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POPULATION GAMES AND DISCRETE OPTIMAL TRANSPORT

SHUI-NEE CHOW, WUCHEN LI, JUN LU, AND HAOMIN ZHOU

Abstract. We propose a new evolutionary dynamics for population games with a dis-
crete strategy set, inspired by the theory of optimal transport and Mean field games.
The dynamics can be described as a Fokker-Planck equation on a discrete strategy set.
The derived dynamics is the gradient flow of a free energy and the transition density
equation of a Markov process. Such process provides models for the behavior of the
individual players in population, which is myopic, greedy and irrational. The stability of
the dynamics is governed by optimal transport metric, entropy and Fisher information.

1. Introduction

Population games are introduced as a framework to model population behaviors and
study strategic interactions in populations by extending finite player games [27, 34, 39].
It has fundamental impact on game theory related to social networks, evolution of bi-
ology species, virus and cancer, etc [18, 25, 32, 40]. Nash equilibrium (NE) describes a
status that no player in population is willing to change his/her strategy unilaterally. To
investigate stabilities of NEs, evolutionary game theory [28, 31, 34] has been developed in
the last several decades. People from various fields (economics, biology, etc) design dif-
ferent dynamics, called mean dynamics or evolutionary dynamics [17, 29], under various
assumptions (protocols) to describe population behaviors. Important examples include
Replicator, Best-response, Logit and Smith dynamics [23, 32, 35], just to name a few. A
special class of games, named potential games [16, 26, 30] are widely considered. Heuristi-
cally, potential games describe the situation that all players face the same payoff function,
called potential. Thus maximizing each player’s own payoff is equivalent to maximizing
the potential. In this case, NEs correspond to maximizers of the potential, which gives
natural connections between mean dynamics and gradient flows obtained from minimizing
the negative potential. An important example is the Replicator dynamics, which is a gra-
dient flow of the negative potential in the probability space (simplex) with a Shahshahani
metric [1, 24, 33].

Recently, a new viewpoint has been brought into the realm of population games based
on optimal transport, see Villani’s book [3, 38] and mean field games in the series work
of Larsy, Lions [6, 13, 19]. The mean field games have continuous strategy sets and
infinite players [4, 5]. Each player is assumed to make decisions according to a stochastic
process instead of making a one-shot decision. More specifically, individual players change
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their pure strategies locally and simultaneously in a continuous fashion according to the
direction that maximizes their own payoff functions most rapidly. Randomness is also
introduced in the form of white noise perturbation. The resulting dynamics for individual
players forms a mean field type stochastic differential equation, whose probability density
function evolves according to the Fokker-Planck equation. Here Mean field serves as a
mediator for aggregating individual players’ behaviors. For potential games [13], Fokker-
Planck equations can also be viewed as gradient flows of free energies in the probability
space. Here free energy refers to the negative expected payoff added with a linear entropy
term, which models risks that players take. Moreover, the probability space is treated as
a Riemannian manifold endowed with optimal transport metric [3, 37, 38].

The aim of this paper is to propose a mean dynamics on discrete strategy set, which
possesses the same connections as that of mean field games and optimal transport theory.
It should be noted that it is not a straightforward task to transform the theory on games
with continuous strategy set directly to discrete settings. This is due to the fact that the
discrete strategy set is no longer a length space, a space that one can define length of curves,
and morph one curve to another in a continuous fashion. To proceed, we employ key tools
developed in [11, 12, 20] (Similar topics are discussed in [9, 14, 22]). More specifically, we
introduce an optimal transport metric on the probability space of the strategy set. With
such metric, we derive the gradient flow of the discrete free energy as mean dynamics.

In detail, consider a population game with finite discrete strategy set S = {1, · · · , n}.
Denote the set of population state

P(S) = {(ρi)
n
i=1 ∈ R

n :

n
∑

i=1

ρi = 1 , ρi ≥ 0 , i ∈ S} ,

and payoff function Fi : P(S) → R, for any i ∈ S. The derived mean dynamics is given by

dρi

dt
=

∑

j∈N(i)

ρj[Fi(ρ)− Fj(ρ) + β(log ρj − log ρi)]+

−
∑

j∈N(i)

ρi[Fj(ρ)− Fi(ρ) + β(log ρi − log ρj)]+ ,
(1)

where β ≥ 0 is the strength of uncertainty, ρi(t) is the probability at time t of strategy
i ∈ S, [·]+ = max{·, 0}, and j ∈ N(i) if j can be achieved by players changing their
strategies from i. We call (1) Fokker-Planck equation of a game.

Dynamics (1) can be viewed from numerous perspectives. First of all, if the game under
consideration is a potential game, i.e. games for which there exists a term called potential
F : P(S) → R such that ∂

∂ρi
F(ρ) = Fi(ρ), then equation (1) can be seen as the gradient

flow of the free energy defined as

−F(ρ) + β

n
∑

i=1

ρi log ρi

on a Riemannian manifold (P(S),W). Here
∑n

i=1 ρi log ρi is the discrete entropy term
and W is an optimal transport metric defined on the simplex. Secondly, equation (1)
can be regarded as the transition function of a nonlinear Markov process. Such Markov
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process models individual player’s decision making process, which is local, myopic, greedy
and irrational. Locality refers to the behavior that a player only compares his/her current
strategy with neighboring strategies, instead of the entire strategy set. Myopicity means
that a player makes his/her decision solely based on the current available information.
Greediness reflects the behavior that players always selects the strategy that improves
his/her payoff most rapidly at the current time. Lastly and most importantly, by intro-
ducing white noise through the so called log-laplacian term in (1), the Markov process
models players’ uncertainty in the decision-making process. This uncertainty may be due
to player making mistakes or risk-taking behavior. The risk-taking interpretation allows
us to define the noisy payoff F̄i : P(S) → R for each strategy i,

F̄i(ρ) := Fi(ρ)− β log ρi . (2)

Intuitively, the monotonicity of the log term implies that the fewer players currently select
strategy i, the more likely a player is willing to take risk by switching to strategy i. If
the strength of the noise (β term) was sufficiently large, the equilibrium would deviate
relatively far from that without noise.

Dynamics (1) has many appealing features. For potential games, since the dynamics
is a gradient flow, the stationary points of the free energy, named Gibbs measures, are
equilibria of (1). Their stability properties can also be studied by leveraging two key
notions, namely, relative entropy and relative Fisher information [15, 38]. Through their
relations with optimal transport metric, we show that the relative entropy converges to 0
as t goes to infinity, and the solution converges to the Gibbs measure exponentially fast.
For general games, (1) is not a gradient flow, which may exhibit complicated limiting
behaviors including Hopf bifurcations. And the noise level introduces a natural parameter
for such bifurcations.

The arrangement of this paper is as follows. In section 2, we give a brief introduction
to population games on discrete sets. In section 3, we derive (1) by an optimal transport
metric defined on the simplex set, and introduce the Markov process associated with (1)
from the modeling perspective. In section 4, we study (1)’s long time behavior by relative
entropy and relative Fisher information. In section 5, we discuss the application of our
dynamics by working on some well-known population games.

2. Preliminaries

In this paper we focus on population games. Consider a game played by countable
infinity many players. Each player in the population selects a pure strategy from the
discrete strategy set S = {1, · · · , n}. The aggregated state of the population can be
described by the population state ρ = (ρi)

n
i=1 ∈ P(S), where ρi represents the proportion

of players choosing pure strategy i and P(S) is a probability space (simplex):

P(S) = {(ρi)
n
i=1 ∈ R

n :

n
∑

i=1

ρi = 1 , 0 ≤ ρi ≤ 1 , i ∈ S} .

The game assumes that each player’s payoff is independent of his/her identity (autonomous
game). Thus all players choosing strategy i have the continuous payoff function Fi :
P(S) → R.
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A population state ρ∗ ∈ P(S) is a Nash equilibrium of the population game if

ρ∗i > 0 implies that Fi(ρ
∗) ≥ Fj(ρ

∗) , for all j ∈ S .

The following type of population games has particular importance, in which NEs enjoys
various prominent properties.

A population game is named a potential game, if there exists a differentiable potential
function F : P(S) → R, such that ∂

∂ρi
F(ρ) = Fi(ρ), for all i ∈ S. It is a well known fact

that the NEs of a potential game are the stationary points of F(ρ).

Example: Suppose that a unit mass of agents are randomly matched to play symmetric
normal-form game with payoff matrix A ∈ R

n×n. At population state ρ, a player choosing
strategy i receives payoff equal to the expectation of the others, i.e. Fi(ρ) =

∑

j∈S aijρj .
In particular, if the payoff matrix A is symmetric, then the game becomes a potential
game with potential function F(ρ) = 1

2ρ
TAρ, since ∂

∂ρi
F(ρ) = Fi(ρ).

Given a potential game with potential F , define the noisy potential

F̄(ρ) := F(ρ)− β

n
∑

i=1

ρi log ρi , β > 0 ,

which is the summation of potential and Shannon-Boltzmann entropy. In information
theory, it has been known for a long time that the entropy is a way to model uncertainties
[15]. In the context of population games, such uncertainties may refer to players’ irrational
behaviors, making mistakes or risk-taking behaviors. In optimal transport theory, the
negative noisy potential is usually called the free energy [37, 38].

The problem of maximizing each player’s payoff with uncertainties is equivalent to
maximizing the noisy potential (minimizing the free energy)

min{−F̄(ρ) : ρ ∈ P(S)} .

We call the stationary points ρ∗ of the above minimization the discrete Gibbs measures,
i.e. ρ∗ solves the following fixed point problem

ρ∗i =
1

K
e

Fi(ρ
∗)

β , for any i ∈ S , where K =
n
∑

j=1

e
Fj(ρ

∗)

β . (3)

3. Evolutionary dynamics via optimal transport

In this section, we first introduce an optimal transport metric for population games.
Based on such a distance, we propose another approach to evolutionary dynamics by
optimal transport theory, see references in Villani’s book [37, 38]. For potential games,
such dynamics can be viewed as gradient flows of free energies.

3.1. Optimal transport metric for games. To introduce the optimal transport metric,
we start with the construction of strategy graphs. A strategy graph G = (S,E) is a
neighborhood structure imposed on the strategy set S = {1, · · · , n}. Two vertices i, j ∈ S
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are connected in G if players who currently choose strategy i is able to switch to strategy
j. Denote the neighborhood of i by

N(i) = {j ∈ S | (i, j) ∈ E} .

For many games, every two strategies are connected, making G a complete graph. In other
words, N(i) = S \ {i}, for any i ∈ S. For example, the strategy set of Prisoner-Dilemma
game is either Cooperation (C) or Defection (D), i.e. S = {C,D}. Thus, the strategy
graph is

DC

FD(ρ)FC(ρ)

For any given strategy graph G, we can introduce an optimal transport metric on the
simplex P(S). Denote the interior of P(S) by Po(S).

Given a function Φ: S → R, define ∇Φ: S × S → R as

∇Φij =

{

Φi − Φj if (i, j) ∈ E;

0 otherwise.

Let m : S × S → R be an anti-symmetric flux function such that mij = −mij. The
divergence of m, denoted as div(m) : S → R, is defined by

div(m)i = −
∑

j∈N(i)

mij .

For the purpose of defining our distance function, we will use a particular flux function

mij = ρ∇Φ := gij(ρ)∇Φij ,

where gij(ρ) represents the discrete probability (weight) on edge (i, j), defined by

gij(ρ) =











ρj F̄j(ρ) < F̄i(ρ) ;

ρi F̄j(ρ) > F̄i(ρ) ;
ρi+ρj

2 F̄j(ρ) = F̄i(ρ) ,

Here F̄i(ρ) = Fi(ρ)− β log ρi, is defined in (2).

We can now define the discrete inner product on Po(S) of ∇Φ

(∇Φ,∇Φ)ρ :=
1

2

∑

(i,j)∈E

(Φi − Φj)
2gij(ρ) ,

where 1
2 is applied because each edge is summed twice, i.e. (i, j), (j, i) ∈ E.

The above definitions provide the following distance on Po(S).

Definition 1. Given two discrete probability functions ρ0, ρ1 ∈ Po(S), the Wasserstein
metric W is defined by:

W(ρ0, ρ1)2 = inf{

∫ 1

0
(∇Φ,∇Φ)ρdt :

dρ

dt
+ div(ρ∇Φ) = 0 , ρ(0) = ρ0, ρ(1) = ρ1} .
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It is known that (Po(S),W) is a finite dimensional Riemannian manifold [9, 22]. And
the metric W depends on the graph structure of the strategy set.

3.2. Evolutionary dynamics. We shall derive (1) as a gradient flow of the free energy
on the Riemannian manifold (Po(S),W).

Theorem 2. Given a potential game with strategy graph G = (S,E), potential F(ρ) ∈
C2(Rn) and a constant β ≥ 0. Then the gradient flow of free energy

−F(ρ) + β

n
∑

i=1

ρi log ρi

on the Riemannian manifold (Po(S),W) is the Fokker-Planck equation

dρi

dt
=

∑

j∈N(i)

ρj [Fi(ρ)− Fj(ρ) + β(log ρj − log ρi)]+

−
∑

j∈N(i)

ρi[Fj(ρ)− Fi(ρ) + β(log ρi − log ρj)]+ ,

for any i ∈ S. In addition, for any initial ρ0 ∈ Po(S), there exists a unique solution
ρ(t) : [0,∞) → Po(S). And the free energy is a Lyapunov function. Moreover, if ρ∞ =
limt→∞ ρ(t) exists, ρ∞ is one of the Gibbs measures satisfying (3).

Remark 1. We note that if β = 0 and G is a complete graph, the derived Fokker-Planck
equation is the Smith dynamics [35].

Remark 2. The strategy graph G is different from the one in evolutionary graph games
studied in [2, 21, 36]. They mainly consider a spatial space as the graph while our graph
relates to the strategy set.

The proof of Theorem 2 is shown in [11, 20], see details there.

We can further extend (1) as mean dynamics to model general population games without
potential. Although (1) can no longer be viewed as gradient flows of any sort in this case,
yet it is a system of well defined ordinary differential equations in P(S).

Corollary 3. Given a population game with strategy graph G = (S,E) and a constant
β ≥ 0. Assume payoff function F : P(S) → R

n are continuous. For any initial condition
ρ0 ∈ Po(S), the Fokker-Planck equation

dρi

dt
=

∑

j∈N(i)

ρj [Fi(ρ)− Fj(ρ) + β(log ρj − log ρi)]+

−
∑

j∈N(i)

ρi[Fj(ρ)− Fi(ρ) + β(log ρi − log ρj)]+ ,

is a well defined flow in Po(S).

The proof is similar to that of Theorem 2 and hence omitted.
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It is worth mentioning that, for potential games, there may exist multiple Gibbs mea-
sures as equilibria of (1). For non-potential games, there exist more complicated phe-
nomena than equilibria, for example, invariant sets. We illustrate this by a modified
Rock-Scissors-Paper game in Section 5, for which Hopf bifurcation exists with respect to
the parameter β.

3.3. Markov process. In this subsection, we look at Fokker-Planck equation (1) from the
probabilistic viewpoint. More specifically, we present a Markov process whose transition
function is given by (1). From the modeling perspective, such a Markov process models
individual player’s decision process that is myopic, irrational and locally greedy. The
Markov process Xβ(t) is defined as

Pr(Xβ(t+ h) = j | Xβ(t) = i)

=











(F̄j(ρ)− F̄i(ρ))+h+ o(h) , if j ∈ N(i) ;

1−
∑

j∈N(i)(F̄j(ρ)− F̄i(ρ))+h+ o(h) , if j = i ;

0 , otherwise ,

(4)

where F̄i(ρ) = Fi(ρ) − β log ρi and limh→0
o(h)
h = 0. It can be easily seen that the proba-

bility evolution equation of Xβ(t) is exactly (1).

Process Xβ(t) characterizes players’ decision making process. Intuitively, players com-
pare their current strategies with local strategy neighbors. If the neighboring strategy
has payoff higher than their current payoffs, they switch strategies with probability pro-
portional to the difference between the two payoffs. In addition, Xβ(t) represents an
individual player’s irrational behavior. This irrationality may be due to players’ mistake
or willingness to take risk. The uncertainly of strategy i is quantified by term log ρi. The
monotonicity of this term intuitively implies that the fewer players currently select strat-
egy i, the more likely players are willing to take risks by switching to strategy i. For this
interpretation, we call Fi(ρ) − β log ρi the noisy payoff of strategy i, where β is the noise
level.

4. Stability via Entropy and Fisher information

In this section, we discuss the long time behavior of (1) for potential games. We shall
study the convergence properties of the dynamics (1). Our derivation depends on two
concepts, which are extensions of discrete relative entropy and relative Fisher information
[8]. They are used to measure the closeness between two discrete measures ρ and ρ∞,
Gibbs measure defined by (3).

The first concept is the discrete relative entropy (H)

H(ρ|ρ∞) := β(F̄(ρ∞)− F̄(ρ)) .

The other is the discrete relative Fisher information (I)

I(ρ|ρ∞) :=
∑

(i,j)∈E

[(log
ρi

eFi(ρ)/β
− log

ρj

eFj(ρ)/β
)+]

2ρi .
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We remark that in finite player games, where the potential is a linear function (non
mean-field type), H and I coincide with the classical relative entropy (KullbackLeibler
divergence) and relative Fisher information respectively, see [12, 20].

We shall show that H(ρ(t)|ρ∞) converges to 0 as t goes to infinity. We will also estimate
the speed of convergence and characterize their stability properties. Before that, we state
a theorem that connects H and I via gradient flow (1).

Theorem 4. Suppose ρ(t) is the transition probability of Xβ(t) of a potential game. Then
the relative entropy decreases as a function of t. In other words,

d

dt
H(ρ(t)|ρ∞) < 0 .

And the dissipation of relative entropy is β times relative Fisher information

d

dt
H(ρ(t)|ρ∞) = −βI(ρ(t)|ρ∞) . (5)

The proof is based on the fact that H (the difference between noisy potentials) decreases
along the gradient flow with respect to time. Namely,

d

dt
H(ρ|ρ∞) =− β

d

dt
F̄(ρ(t)) = β(∇F̄ ,∇F̄ )ρ

=β
∑

(i,j)∈E

[(F̄j(ρ)− F̄i(ρ))+]
2ρi

=β
∑

(i,j)∈E

[(log
ρi

eFi(ρ)/β
− log

ρj

eFj(ρ)/β
)+]

2ρi .

(6)

This shows that the noisy potential grows at the rate equal to the relative Fisher infor-
mation. In other words, the population as a whole always seeks to improve the average
noisy payoff at the rate equal to the expected squared benefits.

Based on Theorem 4, we show that the dynamics converges to the equilibrium expo-
nentially fast. Here the convergence is in the sense of H going to zero. Such phenomenon
is called entropy dissipation.

Theorem 5 (Entropy dissipation). Let F ∈ C2(P(S)) be a concave potential function (not
necessary strictly concave) for a given game. Then there exists a constant C = C(p0, G) >
0 such that

H(ρ(t)|ρ∞) ≤ e−CtH(ρ0|ρ∞) . (7)

The proof of Theorem 5 is readily available by noticing the fact that

I(ρ|ρ∞) < CβH(ρ|ρ∞) ,

and an application of Grownwall inequality. See details [20, 11]. In fact, the exponen-
tial convergence is naturally expected because (1) is the gradient flow on a Riemannian
manifold (Po(S),W).

In fact, a more precise characterization on the convergence rate C in (7) can be made.
This characterization enables us to address the stability issues of Gibbs measures. Define

λ(ρ) = min
Φ

−div(ρ∇Φ)T · HessF̄(ρ) · div(ρ∇Φ) , (8)
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where the infimum is among all (Φi)
n
i=1 ∈ R

n, such that (∇Φ,∇Φ)ρ = 1 and Hess repre-
sents the Hessian operator in R

n.

Theorem 6 (Stability and asymptotic convergence rate). For a potential game with po-
tential F(ρ) ∈ C2. Denote its Gibbs measure ρ∞ by (3). If λ(ρ∞) > 0, then ρ∞ is an
asymptotic stable equilibrium for (1). In addition, for any sufficiently small ǫ > 0, there
exists a time T > 0, such that when t > T ,

H(ρ(t)|ρ∞) ≤ e−2(λ(ρ∞)−ǫ)(t−T )H(ρ0|ρ∞) .

For more details, see [11]. The above convergence results, including the quadratic
minimization (8), shares many similar properties with continuous cases. For example,
Ricci curvature lower bound and Yano’s formula are well defined on discrete strategy set.
See details in [11, 12, 14, 38].

5. Examples

In this section, we investigate (1) by applying it to several well-known population games.
Example 1: Stag Hunt. The point we seek to convey in this example is that the noisy
payoff reflects the rationality of the population. The symmetric normal-form game with
payoff matrix

A =

(

h h

0 s

)

is known as Stag Hunt game. Each player in a random match needs to decide whether to
hunt for a hare (h) or stag (s). Assume s ≥ h, which means that the payoff of a stag is
larger than a hare. This population game has three Nash equilibria: two pure equilibria
(0, 1), (1, 0), and one mixed equilibrium (1− h

s ,
h
s ).

In particular, let h = 2 and s = 3. The population state is ρ = (ρH , ρS)
T with payoff

FH(ρ) = 2 and FS(ρ) = 3ρS . Then Fokker-Planck equation (1) becomes
{

ρ̇H = ρS [2− 3ρS + β log ρS − β log ρH ]+ − ρH [−2 + 3ρS + β log ρH − β log ρS ]+

ρ̇S = ρH [3ρS − 2 + β log ρH − β log ρS ]+ − ρS [−3ρS + 2 + β log ρS − β log ρH ]+ .

The numerical results are in Figure 1. One can easily see that if the noise level β is
sufficient small, the perturbation doesn’t affect the limit behavior of the mean dynamics.
On the other hand, if noise level β is large enough, (1) settles around (12 ,

1
2 ). Lastly, if the

noise level is moderate, Equation (1) has (1, 0) as the unique equilibrium.

The above observation has practical meanings. Namely, if the perturbation is large
enough, it turns out that people always choose to hunt hare (NE (1, 0)). This is a safe
choice as players can get at least a hare, no matter how the others behave. This appears
even more so if comparing with the state (0, 1) for which the player receives nothing. If
the perturbation is small and initial population appears to be more cooperative, people
will choose to hunt the stag. This is a rational move because stag is definitely better than
hare.
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Figure 1. Stag and Hare

Example 2: Rock-Scissors-Paper game. Rock-Scissors-Paper has payoff matrix

A =





0 1 −1
−1 0 1
1 −1 0



 .

The strategy set is S = {r, s, p}. The population state is ρ = (ρr, ρs, ρp)
T and the payoff

functions are Fr(ρ) = ρs − ρp, Fs(ρ) = −ρr + ρp and Fp(ρ) = ρr − ρs. By solving (1), we
find that there is one unique Nash equilibrium around ρ∗ = (13 ,

1
3 ,

1
3) for various βs. The

result can be found in Figure 2.
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Figure 2. Rock-Scissors-Paper
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Example 3. We show an example with Hopf Bifurcation. Consider a modified Rock-
Scissors-Paper game with payoff matrix

A =





0 2 −1
−1 0 2
2 −1 0





The strategy set is S = {r, s, p}. The population state is ρ = (ρr, ρs, ρp)
T and the payoff

functions are Fr(ρ) = 2ρs − ρp, Fs(ρ) = −ρr + 2ρp and Fp(ρ) = 2ρr − ρs. We find that
there is Hopf bifurcation for Equation (1). If β is large, there is a unique equilibrium
around (13 ,

1
3 ,

1
3)

T . If β goes to 0, the solution approaches to a limit cycle. The results are
in Figure 3.
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Figure 3. Modified Rock-Scissors-Paper

Example 4. We show an example with multiple Gibbs measures. Consider a potential
game with payoff matrix

A =





1 0 0
0 1 1
0 1 1





Denote the strategy set as S = {1, 2, 3}. The population state is ρ = (ρ1, ρ2, ρ3)
T and the

payoff functions are F1(ρ) = ρ1, F2(ρ) = ρ2 + ρ3 and F3(ρ) = ρ2 + ρ3. We consider three
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Figure 4. Multiple Gibbs measures

sets of Nash equilibria :

{ρ | ρ1 =
1

2
} ∪ {(1, 0, 0)} ∪ {ρ | ρ1 = 0} ,

where the first and third one are lines on the probability simplex P(S). By applying (1),
we obtain two Gibbs measures

{(0,
1

2
,
1

2
)} ∪ {(1, 0, 0)}

as β → 0. The vector field is in Figure 4.

Example 5. As a completion, we introduce a game with unique Gibbs measure. Let’s
consider another potential game with payoff matrix

A =





1
2 0 0
0 1 1
0 1 1



 .

Here the strategy set is S = {1, 2, 3}, the population state is ρ = (ρ1, ρ2, ρ3)
T and the

payoff functions are F1(ρ) =
1
2ρ1, F2(ρ) = ρ2 + ρ3 and F3(ρ) = ρ2 + ρ3. There are three

sets of Nash equilibria

{ρ | 1−
1

2
ρ1 = ρ2 + ρ3} ∪ {(1, 0, 0)} ∪ {ρ |1 = ρ2 + ρ3} ,

By applying Fokker-Planck equation (1), we have a unique Gibbs measure

(0,
1

2
,
1

2
)

as β → 0. See Figure 5 for the vector fields.



EVOLUTIONARY DYNAMICS VIA OPTIMAL TRANSPORT 13

0

0.2

0.4

0.6

0.8

11

0.8

0.6

0.4

0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

(a) β = 0

0

0.2

0.4

0.6

0.8

11

0.8

0.6

0.4

0.2

0.6

0.7

0.8

0.9

1

0.5

0.4

0.3

0.2

0.1

0
0

(b) β = 0.1

Figure 5. Unique Gibbs measures

6. Conclusion

In this paper, we proposed a dynamics for population games utilizing optimal trans-
port theory and Mean field games. Comparing to existing models, it has the following
prominent features.

Firstly, the dynamics is the gradient flow of the noisy potential in the probability space
endowed with the optimal transport metric. The dynamics can also be seen as the mean
field type Fokker-Planck equations.

Secondly, the dynamics is the probability evolution equation of a Markov process. Such
processes model players’ myopicity, greediness and irrationality. In particular, the irra-
tional behaviors or uncertainties are introduced via the notion of noisy payoff. This shares
many similarities with the diffusion or white noise perturbation in continuous cases.

Last but not least, for potential games, Gibbs measures are equilibria of the dynamics.
Their stability properties are obtained by the relation of optimal transport metric, entropy
and Fisher information. In general, the dynamics may exhibit more complicated limiting
behaviors, including Hopf bifurcations.

Acknowledgement: This paper is mainly based on Wuchen Li’s thesis.

References

[1] Ethan Akin. The geometry of population genetics, volume 280. Springer Science & Business Media,
1979.

[2] Benjamin Allen and Martin A Nowak. Games on graphs. EMS Surveys in Mathematical Sciences,
1(1):113–151, 2014.

[3] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and in the space
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