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Abstract Understanding the relationship between structural and functional or-7

ganization represents one of the most important challenges in neuroscience. An8

increasing amount of studies show that this organization can be better under-9

stood by considering the brain as an interactive complex network. This approach10

has inspired a large number of computational models that combine experimental11
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Aberdeen Biomedical Imaging Centre, University of Aberdeen, Lilan Sutton Building, Forester-
hill, Aberdeen AB25 2ZD, UK
E-mail: vesna.vuksanovic@abdn.ac.uk
∗These authors contributed equally.
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data with numerical simulations of brain interactions. In this paper, we present a12

summary of a data-driven computational model of synchronization between distant13

cortical areas that share a large number of overlapping neighboring (anatomical)14

connections. Such connections are derived from in-vivo measures of brain connec-15

tivity using diffusion-weighted magnetic resonance imaging and are additionally16

informed by the presence of significant resting-state functionally correlated links17

between the areas involved. The dynamical processes of brain regions are simu-18

lated by a combination of coupled oscillator systems and a hemodynamic response19

model. The coupled oscillatory systems are represented by the Kuramoto phase os-20

cillators, thus modeling phase synchrony between regional activities. The focus of21

this modeling approach is to characterize topological properties of functional brain22

correlation related to synchronization of the regional neural activity. The proposed23

model is able to reproduce remote synchronization between brain regions reaching24

reasonable agreement with the experimental functional connectivities. We show25

that the best agreement between model and experimental data is reached for dy-26

namical states that exhibit a balance of synchrony and variations in synchrony27

providing the integration of activity between distant brain regions.28

1 Introduction29

Decoding the fundamental mechanisms underlying large-scale brain integration is30

one of the major challenges of neuroscience. A dominant hypothesis states that31

phase synchronization plays an important role for the integration of the neural32

activities between distant sites of the brain. The interaction among distributed33

brain regions through phase synchronization may form the basis for cognitive34



Synchronization in functional networks of the human brain 3

processing [1–3]. An increasing number of literature aims to establish a framework35

of models designed to deal with this issue by means of shaping patterns of the36

large-scale functional connectivity map [4–8].37

In this paper, we discuss neural synchronization using simple concepts of oscil-38

lators’ dynamics [9]. To this purpose, we review a data-driven approach that uses39

a network of Kuramoto models to simulate phase synchrony in the brain at rest40

[10–12]. This is one of the models that aim to recover the interplay between brain41

structural and functional connectivity from the perspective of coupled oscillatory42

processes [13–16]. This model shows that remote synchronization observed in the43

brain at rest may be sustained by the shape of structural connectivity and simple44

dynamical rules.45

There is evidence that brain integrative functions cannot be fully predicted46

from the anatomical structure [4,7]. Subsequently, one can argue that the dynam-47

ics of information on top of structural connections enables the communication48

between segregated brain areas. Kuramoto phase oscillator models have been used49

to explore fundamental mechanisms underlying the nature of this communication.50

The basic idea is to incorporate topological properties of the large-scale brain51

connectivity in the coupling structure of the model. These properties are usu-52

ally derived from white-matter tractography. The model that we here present also53

takes into account the functional connectivity map and transmission delays based54

on realistic distances to help to focus on connections relevant for the brain state55

under consideration.56

Within this framework, dynamical models of the resting brain based on the57

Kuramoto phase oscillators have been able to shed light on how (i) the resting-58

state brain activity emerges from a sufficient degree of noise and time delays [13,59
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14], (ii) relay-like interactions between distant brain areas emerge from modular60

network structures [11], and (iii) the anatomical hubs in the brain synchronize61

their activity [17]. A similar approach can be utilized to study pathological states62

due to the epilepsy [7], stroke [18] or schizophrenia [19]. An additional common63

feature of these models is the presence of variations in network synchrony, which64

is indicative of network metastability. This dynamical property allows for flexible65

changes of the network synchrony, i.e., partial and time-varying synchronization66

of neural activity across regions. These partial synchronization patterns in neural67

networks induce fluctuations at the level of synchrony of sub-networks leading to68

correlated fluctuations in low-frequency activity present in functional magnetic69

resonance imaging (fMRI) time series [13,17,20].70

This paper is organized as follows: In section 2, we first introduce the con-71

cept of brain networks, which can be studied using methods from graph theory.72

We then continue by describing principles of nonlinear dynamics principles behind73

synchronization models and their application on neural dynamics (section 3). In74

section 4, we investigate the role that synchrony and its variations play in brain75

activity based on simulated neural/blood-oxygen-level-dependent time series. We76

also provide new findings that combine different approaches used in previous stud-77

ies. We conclude in section 5 with a brief summary, consider model limitations,78

and suggest further studies.79

2 Brain networks and neuroimaging data80

The brain is a complex dynamical system characterized by nonlinear interactions81

and emergent behaviors. This description – today nearly a consensus among neu-82
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roscientists – contrasts the approach of brain functional specialization, a concept83

widespread until the early 20th century [21]. A common basis of both viewpoints84

is the hypothesis that every mental state is connected to a physical brain state.85

This hypothesis is known as a neural correlate [22]. The functional specialization86

approach has triggered considerable contributions to neuroscience. Nevertheless,87

it faces serious limitations, mainly when employed to investigate high-level cog-88

nitive functions. On the other hand, the complex system approach has been very89

promising for such investigations. In short, the focus from the first to the latter90

approach has been shifted from where to how cognitive functions take place in the91

brain [23].92

The popularization of the idea of the brain as a complex dynamical system was93

especially promoted by the recent development of noninvasive imaging technologies94

that were able to record the time-dependent activity in the human brain as a whole95

[24]. Among those technologies, functional magnetic resonance imaging (fMRI)96

played a particularly important role. Roughly speaking, the data recorded via97

those functional neuroimaging techniques consist of temporal series associated98

with linear and nonlinear functional relationships between brain regions and are99

understood as a proxy for neural activity. These series are recorded from collective100

signals of neural populations that form synchronized local circuits. The current101

challenge is to unveil the rules behind global brain activity and how they are102

connected to the range of cognitive states.103
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Fig. 1 Anatomical network. (a) Diffusion-weighted magnetic resonance imaging (DW-MRI)
and artistic reconstruction showing the fiber tracts. (b) Parcellation according to a cortical
anatomical atlas and density of tracts between two pairs of areas. (c) Matrix of the anatom-
ical connectivity probability of structural connections between pairs of regions. (d) Network
construction: adjacency matrix obtained by thresholding and graphical representation of the
corresponding structural brain network. Sources: The DW-MRI figure and its artistic recon-
struction is a reproduction of reference [25]. The brain images and network were created with
the help of BrainNet Viewer [26]. The data for the anatomical connectivity probability is taken
from reference [27].

2.1 Graph theory and brain connectivity maps104

Graph theory or network science is a novel way to study topology of the structural105

and functional organization of the brain which consists of describing it in terms of106

nodes (brain regions) and edges (the structural connections or functional relation-107

ships). Before we discuss how to define brain connectivity using graph-theoretical108

concepts, it is important to clarify the distinction between two different types of109

large-scale brain connectivity frequently mentioned in the literature.110

The anatomical connectivity map is the map of structural connections between111

brain regions [28]. This network is stable on shorter timescales, but it may change112

over larger times due to neuronal plasticity [23]. The classical way to map struc-113

tural connectivity is tracing neuronal paths by means of invasive and postmortem114
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methods [29]. Due to this fact, it cannot be used to create a large dataset of the hu-115

man brain. Alternatives come with the advance of neuroimaging techniques, such116

as diffusion-weighted magnetic resonance imaging (DW-MRI), where anatomical117

fibers may be inferred by means of statistical models. Such methods allow in-vivo118

tractography of white-matter fibers. See references [30–32] for details about struc-119

tural connectivity and how to acquire it from the human brain. Figure 1 depicts120

a schematic illustration of the workflow to extract a brain graph from imaging121

data. In short, the adjacency matrix is obtained from the anatomical connectivity122

probability map by thresholding, that is only probabilities above a threshold result123

in a link in the brain graph.124
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Fig. 2 Euclidean distances and fiber lengths. (a) Representation of networks, that is 90 brain
regions according to the Automated Anatomical Labeling (AAL) parcellation [33] as nodes
connected by links in the left hemisphere, between hemispheres, and in the right hemisphere
respectively. (b) Top: Histograms of Euclidean distances in the right (blue), left (cyan), and
between (red) hemispheres. Bottom: Matrix of the Euclidean distances between pairs of cortical
regions. (c) Top: Histograms of the fiber lengths in the right, left, and between hemispheres.
Bottom: Matrix of the fiber lengths between pairs of cortical regions. The data of the fiber
lengths were taken from reference [27]. The brain networks were created with help of BrainNet
Viewer [26].
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Fig. 3 Functional network. (a) Functional magnetic resonance imaging (fMRI) and blood-
oxygen-level-dependent (BOLD) signals recorded for each voxel. (b) Parcellation according
to cortical anatomical atlas and the averages of the signals from two regions. (c) Functional
correlation between BOLD time series for every pair of regions. (d) Network construction: the
adjacency matrix obtained by thresholding and the corresponding functional brain network.
The brain images and network were created with the help of BrainNet Viewer [26].

The procedure of DW-MRI leads to an unexpected result. In order to quantify125

the probability, with which two brain regions of interest are structurally con-126

nected, one constructs a three-dimensional trajectory of the fiber tract between127

the centers of those regions. This provides a gateway to measure the length of the128

connection. Figure 2 depicts the distribution and distance matrices of these fiber129

lengths in panel (c). Compared to a naive estimate based on the Euclidean dis-130

tance between regions considered in the Automated Anatomical Labeling (AAL,131

see reference [33]) shown in panel (b), one can see that the distributions of intra-132

and inter-hemispheric connections exhibit qualitatively the same shape and that133

the fiber lengths stretch to larger values. As it will be explained in detail in sec-134

tion 3.2, this distance can be used to approach transmission delays between the135

brain regions.136
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Functional relationships in the brain are usually described in the form of so137

called functional connectivity maps. They map the temporal correlations between138

regional activities [34], whose modular-like organization supports resting state139

networks as well as cognitive and behavioral functions. Therefore, they refer to140

a functional relationship irrespective of whether or not there exist anatomical141

connections. Functional connectivities are derived from time traces obtained by142

recordings of variations in the blood-oxygen-level-dependent signal (BOLD sig-143

nal) due to brain activity. For a schematic depiction of the generation of functional144

connectivity maps, see figure 3. In this work, we are interested in simulating the145

functional connectivity based on networks obtained from neuroimaging data. In146

the following, we briefly describe how a functional connectivity map, or functional147

network, can be obtained from fMRI data using graph theory.148

The fMRI data is a 3-dimensional image of the brain acquired over time. At the149

finest spatial resolution of such an image, each voxel (typically of size 1-2 mm3)150

gives rise to a single time series. For a large-scale analysis of the whole brain, the151

functional network may be defined as follows: The graph nodes represent regions152

of interest, usually defined by cortical regions obtained by parcellating the voxels153

in the fMRI measurement according to a cortical brain atlas [33,35]. Each of154

the resulting regions of interest, that is nodes in the brain network, gives rise155

to one time series that represents the BOLD signal in this region. Usually, this156

series is obtained by averaging over the respective set of voxels. Subsequently,157

network links are defined on the basis of a correlation between time series from158

each pair of regions of interest. This method yields a weighted coupled network,159

indicating the similarity in the activities of the respective nodes. These maps160

connect brain regions irrespective of the presence of actual anatomical links. It is161
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worth mentioning that fMRI captures the variation in the BOLD signal, that is,162

it is an indirect measurement of neural activity and includes several confounders163

[36]. Before constructing functional networks, the data undergoes a number of pre-164

processing steps, e.g., for motion correction, to remove spurious information, and165

band-pass filtering to improve the signal-to-noise ratio. For further details about166

data pre-processing, see references [11,37–39]. For more details about networks167

from fMRI data, see references [40–43].168

One can describe functional networks by an adjacency matrix {Aij}i,j=1,...,N ,169

in which each matrix element takes the value of unity if a pair of nodes is connected170

and zero otherwise. The pair of nodes is considered to be connected when the re-171

spective entry in the correlation matrix exceeds a predefined threshold value. There172

are different methods used to threshold the matrix and to retain only those values173

which are statistically significant. The value of the threshold has a direct influence174

on the network density [41]: the higher the threshold, the lower the network den-175

sity. By defining its adjacency matrix and thus selecting the network topology, it176

is possible to detect universal behaviors of coupled dynamical systems such as syn-177

chronization or metastability. One can also consider weighted instead of binarized178

matrices. The weight can be added to the model by considering some information179

from experimental data. For example, it can be proportional to the density of fiber180

tracts between the two cortical regions [44]. In the current approach, however, we181

aim for simplicity of the model by considering only anatomically relevant connec-182

tions of higher probability. For a detailed overview of complex brain networks, see183

reference [45].184
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2.2 Spontaneous synchronicity and resting state brain networks185

Most of the early neuroimaging analyses were designed to test the hypothesis of lo-186

calized functional brain specificity. The goal was to investigate, which region in the187

brain is activated during a specific task. This design is rooted in neuroanatomists’188

concepts of the 18th century and was largely discussed at the end of the 20th cen-189

tury [21]. In fact, several experiments had supported the paradigm that specific190

brain regions are correlated with specific functions, especially basic sensory and191

motor tasks [21]. However, the functional specificity started to receive relevant192

critical remarks. This reductionist approach could not explain high-level cognitive193

processes such as emotions, creativity, and consciousness.194

In the middle of the 1990’s, a new insight changed the focus of research and195

transformed prior knowledge. It was recognized that there are large-scale synchro-196

nization patterns in the spontaneous fluctuation of brain activities in the absence197

of external input [46]. Non-random patterns were observed in the data scanned198

from subjects in the resting state, that is lying down in the absence of tasks or at-199

tention demands. These findings were corroborated and complemented by several200

studies using different neuroimaging techniques [47]. Further descriptions of these201

patterns, termed as resting state networks (RSN), can be found in references [48,202

49]. The discovery of the RSN is considered a milestone in contemporary neuro-203

science for different reasons. It supports the regard of the brain as a dynamical204

complex system. The detection of large-scale patterns for resting state conditions205

reflects the existence of coordinated intrinsic dynamics. This spontaneous inter-206

regional synchronization indicates self-organized capability. On one hand, it has207

been suggested that RSN are related to high-level brain functions such as inter-208
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nal mental processes and consciousness. This hypothesis is supported by studies209

that show variations in statistical features of RSN in altered states of conscious-210

ness [50–52] and mental disorders such as autism [53] or schizophrenia [54]. On211

the other hand, RSN have also been detected in people subjected to deep seda-212

tion [55], sleep [56], coma [57], or even vegetative states [58]. This fact could, in213

principle, challenge the hypothesis of RSN as a signature of consciousness. How-214

ever, Barttfeld et al. show that RSN in monkey brains under deep anesthesia are215

more strongly correlated to the anatomical connectivity map in comparison to216

regular RSN in a resting state of wakefulness [59]. They show that in the case217

of loss of consciousness, the functional activity is tied to anatomical connectivity.218

Their study is in agreement with hypotheses made in previous theoretical works219

[5,60]. Functional networks in resting states where the subject is awake are char-220

acterized by long-range synchronicity and high variability of patterns. It had been221

observed that an anatomically connected pair of nodes has a high probability to222

be functionally connected. However, functional connectivity is frequently observed223

between brain regions without direct structural links [5,61]. The understanding of224

the rules that allow both long-range synchronization and flexibility of patterns on225

functional networks may be the key to decrypt the mechanisms behind high-level226

brain functions. Models using dynamical systems, e.g., oscillator models, are the227

most promising tools to tackle this challenge.228

3 Brain activity and synchronization models229

In this section, we build a bridge between nonlinear dynamics and computational230

neuroscience. At first, we summarize the concept of synchronization and then231
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develop a simple mathematical model that will be used in section 4. We also232

briefly elaborate, how a BOLD signal can be inferred from a neural time series by233

means of the Balloon-Windkessel model.234

3.1 Nonlinear dynamics and synchronization in the brain235

Synchronization plays an important role in various contexts including physics, bi-236

ology, and beyond [9,62–65]. In neuroscience, some forms of cooperative dynamics237

have been associated with pathological states like migraine, Parkinson’s disease,238

or epilepsy [66–76]. Besides these detrimental forms of synchrony, it is also con-239

sidered a crucial mechanism for recognition, learning, and processing of neural240

information.241

In general, neuronal systems can be described by physiological models such242

as the Hodgkin-Huxley equations [77]. These type of models account for many243

physiological details and processes. Accordingly, they offer a detailed description244

of a single cell. On the downside, they often consist of many equations and many245

parameters and their applicability on large ensembles of elements is highly ques-246

tionable, which also holds for a bifurcation analysis.247

On the other side of the spectrum of complexity, there are normal-form equa-248

tions. These phenomenological models capture the main dynamical behavior of249

neurons such as the type of excitability and can be coupled together in large net-250

works with reasonable numerical effort. In some cases like the FitzHugh-Nagumo251

model [78,79], they can be derived as low-dimensional approximations, which are252

better suited for a bifurcation analysis, because they contain only a few parameters253

and nonlinearities. The price that one has to pay is a vague - at best qualitative -254
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correspondence to physiological quantities like membrane potential, ionic currents,255

etc.256

Self-organized dynamics of brain regions into functional networks often follow257

the underlying structural connections. There are, however, functional correlations258

between cortical regions that are not directly connected. Thus, the mechanisms259

for functional connectivity between distant cortical regions are still subject to260

intense research efforts. For example, indirect connections can support collective261

dynamical behavior on the brain network and pronounced pair-wise correlation262

of brain regions. If such indirect connections are involved, that is, there is no263

direct anatomical link between highly-correlated regions, the dynamical pattern264

can be called remote synchronization [80,82]. The amount of synchrony depends265

on properties of the coupling topology such as the symmetry of interactions [82,266

83].267

3.2 The Kuramoto model of phase oscillators268

Neural activity evolves through brain networks as a dynamical process, which can269

be approximated by either neural fields [84] or neural models [85]. To simulate the270

dynamical behavior of such processes, one can also choose the even simpler, that271

is less complex, model of Kuramoto-like phase oscillators [11–13,16], which has272

been established as a general model for oscillatory dynamics.273

The classic Kuramoto model consists of dynamical equations with one phase274

variable for each network node [86]. The nodes are connected in an all-to-all topol-275

ogy and the interactions are mediated by sinusoidal functions of the phase differ-276
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ences of all pairs of oscillators:277

φ̇i = ωi +
K

N

N∑
j=1

sin [φj(t)− φi(t)] , i = 1, . . . , N, (1)

where K is a global coupling strength. The parameter ωi denotes the natural278

frequency of the i-th oscillator drawn from a given distribution. For reviews on the279

relevance and universal applicability of the Kuramoto model see references [87,280

88].281

In order to analyze the amount of synchrony in the network, the global order282

parameter, which is given by the center of mass of phase variables of each node283

distributed on the unit circle, has proven to be very insightful:284

R(t) =
∣∣∣〈eiφk(t)

〉
N

∣∣∣ , k = 1, · · · , N, (2)

where 〈·〉N denotes the average over all nodes in the network. The order param-285

eter can easily be applied to the simulated time series of neural activity [13,89,286

91]. Then, its temporal mean value 〈R(t)〉 and standard deviation provide infor-287

mation about the level and temporal fluctuations of synchrony. The latter can288

be interpreted as metastability as discussed below. It is easy to see that in equa-289

tion (2), R(t) tends to zero, if the phase variables are dispersed across phase space,290

that is, when they are highly desynchronized. In the opposite case, when most of291

oscillators have close phase variables, one obtains the limit R(t) −→ 1.292

In general, the number of phase variables that become locked and synchro-293

nized, depends on the coupling strength K. This quantity can be used as a control294

parameter to study emerging patterns of synchrony. For a given natural frequency295

distribution, there is a threshold or critical coupling strength Kc above which the296
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coupled system starts to synchronize. This observation can be described as a phase297

transition. Results based on the global order parameter defined in equation (2) can298

be seen as a mean-field approach, that is, the simplest case of isotropic interaction.299

To study neuro-biological systems, it is necessary to consider inhomogeneities300

of the coupling topology connected to a variety of different complex networks.301

In addition, one can investigate the influence of time delay in the coupling term.302

Then, equation (1) can be extended as follows303

φ̇i = ωi + C

N∑
j=1

Aij sin [φj(t− τij)− φi(t)] , i = 1, . . . , N, (3)

where the coupling strength is denoted by C. Now, structural inhomogeneities can304

be accounted for by pair-wise transmission delays τij in the coupling term. This305

makes network interactions biologically more plausible [92,81] and prevents full306

synchronization of the network [82,93]. The delays are inferred from the distance307

∆ij between nodes i and j: τij = ∆ij/v with a signal propagation velocity v in308

the range of 1 m/s to 20 m/s. Alternatively, one can introduce link-dependent309

phase offsets in the coupling term [94]. Less pronounced synchronization can be310

interpreted as a preferred dynamical state and an important property of the neural311

networks, as fully synchronized brain dynamics are never observed experimentally.312

From the results of models of the resting-state dynamics, for instance, it has been313

argued that the brain operates in so-called metastable states and never reaches314

full synchronization [14,95].315

The network matrix {Aij} defines the interactions between the neural pro-316

cesses. As elaborated in section 2, one can construct this matrix using empirically317

derived structural connectivity: the non-zeros entries of the matrix correspond to318
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existing connections between respective brain regions. Alternatively, one could also319

generate an adjacency matrix based on the functional connectivity. Further details320

on the applied procedure, which uses a combination of anatomical and functional321

connectivity maps, will be discussed in section 4 below. See also figure 4.322

3.3 Inferring BOLD signals: the Balloon-Windkessel model323

As mentioned in section 2.1, functional connectivity maps are networks of brain324

regions that are based on a statistical dependence between fMRI time series [15,325

46,96]. The underlying time series of BOLD activity are a function of changes in326

cerebral blood flow, cerebral blood volume, and cerebral metabolic rate of oxygen327

consumption and typically exhibit significant correlations for frequencies below328

0.1 Hz in the resting state [46]. In order to compare the numerically obtained329

neuronal activity with the empirical BOLD signal, we make use of the Balloon-330

Windkessel model [97], which has been established in many computational studies331

of the resting-state brain activity. Briefly summarized, this model considers the332

neuronal time series as an input signal [98] and computes the hemodynamic re-333

sponse, which can then be related to the BOLD signal. Since the neuronal activity334

and the blood response operate on different time scales of milliseconds and sec-335

onds, respectively, the Balloon-Windkessel model acts as a low-pass filter on the336

high-frequency neuronal signal. To allow for comparison with the experimentally337

measured BOLD signal, we match a simulation’s duration to the lengths of the338

experimental recording.339
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4 Data-inspired models: from neuroimaging information to brain340

activity models341

From a modeling perspective, the observed spatio-temporal patterns in brain ac-342

tivity are shaped by the complex relationship between the dynamics of individual343

oscillators and global synchronization [99]. As described in section 3.2, these com-344

peting dynamics can be characterized by the amount of synchrony in the network345

and its variations over time. The latter indicates dynamical metastability. It has346

been suggested that these variations of the network synchrony shape the patterns347

of coordinated activity between brain regions and thus, enabling dynamical ex-348

ploration of different network configurations [44,89,100]. Such functional network349

configurations are constrained by the underlying anatomical structure [101] – an-350

other key ingredient of the model.351

Anatomical brain connections enter models of the brain dynamics in the form of352

the coupling matrix, whose elements represent actual neural paths between brain353

regions – network nodes – as described in section 2.1. The topology of this matrix354

is usually static, i.e., the number of links between the nodes is preserved. Figure 4355

provides a schematic diagram of the model workflow. A combination of experimen-356

tal anatomical and functional connectivity maps leads to an adjacency matrix that357

defines the interaction of the oscillators in the simulations. A link is present if it is358

anatomically justified and has a high probability to have functional connectivity,359

which is implemented as an element-wise multiplication of binarized anatomical360

and functional connectivity matrices. By averaging and binarizing the connectiv-361

ity matrices one can select the connections between pairs of regions with higher362

statistical probability, considering all subjects. Since the functional connectivity363
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Fig. 4 Schematic diagram for the modeling framework. Anatomical connectivity (AC) and
functional connectivity (FC) maps extracted from DW-MRI and fMRI as group averages over
26 subjects, respectively, are binarized and combined to compute the adjacency matrix that
provides the coupling topology in the simulations. Neural population activity is simulated and
used as input to infer the simulated BOLD signal. The resulting time series of each node are
correlated pair-wise leading to a simulated functional connectivity matrix, which is compared
with the experimental functional connectivity map.

map has been derived from resting-state data, the element-wise multiplication se-364

lects those anatomical connections that directly connect brain regions that tend to365

be highly correlated in this condition. This step is important to evaluate the first366

level influence of anatomical connections in the remote synchronization of brain367

regions activities.368
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Fig. 5 Functional connectivity between pairs of network nodes, i.e., regions of interest, which
are not directly connected in the considered brain graph, as a function of the number of common
neighbors (left) and Jaccard coefficient (right). Parameters in the simulation of equation (3)
with delays calculated from the fiber lengths: threshold for functional connectivity in the
network generation r = 0.56, coupling strength C = 54, and signal transmission velocity
v = 5 m/s.

We use this approach to derive the coupling topology for our simulations as our369

primary aim is to reconstruct long-distance functional correlations that emerge370

from the underlying anatomical paths. Previous works have used this model to371

explore the contribution of the long-distance functional interactions – those that372

are not supported by direct neural paths – to the brain functional correlations in373

the resting-state activity [11,12]. These works have shown that the integration of374

the brain functions may arise from relay-like phase interactions between neural375

oscillators that share large parts of their individual network’s neighborhood. In376

this review, we present additional analyses based on brain dynamics that include377

time delays in the phase interactions between the neural oscillators, as given in378

equation (3). The time-delayed interactions are determined by the empirical length379

of the connections between the regions. See figure 2. It is worth mentioning that380

the time delays on the real brain may be affected by heterogeneities related to381

local physiology. For example, the velocity of signal transmission depends on other382

biological aspects such as myelination and axon thickness. The model in this paper383
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Fig. 6 Pearson correlation coefficient between experimentally derived and simulated func-
tional connectivity in the parameter space spanned by coupling strength C and signal trans-
mission velocity v. The simulations are based on equation (3) with time delays calculated from
the Euclidean distances and lengths of fiber tracks between regions of interest in panels A and
B, respectively. See figure 2 for further information on the distances. The white circle in panel
B marks the (C, v)-values used in figures 5 and 7 with a maximum Pearson correlation of 0.53.

accounts for the influence of time delay by (i) considering the heterogeneity of384

distances and (ii) assuming a fixed velocity.385

Figure 5 shows the effect of remote synchronization. It depicts the functional386

connectivity for any pair of nodes i and j that do not share a direct connection ac-387

cording to the coupling matrix in dependence on the number of common neighbors388

and the relative overlap of the neighborhoods Ni and Nj . The latter is quantified389

by the Jaccard coefficient390

Jij =
|Ni ∩Nj |
|Ni ∪Nj |

, (4)

where |Ni| denotes the number of neighbors of node i, that is, its degree. In words,391

Jij is the relative size of the intersection between the two node sets with respect392

to their union and takes values in the interval [0, 1] with the limit cases of zero393

and unity referring to no and perfect overlap, respectively. We observe an increase394

of functional connectivity as the overlap of neighborhoods becomes larger. This is395

in agreement with previous findings [11,12].396
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Fig. 7 Exemplary, simulated functional connectivity based on equation (3) with time delays
calculated from the fiber lengths between regions of interest (cf. figure 2). Parameters: C = 54
and v = 5 m/s.

A systematic exploration of the parameter space spanned by coupling strength397

C and signal transmission velocity v is depicted in figure 6, where the left and right398

panels refer to time delays in equation (3) according to the Euclidean distances399

and lengths of fiber tracks between brain network nodes, respectively. Recall that400

the finite velocity is the cause of delayed interactions. The color code indicates401

the agreement with the experimentally derived and simulated functional connec-402

tivity quantified by the Pearson correlation coefficient. Overall, the results of the403

two panels in figure 6 are qualitatively very similar. Note that a rescaling in the404

v-direction would lead to a quantitative agreement that could be explained by405

the shape of the distance distributions shown in figure 2. Larger velocities could406

compensate for the shorter distances. According to our analysis, the Euclidean dis-407

tance between different brain regions – with a proper scaling factor – can be used408
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Fig. 8 Global order parameter defined in equation (2) for different signal transmission ve-
locities v = 0.1 m/s (blue), 5 m/s (green), 20 m/s (red), and 100 m/s (cyan). The coupling
strength is fixed at C = 54.

to account for finite signal transmission velocities along the neural connections.409

The highest Pearson correlation is found in the range of plausible transmission410

velocities. For weak coupling, that is, low values of C, the interaction via the net-411

work is not strong enough to trigger significant self-organized synchrony in neural412

activity or BOLD signals.413

The best agreement of the simulated functional connectivity with the exper-414

imental functional connectivity is observed for C = 54 and v = 5 m/s. Figure 7415

shows the corresponding functional connectivity matrix obtained from the simu-416

lations. One can see clusters of well-correlated nodes in the brain network.417

Considering the form of the global order parameter R given by equation (2) the418

particular parameter combination choice, C = 54 and v = 5 m/s, is justified. The419

temporal average 〈R(t)〉 of the order parameter quantifies the average amount420

of synchrony in the brain network and its standard deviation can be used to421

inspect metastability. Figure 8 depicts the time series of R for a fixed coupling422

strength C = 54 and different velocities v. Large values of v result in an almost423
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A

B

C

D

Fig. 9 Panels A and B: parameter scan of the average order parameter 〈R〉 and detrended
fluctuations σRD

as color code in the (C, v)-plane, respectively (cf. figure 6). Panels C and
D: average order parameter 〈R〉 vs. Pearson correlation and detrended fluctuations σRD

, re-
spectively. The color code refers to the Pearson correlation coefficient r between experimental
and simulated functional connectivity (cf. figure. 6). The white circles and blue star marks the
values C = 54 and v = 5 m/s used in figures 5 and 7 with a maximum Pearson correlation of
0.53. The fit of the modeled functional correlations with the experimental data is best for a
dynamical state that simultaneously balances synchrony and metastability.

instantaneous coupling, for which the coupling function in equation (3) supports424

the emergence of robust synchronization. This is indicated by a high value of R that425

does not exhibit strong fluctuations around its mean (cyan curve, v = 100 m/s).426

As velocities decrease, the order parameter becomes smaller, but still remains its427

periodicity (red curve, v = 20 m/s). In the range of plausible velocities (cf. green428

curve, v = 5 m/s), we find a balance between synchrony and metastability, that is,429

a reasonable value of 〈R(t)〉 together with seemingly random fluctuations. These430

observations are in agreement with our previous studies [11,12].431

Figure 9 shows how functional interactions – high values of the correlation432

coefficient r between the modeled and experimental dynamics – can be connected433
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to a dynamical behavior that balances the synchrony 〈R(t)〉 and the variations434

in synchrony σRD
. Figures 9A and B depict the dependence of the average or-435

der parameter 〈R〉 and its fluctuations σRD
on the coupling strength C and the436

transmission velocity v, respectively. For the fluctuations σRD
, we detrended the437

periodic behavior of R(t) (cf. figure 8). This detrending removes the contributions438

to the standard deviation that do not reflect fluctuations in the dynamics. One439

can see that the good agreement with the experimental matrix is found in a re-440

gion of the parameter space that presents some level of synchronization (panel A)441

and fluctuations (panel B). These dynamical conditions allow for the emergence of442

synchronization on the functional networks and also keep some level of flexibility443

for the emergence of different synchronized patterns over time. Figures 9C and D444

further corroborate this balance in the simulated, metastable dynamics. The val-445

ues C = 54 and v = 5 m/s, which lead the maximum Pearson correlation between446

simulated and experimental functional connectivities, are marked by white circles447

and a blue star. These findings are consistent with the previous simulations of448

task-free [13,44] and task-dependent [89] brain activity, which are based on sim-449

ilar simplified models that take into account a few key parameters of structural450

and functional brain connectivity.451

The experimental fMRI data sets used in this paper are available from the 1000452

Functional Connectome Project website (http://fcon_1000.projects.nitrc.org/).453

We consider functional scans from the Berlin Margulies data to calculate the group454

average. The data consist of open-eyes resting-state measurements of 26 subjects455

(ages: 23-44) [102]. For details on the pre-processing steps, see reference [11]. For456

the anatomical connectivity probability, we use DW-MRI data from a study de-457

scribed in reference [27].458
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5 Conclusions459

Modern brain imaging methods allow for a quantitative study of both local activ-460

ity dynamics and the interdependence between activities in anatomically distant461

cortical areas, which is known as functional connectivity. With this review, we have462

summarized one of many multidisciplinary approaches to model such functional463

interactions. Leveraging interdisciplinary theoretical techniques, inspired by com-464

plex system theory and applied mathematics, and existing experimental data from465

noninvasive brain imaging, the proposed modeling framework contributes to the466

development of viable analytical and modeling techniques leading to significant467

insight into dynamical mechanisms of the brain.468

The particular model, which we consider in this review, combines experimen-469

tal anatomical and functional connectivity between cortical regions to generate a470

network topology of the brain at rest. By varying the network interactions (using471

different coupling strengths and signal transmission velocities), it is possible to472

obtain correlation patterns in the simulated BOLD fMRI time series that are in473

agreement with experiments. We have shown that the model leads to the best474

agreement for a dynamical state that exhibits a balance between synchrony and475

temporal variations in synchrony. The proposed model allows to investigate the476

role of network structure and in particular indirect connections between distant477

cortical regions and to explore functional connectivity in the brain using numerical478

simulations of delay-coupled phase oscillators. For example, we have found higher479

functional connectivity, if the neighborhoods of respective nodes show a greater480

overlap. We have also compared the influence of time delay considering fiber track481

lengths and Euclidean distances between brain regions. We have observed no qual-482
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itative difference in the simulations. This means that Euclidean distances – after483

rescaling – may be used to account for realistic coupling delays.484

The procedure can easily be extended to a much larger field of brain states.485

For example, one can alter the adjacency matrix of the task-negative system by486

increasing the weights of connections between task-related nodes above unity, sim-487

ulating a greater statistical relevance within the task-evoked state. Additionally,488

this procedure might give some insight into the brain shifting from the resting-state489

to task-evoked states and back.490

The flexibility of the network topology generating process also gives an op-491

portunity to manipulate node connections to adapt to neural activity observed492

in fMRI measurements of patients suffering from various brain disorders. Indeed,493

similar data-driven models had contributed to understanding some mechanisms of494

brain disorders [103,7,90,91].495

The limitation of this model is given by its purpose, which was to provide expla-496

nations for mechanisms generating coordinated activity between spatially distant497

brain regions. We focus our computations on how these long-distance correlations498

arise from realistic functional interactions, i.e. those that are also supported by499

direct structural connections. Thus, our model does not consider the role of cou-500

pling topologies that correspond directly to structural connectivity data. Models501

based on these structural connectivity topologies have been explored extensively502

in several studies (see references [13,89,91]), reaching – similarly to our model –503

to an agreement with the experimental data only to a certain extent.504

The model presented in this paper does not strive to give an accurate represen-505

tation of the physiologically realistic brain activity. A much more physiologically506

based approach is needed to achieve a full understanding of the relation between507
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experimental fMRI data and simulated neural activity. However, this goes beyond508

the scope of the main focus of the present work, that discusses a specific approach509

to find a simple way to simulate neural time series and to transform them into data,510

which can be compared to experimental fMRI measurements. This simplification511

is also adopted in similar studies found in references [13,44,91,95]. The model that512

we presented in this review can be extended in various way to incorporate more513

physiological details such as heterogeneities in the signal transmission velocities514

accounting for myelination or axon thickness. In addition, link weights can be in-515

troduced in the coupling matrix to include more information from experimental516

data.517

The studies summarized in this article contribute to a better understanding of518

the relationship between complex brain networks and temporal dynamics of brain519

activity. They might also serve as a starting point to investigate brain network520

reconfigurations providing a modeling framework to explore transient, dynamical521

interactions, which enable diverse cognitive functions.522
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Neurosci. 3, 17 (2009).532

3. M. Bola and B. A. Sabel: Dynamic reorganization of brain functional networks during533

cognition, NeuroImage 114, 398 (2015).534

4. C. J. Honey, O. Sporns, L. Cammoun, X. Gigandet, J. P. Thiran, R. Meuli, and P. Hag-535

mann: Predicting human resting-state functional connectivity from structural connectiv-536

ity, Proc. Natl. Acad. Sci. U.S.A. 106, 2035 (2009).537

5. G. Deco, V. K. Jirsa, and A. R. McIntosh: Emerging concepts for the dynamical organi-538

zation of resting-state activity in the brain., Nat. Rev. Neurosci. 12, 43 (2011).539

6. S. F. Muldoon, F. Pasqualetti, S. Gu, M. Cieslak, S. T. Grafton, J. M. Vettel, and D. S.540

Bassett: Stimulation-based control of dynamic brain networks, PLoS Comput. Biol. 12,541

e1005076 (2016).542

7. F. Hutchings, C. E. Han, S. S. Keller, B. Weber, P. N. Taylor, and M. Kaiser: Predicting543

surgery targets in temporal lobe epilepsy through structural connectome based simula-544

tions, PLoS Comput. Biol. 11, e1004642 (2015).545

8. P. Sanz-Leon, S. A. Knock, A. Spiegler, and V. K. Jirsa: Mathematical framework for546

large-scale brain network modeling in The Virtual Brain, Neuroimage 111, 385 (2015).547

9. S. H. Strogatz: From Kuramoto to Crawford: exploring the onset of synchronization in548

populations of coupled oscillators, Physica D 143, 1 (2000).549
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A List of cortical and sub-cortical regions787

Table 1 Cortical and sub-cortical regions according to the automated anatomic labelling
(AAL) template image [33]. Indexes from 1-45 and 46-90 indicate right (R) and left (L) hemi-
sphere respectively, and refer to the order in which the brain regions of interest are arranged
in all connectivity, adjacency and distance matrices of this paper.

Index R/L Anatomical Description Label

1/46 Precentral PRE
2/47 Frontal Sup F1
3/48 Frontal Sup Orb F10
4/49 Frontal Mid F2
5/50 Frontal Mid Orb F20
6/51 Frontal Inf Oper F30P
7/52 Frontal Inf Tri F3T
8/53 Frontal Inf Orb F30
9/54 Rolandic Oper RO
10/55 Supp Motor Area SMA
11/56 Olflactory OC
12/57 Frontal Sup Medial F1M
13/58 Frontal Mid Orb SMG
14/59 Gyrus Rectus GR
15/60 Insula IN
16/61 Cingulum Ant ACIN
17/62 Cingulum Mid MCIN
18/63 Cingulum Post PCIN
19/64 Hippocampus HIP
20/65 ParaHippocampal PHIP
21/66 Amygdala AMYG
22/67 Calcarine V1
23/68 Cuneus Q
24/69 Lingual LING
25/70 Occipital Sup O1
26/71 Occipital Mid O2
27/72 Occipital Inf O3
28/73 Fusiform FUSI
29/74 Postcentral POST
30/75 Parietal Sup P1
31/76 Parietal Inf P2
32/77 Supra Marginal Gyrus SMG
33/78 Angular AG
34/79 Precuneus PQ
35/80 Paracentral Lobule PCL
36/81 Caudate CAM
37/82 Putamen PUT
38/83 Pallidum PAL
39/84 Thalamus THA
40/85 Heschi HES
41/86 Temporal Sup T1
42/87 Temporal Pole sup T1P
43/88 Temporal Mid T2
44/89 Temporal Pole Mid T2P
45/90 Temporal Inf T3


