ∈ Z/2πZ
such that the parallel transport along γ in (L,∇) is the multiplication by exp(ic0(γ)). We also define
an index ε(γ) ∈ {0, 1} in the following way. Let δγ be the restriction of δ to γ, and consider the map
ϕγ : δγ → T ∗γ ⊗ C, u 7→ ι∗ϕ(u) where ι is the embedding of γ into M . It is an isomorphism of line
bundles, and the set {u ∈ δγ | ϕγ(u⊗2) > 0} has either one connected component, in which case we
set ε(γ) = 1, or two connected components, in which case we set ε(γ) = 0. Finally, let γ0 be a radial
simple loop on F−1(0, 0).

Conjecture 4.8. There exist sequences of functions λ(t, k), e(1)(t, k), e(2)(t, k) ∈ C∞(R2,R) having
asymptotic expansions of the form

λ(t, k) =
∑
`≥−1

k−`λ`, e(i)(t, k) =
∑
`≥0

k−`e
(i)
`

for i = 1, 2, for the C∞-topology, such that for every compact neighborhood K of the origin in R2

and for every family t = (t1, t2) ∈ K, the pair (k−1t1, k
−1t2) belongs to Σk + O(k−∞) if and only if

e(1)(t, k) = n+O(k−∞) for some n ∈ Z and

λ(t, k) + |n|π2 − e
(2)(t, k) ln(2k−1)− 2 arg

(
Γ
(
ie(2)(t, k) + |n|+ 1

2

))
∈ 2πZ +O(k−∞).

Here, Γ is the Gamma function. Furthermore,

• λ−1(t) = c0(γ0), λ0(t) = Iγ0(t) + ε(γ0)π, where Iγ0 is a regularized integral (the same as in the
pseudodifferential case, see [29, Corollary 6.10]);

•

e(1)
0 (t)

e
(2)
0 (t)

 = B

(
t1 − r(m0)
t2 − s(m0)

)
where B stands for a 2×2 matrix such that B◦(d2f, d2g) = (q1, q2)

near the focus-focus critical point (see Equation (4) and the discussion preceding it).

This conjecture seems very plausible because a similar result exists for pseudodifferential operators
[29, Theorem 7.5], the so-called Bohr-Sommerfeld conditions. Furthermore, Berezin-Toeplitz operators
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are microlocally equivalent to pseudodifferential operators, and Bohr-Sommerfeld conditions, similar
to the ones for pseudodifferential operators, have been obtained for these operators near elliptic [14]
and hyperbolic points [15] in one degree of freedom. Thus, there is very little doubt that the conjecture
could be proved, in a straightforward but tedious way, by adapting the methods in [29].

Now, assume for simplicity that for every integer k ≥ 1, zero is an eigenvalue of Ak. Let E(k)
0 ≤

E
(k)
1 ≤ . . . be the eigenvalues of the restriction of Bk to kerAk. Following [29, Theorem 7.6] (see also

[21, Section 5.3]), if true, the above conjecture would imply in particular that

min
p

(
k
(
E

(k)
p+1 − E(k)

p

))
= 2πα

ln k + a2 + ln 2 + γ
+O(k−1)

where α =
∥∥∥∥B−1

(
0
1

)∥∥∥∥, γ is the Euler-Mascheroni constant and S∞ = a1X+a2Y +
∑
i+j>1 bijX

iY j is

the Taylor series defined in Section 3.1. Coming back to our system (J,H) of coupled angular momenta
with t = 1/2 and its quantum counterpart (Ĵk, Ĥk) (taking into account the fact that the focus-focus
value is not (0, 0) but (R1−R2, 0)), it is clear from Lemma 4.5 that R1−R2 is always in the spectrum
of Ĵk, and B is of the form

B =
(

1 0
a21 a22

)
,

so the above formula gives

min
p

(
k
(
E

(k)
p+1 − E(k)

p

))
= 2π
|a22|(ln k + a2 + ln 2 + γ) +O(k−1).

Let us test this numerically on our example with R1 = 1 and R2 = 5/2; in this case, we know from
Propositions 3.7 and 3.14 that

B =
(

1 0
− 1

3
10
3

)
, a2 = 7

2 ln 2 + 3 ln 3− 3
2 ln 5.

Consequently, the asymptotics

min
p

(
k
(
E

(k)
p+1 − E(k)

p

))
= 3π

5(ln k + 9
2 ln 2 + 3 ln 3− 3

2 ln 5 + γ)
+O(k−1)

should hold; this is checked in Figure 6.

4.6 Recovering the height invariant from the joint spectrum
To conclude, let us briefly indicate how we can also use the joint spectrum to check that we have found
the right formula for the height invariant h in Proposition 3.18. Indeed, assuming once again that
Conjecture 4.8 holds, one can use a Weyl law to relate h to the number of negative eigenvalues of the
restriction of Ĥk to the kernel of Ĵk − (R1 −R2)Id. More precisely,

h = lim
k→+∞

k−1#
(

Sp
(
Ĥk| ker(Ĵk−(R1−R2)Id)

)
∩ (−∞, 0)

)
. (18)

We check this formula in Figure 7.
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Figure 6: The blue diamonds correspond to numerical computations of the minimal spectral gap
min

(
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p+1 − E

(k)
p

))
as a function of ln k, for t = 1/2, R1 = 1 and R2 = 5/2. The red line

corresponds to the curve ln x 7→ 3π
5(ln x+ 9

2 ln 2+3 ln 3− 3
2 ln 5+γ) , giving the theoretical equivalent of this

minimal spectral gap.
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Figure 7: Comparison of the two terms in Equation (18) for k = 500, t = 1/2, R1 = 1 and R2 =
3/2, 2, 5/2, . . . , 10. The red line corresponds to the theoretical value of h obtained in Proposition
3.18, while the blue diamonds correspond to the numerical computation of the number of negative
eigenvalues of the restriction of Ĥk to ker Ĵk, divided by k.
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A Appendix: proofs of technical results
Proof of Lemma 3.3. A standard computation shows that the symplectic form becomes

(Ψ−1)∗ω = 2iR1dz ∧ dz̄
(1 + |z|2)2 + 2iR2dw ∧ dw̄

(1 + |w|2)2 .

Moreover, we deduce from Equation (7) that

∂J

∂z
= −2R1z̄

(1 + |z|2)2 ,
∂J

∂w
= 2R2w̄

(1 + |w|2)2 .

Since J is real-valued, ∂J∂z̄ = ∂J
∂z and ∂J

∂w̄ = ∂J
∂w , and we obtain the desired result. Furthermore,

∂H

∂z
= 1

2

(
−2z̄

(1 + |z|2)2 + (2w − z̄|w|2 + z̄)(1 + |z|2)− z̄(2(zw + z̄w̄) + (1− |z|2)(|w|2 − 1))
(1 + |z|2)2(1 + |w|2)

)
,

which yields, after simplification

∂H

∂z
= w − 2z̄|w|2 − z̄2w̄

(1 + |z|2)2(1 + |w|2) .

A similar computation shows that

∂H

∂w
= z + w̄ − w̄|z|2 − z̄w̄2

(1 + |z|2)(1 + |w|2)2 ,

and we conclude by using the same argument as above.

Proof of Lemma 3.4. Let λ1(z, w), λ2(z, w) be as in the previous lemma, and let (z, w) ∈ Λ0 \{(0, 0)}.
Since z 6= 0, we get, by multiplying both the numerator and the denominator in λ1 by z̄, that

λ1(z, w) = z̄w̄ − 2|z|2|w|2 − zw|z|2

R1z̄(1 + |w|2) .

But the second equation in (8) yields z̄w̄ = −zw − |w|2 + |z|2|w|2, hence

λ1(z, w) = −zw − |w|
2 − |z|2|w|2 − zw|z|2

R1z̄(1 + |w|2) = −w(z + w̄)(1 + |z|2)
R1z̄(1 + |w|2) .

The first equation in (8) allows us to further simplify this expression and to obtain

λ1(z, w) = −zw(z + w̄)(1 + |z|2)
R2|w|2(1 + |z|2) = −z(z + w̄)

R2w̄
.

Now, since w 6= 0, we have that

λ2(z, w) = z̄|w|2 + w|w|2 − w|z|2|w|2 − zw2|w|2

R2|w|2(1 + |z|2) = z̄|w|2 − zw2|w|2 + w|w|2(1− |z|2)
R2|w|2(1 + |z|2) .

The second equation in (8) gives

z̄|w|2 − zw2|w|2 + w|w|2(1− |z|2) = z̄|w|2 − zw2|w|2 − zw2 − z̄|w|2 = −zw2(1 + |w|2),

thus, using the first one again, we finally obtain that λ2(z, w) = − w2

R1z̄
.
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Proof of Proposition 3.7. We start by diagonalizing A over C. With our choice of parameters, it follows
from Equation (3) that

A =


0 0 0 1

2
0 0 − 1

2 0
0 − 1

5 0 − 1
51

5 0 1
5 0

 .

A has eigenvalues λ1 = 3+i
10 , λ̄1, λ2 = −λ1, λ̄2 with respective eigenvectors X1, X1, X2, X2 where

X1 = 1
2


3− i
−1− 3i

2i
2

 , X2 = 1
2


−3 + i
−1− 3i
−2i

2

 .

Let Eλ be the eigenspace associated with λ, and let F = Eλ1 ⊕ Eλ̄1
and G = Eλ2 ⊕ Eλ̄2

; then
Tm0M = F ⊕G and a real basis of F is given by

Y1 = X1 +X1 =


3
−1
0
2

 , Y2 = −i(X1 −X1) =


−1
−3
2
0

 .

There exists a unique basis (Z1, Z2) of G such that (Y1, Y2, Z1, Z2) is a symplectic basis of Tm0M (see
for instance [17, Lemma 3.2.3]); in the latter, A will take the form displayed in Equation (12). Since

G = Span



−3
−1
0
2

 ,


1
−3
−2
0


 ,

there exists a, b, c, d ∈ R such that

Z1 =


−3a+ b
−a− 3b
−2b
2a

 , Z2 =


−3c+ d
−c− 3d
−2d
2c

 .

Recall that ωm0 = −dx1 ∧ dy1 + 5
2dx2 ∧ dy2. Hence we need to solve the system

1 = ωm0(Y1, Z1) = 6a+ 18b
0 = ωm0(Y1, Z2) = 6c+ 18d
0 = ωm0(Y2, Z1) = 18a− 6b
1 = ωm0(Y2, Z2) = 18c− 6d

.

We find a = 1
60 , b = 1

20 , c = 1
20 and d = − 1

60 , hence

Z1 = 1
30


0
−5
−3
1

 , Z2 = 1
30


−5
0
1
3

 .
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Consequently, the matrix P of change of basis from the basis B associated with (x1, y1, x2, y2) to the
basis (Y1, Y2, Z1, Z2) satisfies

P =


3 −1 0 − 1

6

−1 −3 − 1
6 0

0 2 − 1
10

1
30

2 0 1
30

1
10

 , P−1 =


1
6 0 1

12
1
4

0 − 1
6

1
4 − 1

12

−1 −3 −5 0

−3 1 0 5

 ,

which yields the desired expression for the coordinates u1, u2, ξ1, ξ2. Moreover, P−1AP is as in Equa-
tion (12), with α = −3

10 and β = 1
10 ; this gives

B =
(

1 0
1
10 − 3

10

)−1
=
(

1 0
1
3 − 10

3

)
.

This is not satisfactory since we want the lower right coefficient in this matrix to be positive. In order
to obtain a B satisfying this requirement, it suffices to perform the symplectic change of coordinates
(u1, u2, ξ1, ξ2) 7→ (−ξ1,−ξ2, u1, u2).

Proof of Lemma 3.17. Let g(ρ) = arccos
(
ρ2−1

2

√
R1

R2+(R2−R1)ρ2

)
= arccos

(
ρ2−1

2

√
1

Θ+(Θ−1)ρ2

)
; a te-

dious but straightforward computation yields

g′(ρ) = −((Θ− 1)ρ3 + (3Θ− 1)ρ)
(Θ + (Θ− 1)ρ2)

√
(1 + ρ2)(4Θ− 1− ρ2)

,

and therefore an integration by parts leads to

I = 1
2 arccos

(
−1

2
√

Θ

)
− J

2 = π

2 −
1
2 arccos

(
1

2
√

Θ

)
− J

2

where J is the integral

J =
∫ √4Θ−1

0

(Θ− 1)ρ3 + (3Θ− 1)ρ
(1 + ρ2)(Θ + (Θ− 1)ρ2)

√
(1 + ρ2)(4Θ− 1− ρ2)

dρ.

Now, one can check that

(Θ− 1)ρ2 + 3Θ− 1
(1 + ρ2)(Θ + (Θ− 1)ρ2) = 2Θ

1 + ρ2 −
(2Θ− 1)(Θ− 1)
Θ + (Θ− 1)ρ2 ,

and consequently J = K − L with

K =
∫ √4Θ−1

0

2Θρ dρ
(1 + ρ2)3/2

√
4Θ− 1− ρ2

, L =
∫ √4Θ−1

0

(2Θ− 1)(Θ− 1)ρ dρ
(Θ + (Θ− 1)ρ2)

√
(1 + ρ2)(4Θ− 1− ρ2)

.

One readily checks that

K = −1
2

∫ √4Θ−1

0
h′(ρ) dρ, h(ρ) =

√
4Θ− 1− ρ2

1 + ρ2 ,
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and therefore K = 1
2
√

4Θ− 1. Regarding L, we start by making the change of variables u = ρ2:

L = (2Θ− 1)(Θ− 1)
2

∫ 4Θ−1

0

du

(Θ + (Θ− 1)u)
√

4Θ2 − (u+ 1− 2Θ)2
.

Now, we perform the changes of variables v = u+ 1− 2Θ and v = 2Θ sin θ to get

L = (2Θ− 1)(Θ− 1)
2

∫ π
2

arcsin( 1
2Θ−1)

dθ

2Θ(Θ− 1) sin θ + 2Θ2 − 2Θ + 1 .

Setting w = tan(θ/2), and using the fact that tan
( 1

2 arcsin
( 1

2Θ − 1
))

= 2Θ−
√

4Θ−1
1−2Θ yields

L = (2Θ− 1)(Θ− 1)
∫ 1

2Θ−
√

4Θ−1
1−2Θ

dw

4Θ(Θ− 1)w + (1 + w2)(2Θ2 − 2Θ + 1) .

This can be rewritten as

L = (2Θ− 1)(Θ− 1)
∫ 1

2Θ−
√

4Θ−1
1−2Θ

dw(
w
√

2Θ2 − 2Θ + 1 + 2Θ(Θ−1)√
2Θ2−2Θ+1

)2
+ 4Θ2−4Θ+1

2Θ2−2Θ+1

.

Setting z = w
√

2Θ2 − 2Θ + 1 + 2Θ(Θ−1)√
2Θ2−2Θ+1 , we finally arrive at

L = (Θ− 1)
∫ 2Θ−1

2Θ2−(2Θ2−2Θ+1)
√

4Θ−1
1+2Θ

dw

1 + w2 .

This means that

L = (Θ− 1)
(

arctan(2Θ− 1)− arctan
(

(2Θ2 − 2Θ + 1)
√

4Θ− 1− 2Θ2

(2Θ− 1)2

))
,

and we obtain that

I = π

2−
1
2 arccos

(
1

2
√

Θ

)
−
√

4Θ− 1
4 +

(
Θ− 1

2

)(
arctan(2Θ− 1)− arctan

(
(2Θ2 − 2Θ + 1)

√
4Θ− 1− 2Θ2

(2Θ− 1)2

))
.

We conclude the proof by using the arctan addition formula.

B Critical points of corank one
We explain how to prove the claim about the critical points of corank one of F = (J,Ht) in the proof
of Corollary 2.11, namely that they are non-degenerate for every t ∈]0, 1] (the case t = 0 is clear since
the system is toric up to vertical scaling). It suffices to prove that for every E in the image of J , except
the ones corresponding to critical points of corank two, the critical points of the restriction of Ht to the
symplectic quotient M red

E = J−1(E)/S1 with respect to the action generated by J are non-degenerate.
Although this is a folk result, it seems that a proof only appeared very recently in the literature [12,
Corollary 2.5]. Coming back to our particular case, let E ∈ (−(R1 +R2), R1 +R2)\{R1−R2, R2−R1};
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since the poles do not give rise to critical points on J−1(E), we may work with cylindrical coordinates
as in Section 3.5 (or as in [12, Section 3.3] where a similar computation is performed)

(xj , yj , zj) =
(√

1− z2
j cos θj ,

√
1− z2

j sin θj , zj
)
, j = 1, 2.

In these coordinates, Ht reads

Ht(θ1, z1, θ2, z2) = (1− t)z1 + t

(√
(1− z2

1)(1− z2
2) cos(θ1 − θ2) + z1z2

)
.

Since z2 can be deduced from z1 on J−1(E), namely

z2 = E −R1z1

R2
, max

(
−1, E −R2

R1

)
< z1 < min

(
1, E +R2

R1

)
and since the action of J preserves the angle θ = θ1 − θ2, we can use (z1, θ) as coordinates on M red

E :

Ht(z1, θ) = (1− t)z1 + tz1(E −R1z1)
R2

+ t cos θ
R2

√
PE(z1), PE(z1) = (1− z2

1)
(
R2

2 − (E −R1z1)2) .
The first derivatives of Ht read

∂Ht

∂θ
(z1, θ) =

−t
√
PE(z1) sin θ
R2

,
∂Ht

∂z1
(z1, θ) = 1− t+ tE

R2
− 2tR1z1

R2
+ tP ′E(z1) cos θ

2R2
√
PE(z1)

.

Hence if (z∗1 , θ∗) is a critical point, then necessarily θ∗ ∈ {0, π}, and ∂2Ht
∂θ∂z1

(z∗1 , θ∗) = 0. Let ε = cos θ∗ ∈
{−1, 1}; then one readily checks that

∂2Ht

∂θ2 (z∗1 , θ∗) =
−εt

√
PE(z∗1)
R2

,
∂2Ht

∂z2
1

(z∗1 , θ∗) = t

4R2

(
−8R1 + ε

(
2P ′′E(z∗1)PE(z∗1)− P ′E(z∗1)2

PE(z∗1)3/2

))
We claim that this last quantity has the sign of −ε; this follows from the fact that

Q(E, z1) = 2P ′′E(z1)PE(z1)− P ′E(z1)2

PE(z1)3/2 < −8R1

for any E, z1 satisfying the above bounds. In order to prove this, one may check that Q is minimal at
(E, z1) = (0, 0); since Q(0, 0) = −4

(
R2 + R2

1
R2

)
and since the function x > 0 7→ x + R2

1
x is minimal at

x = R1 with value 2R1, we obtain the desired result because R2 > R1.
In fact, this analysis gives us the sign of the determinant of the Hessian of Ht at a critical point, so

we can deduce from it that the corank one critical points are of elliptic-transverse type. Hence if one
is only interested in proving this, and not in finding a parametrization of the boundary of the image
of the momentum map, this appendix constitutes a faster way to obtain Corollary 2.11.
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[22] Á. Pelayo and S. Vũ Ngo.c. Semitoric integrable systems on symplectic 4-manifolds. Invent. Math.,
177(3):571–597, 2009.
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