Skip to main content
Log in

On Stability of the Thomson’s Vortex N-gon in the Geostrophic Model of the Point Vortices in Two-layer Fluid

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

A two-layer quasigeostrophic model is considered. The stability analysis of the stationary rotation of a system of N identical point vortices lying uniformly on a circle of radius R in one of the layers is presented. The vortices have identical intensity and length scale is \(\gamma ^{-1}>0\). The problem has three parameters: N, \(\gamma R\) and \(\beta \), where \(\beta \) is the ratio of the fluid layer thicknesses. The stability of the stationary rotation is interpreted as orbital stability. The instability of the stationary rotation is instability of system reduced equilibrium. The quadratic part of the Hamiltonian and eigenvalues of the linearization matrix are studied. The parameter space \((N,\gamma R,\beta )\) is divided on three parts: \(\varvec{A}\) is the domain of stability in an exact nonlinear setting, \(\varvec{B}\) is the linear stability domain, where the stability problem requires the nonlinear analysis, and \(\varvec{C}\) is the instability domain. The case \(\varvec{A}\) takes place for \(N=2,3,4\) for all possible values of parameters \(\gamma R\) and \(\beta \). In the case of \(N=5\), we have two domains: \(\varvec{A}\) and \(\varvec{B}\). In the case \(N=6\), part \(\varvec{B}\) is curve, which divides the space of parameters \((\gamma R, \beta )\) into the domains: \(\varvec{A}\) and \(\varvec{C}\). In the case of \(N=7\), there are all three domains: \(\varvec{A}\), \(\varvec{B}\) and \(\varvec{C}\). The instability domain \(\varvec{C}\) takes place always if \(N=2n\geqslant 8\). In the case of \(N=2\ell +1\geqslant 9\), there are two domains: \(\varvec{B}\) and \(\varvec{C}\). The results of research are presented in two versions: for parameter \(\beta \) and parameter \(\alpha \), where \(\alpha \) is the difference between layer thicknesses. A number of statements about the stability of the Thomson N-gon is obtained for the systems of interacting particles with the general Hamiltonian depending only on distances between the particles. The results of theoretical analysis are confirmed by numerical calculations of the vortex trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Applied Mathematics Series, vol. 55. National Bureau of standards, Gaithersburg (1964)

    MATH  Google Scholar 

  • Aref, H., Newton, P.K., Stremler, M.A., Tokieda, T., Vainchtein, D.L.: Vortex crystals. Adv. Appl. Mech. 39, 1–79 (2003)

    Article  Google Scholar 

  • Arnold, V.I.: Small denominators and problems of stability of motion in classical and celestial mechanics. Russ. Math. Surv. 18, 85–191 (1963)

    Article  MathSciNet  Google Scholar 

  • Borisov, A.V., Mamaev, I.S.: Mathematical Methods in the Dynamics of Vortex Structures. Institute of Computer Sciences, Moscow (2005)

    MATH  Google Scholar 

  • Gantmacher, F.R.: Lectures on Analytical Mechanics. Glavnaya Redaktsiya Fiziko-Matematicheskoj Literatury, Nauka, Moscow (1966)

    Google Scholar 

  • Gryanik, V.M.: Dynamics of singular geostrophic vortices in a two-level model of atmosphere (ocean). Izv. Atmos. Ocean. Phys. 19(3), 227–240 (1983)

    MathSciNet  Google Scholar 

  • Havelock, T.H.: The stability of motion of rectilinear vortices in ring formation. Philos. Mag. 11(70), 617–633 (1931)

    Article  MATH  Google Scholar 

  • Karapetyan, A.V.: The Routh Theorem and Its Extensions. Colloquia Mathematica Societatis Janos Bolyai: Qualitative Theory of Differential Equations, vol. 53, pp. 271–290. North Holland, Amsterdam (1990)

    Google Scholar 

  • Kelvin, W.T.: Floating Magnets (Illustrating Vortex Systems). Mathematical and Physical Papers, vol. 4, pp. 162–164. Cambridge University press, Cambridge (1910)

  • Kolmogorov, A.N.: On conservation of conditionally periodic motions for a small change in Hamilton’s function. Dokl. Akad. Nauk SSSR 98, 527–530 (1954)

    MathSciNet  Google Scholar 

  • Kurakin, L.G.: Stability, resonances, and instability of the regular vortex polygons in the circular domain. Dokl. Phys. 49(11), 658–661 (2004)

    Article  Google Scholar 

  • Kurakin, L.G., Ostrovskaya, I.V.: Nonlinear stability analysis of a regular vortex pentagon outside a circle. Regul. Chaotic Dyn. 17(5), 385–396 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Kurakin, L.G., Ostrovskaya, I.V.: On stability of the Thomson’s vortex \(N\)-gon in the geostrophic model of the point Bessel vortices. Regul. Chaotic Dyn. 22(7), 865–879 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Kurakin, L.G., Yudovich, V.I.: The stability of stationary rotation of a regular vortex polygon. Chaos 12(3), 574–595 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Kurakin, L.G., Yudovich, V.I.: On nonlinear stability of steady rotation of a regular vortex polygon. Dokl. Phys. 47(6), 465–470 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Kurakin, L.G., Ostrovskaya, I.V., Sokolovskiy, M.A.: On the stability of discrete tripole, quadrupole, Thomson’ vortex triangle and square in a two-layer/homogeneous rotating fluid. Regul. Chaotic Dyn. 21(3), 291–334 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Kurakin, L.G., Melekhov, A.P., Ostrovskaya, I.V.: A survey of the stability criteria of Thomson’s vortex polygons outside a circular domain. Bol. Soc. Mat. Mex. 22, 733–744 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Markeev, A.P.: Libration Points in Celestial Mechanics and Space Dynamics. Nauka, Moscow (1978)

    Google Scholar 

  • Morikawa, G.K., Swenson, E.V.: Interacting motion of rectilinear geostrophic vortices. Phys. Fluids 14(6), 1058–1073 (1971)

    Article  Google Scholar 

  • Moser, J.: Lectures on Hamiltonian Systems, vol. 81. Memoirs of the American Mathematical Society, Providence (1968)

    MATH  Google Scholar 

  • Newton, P.K.: The N-Vortex Problem: Analytical Techniques. Applied Mathematical Sciences, vol. 145. Springer, New York (2001)

    Book  MATH  Google Scholar 

  • Proskuryakov, I.V.: A Collection of Problems in Linear Algebra. Textbook (Sbornik zadach po linejnoj algebre. Uchebnoe posobie), 7th ed. Moscow, Glavnaya Redaktsiya Fiziko-Matematicheskoj Literatury, Nauka (1984)

  • Routh, E.J.: A Treatise on the Stability of a Given State Motion. Macmillan, London (1877)

    Google Scholar 

  • Saffman, P.G.: Vortex Dynamics. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  • Sokolovskiy, M.A., Verron, J.: Dynamics of Vortex Structures in a Stratified Rotating Fluid. Atmospheric and Oceanographic Sciences Library, vol. 47. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  • Stewart, H.J.: Periodic properties of the semi-permanent atmospheric pressure systems. Q. Appl. Math. 1, 262 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  • Stewart, H.J.: Hydrodynamic problems arising from the investigation of the transverse circulation in the atmosphere. Bull. Am. Math. Soc. 51, 781–799 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  • Thomson, W.: Floating magnets (illustrating vortex systems). Nature 18, 13–14 (1878)

    Article  Google Scholar 

  • Thomson, J.J.: A Treatise on the Motion of Vortex Rings, pp. 94–108. Macmillan, London (1883)

    Google Scholar 

Download references

Acknowledgements

The work of the first three authors was supported by the Ministry of Education and Science of the Russian Federation, Southern Federal University (Project No. 1.5169.2017/8.9). MAS was supported by the Ministry of Education and Science of the Russian Federation (Project No. 14.W.03.31.0006, numerical simulation), Russian Science Foundation (Project No. 14-50-00095, application to ocean) and Russian Foundation for Basic Research (Projects Nos. 16-55-150001 and 16-05-00121, vortex dynamics). The authors are grateful to M. Yu. Zhukov for valuable discussions. We express our gratitude to the anonymous reviewer #2 for useful comments and recommendations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid G. Kurakin.

Additional information

Communicated by Paul Newton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The Properties of Polynomial \(P(N,1,\Lambda )\)

According to formulas (3.22) and (3.16), the equality

$$\begin{aligned} \lambda _{11} (N,R,\beta ) = \frac{1}{R^4} \lambda _{21}(N,R,\beta ) \end{aligned}$$
(A.1)

is valid.

Thus, the polynomial \(P(N,1,\Lambda )\) given by formulas (3.25), (3.26) has the form:

$$\begin{aligned} P(N,1,\Lambda )= & {} \Lambda ^2 +p_1(N,1)\Lambda +p_0(N,1), \end{aligned}$$
(A.2)
$$\begin{aligned} p_1(N,1)= & {} -\left( 1+\dfrac{1}{R^4}\right) \lambda _{21},\quad p_0(N,1)=\dfrac{1}{R^4}\lambda _{21}^2-\lambda _{01}^2. \end{aligned}$$
(A.3)

The coefficient \(p_0(N,1)\) is factorized as

$$\begin{aligned} p_0(N,1)=T_N^-\cdot T^+_N,\quad T_N^\pm =\frac{1}{R^2}\lambda _{21}\pm \lambda _{01}. \end{aligned}$$
(A.4)

If the function \(V=W\) is defined by formula (2.2), the values \(\lambda _{21}\), \(\lambda _{01}\) are given by equalities (4.2)–(4.4), and the functions \(T_N^\pm \) have the form:

$$\begin{aligned} T_N^-&= \frac{N-1}{4R^2} +\frac{1}{4R} \cdot \beta \sum \limits _{m=1}^{N-1} B_m K_{1} (RB_m) >0, \end{aligned}$$
(A.5)
$$\begin{aligned} T_N^+&= \frac{N-1}{4R^2} + \frac{1}{2} \cdot \beta \sum \limits _{m=1}^{N-1} \left( S_m^2 K_0(R B_m) +\dfrac{1}{2R} B_m K_1(R B_m) \right) >0. \end{aligned}$$
(A.6)

Thus, inequality \(p_0(N,1)>0\) is valid. The inequalities \(\lambda _{21}>0\) and \(p_1(N,1)<0\) are valid. It follows from formulas (4.2)–(4.4). Therefore, roots of the polynomial\(P(N,1,\Lambda )\), which is given by formulas (3.25), (3.26), are positive for any\(N>2\)in the case, if the function\(V=W\)is defined by equality (2.2).

Appendix B: The Case \(N\geqslant 5\)

In this section, we present the results obtained for Bessel vortices in Kurakin and Ostrovskaya (2017), which are necessary to study of our problem for \(N\geqslant 5\).

1.1 Appendix B.1: The Properties of Functions \(\lambda _{1k}^*\)

The asymptotics of functions \({\lambda }_{1k}^*(N,R)\) given by formula (4.4)

$$\begin{aligned} {\lambda }_{1k}^*= & {} \frac{K_1(R\,B_1)}{4R^2}\left( a_{1k}+\frac{b_{1k}}{R} + O\left( \frac{1}{R^2}\right) \right) ,\quad R\rightarrow \infty ,\quad k=1,\ldots , \left\lfloor \frac{N}{2} \right\rfloor , \end{aligned}$$
(B.7)
$$\begin{aligned} a_{1k}= & {} \left( 1+ \cos {\frac{2\pi k}{N}}\right) B_{1}^2,\quad b_{1k}=\frac{4}{B_{1}}\left( 1-2C_{1}+\cos {\frac{2\pi k}{N}}\right) -\frac{1}{2B_1}a_{1k} \end{aligned}$$
(B.8)

is valid. To construct this formula, we used asymptotics of the modified Bessel function \(K_\nu (\xi )\) (Abramowitz and Stegun 1964):

$$\begin{aligned} K_\nu (\xi )&=\sqrt{\frac{\pi }{2\xi }}\mathrm{{e}}^{-\xi }\left( 1+\frac{4\nu ^2-1}{8\xi }+O\left( \frac{1}{\xi ^2}\right) \right) ,\quad \xi \rightarrow \infty , \\ \frac{K_0(\xi )}{K_1(\xi )}&=1-\frac{1}{2\xi }+O\left( \frac{1}{\xi ^2}\right) ,\quad \xi \rightarrow \infty . \end{aligned}$$

Here we take into account that \(\min \limits _{1\le m \le \lfloor \frac{N}{2} \rfloor }B_m=B_1\). Here \(B_m =\sqrt{2-2C_m}\), \(C_m=\cos \frac{2\pi m}{N}\).

The case of even\(N=2n\geqslant 8 \). The value \(a_{1n}=0\) and the asymptotics

$$\begin{aligned} {\lambda }_{1n}^*(2n,R)= & {} \frac{K_1(R\,B_1)}{4R^2}\left( -\frac{8C_1}{B_1\,R} + O\left( \frac{1}{R^2}\right) \right) , \quad R\rightarrow +\infty \end{aligned}$$
(B.9)

are valid.

Figure 19 shows the graphics of the functions \(\delta _{2n,1}(R)\lambda _{1n}^*(2n,R).\) The weight function

$$\begin{aligned} \delta _{2n,1}(R)=\frac{R^3B_1}{2C_1K_{1}(RB_1)} \end{aligned}$$
(B.10)

is positive for \(N\geqslant 6.\)

The inequality

$$\begin{aligned} \lambda _{1n}^*(N,R)<0 \end{aligned}$$
(B.11)

is valid for \(N=2n\geqslant 8\).

Fig. 19
figure 19

Case of even \(N=2n\geqslant 6\). The graphs of the functions \(\delta _{2n,1}(R)\lambda _{1n}^*(2n,R)\) for \(N=6,8,10,40,42,44,200,400,600\) in the interval \(0< R\leqslant 20\). Graphics are given from top to bottom in order of increasing N

The case of odd\(N=2\ell +1\geqslant 7 \). According to asymptotics (B.7), (B.8), for large enough R the following inequalities can be regarded as equivalent

$$\begin{aligned} {\lambda }_{1k}^*(N,R)>0 \quad \text {and}\quad a_{1k}+\frac{b_{1k}}{R}>0, \quad k=1,\dots ,\ell ,\quad \ell =\frac{N-1}{2}. \end{aligned}$$
(B.12)

We introduce the following notations. The value \(R_{*k}(N)\) is real root of the equation \(\lambda _{1k}^*(N,R)=0\) if it exists, \(R_{*}(N)=R_{*\ell }\), and \(R_{ak}(N)=-\dfrac{b_{1k}}{a_{1k}}\).

We note that

$$\begin{aligned} \max _{1\leqslant k \leqslant \ell }R_{a k}(N)= -\frac{b_{1 \ell }}{a_{1\ell }}=R_a(N). \end{aligned}$$
(B.13)

The results of calculations with the help of the approximation formulas:

$$\begin{aligned} \begin{aligned}&R_*(N)\approx R_a(N), \\&R_a(N)= \frac{4}{B_1^3}\left[ \frac{2C_{1}}{1+ \cos {\frac{\pi (N-1)}{N}}}-1\right] +\frac{1}{2B_1} \end{aligned} \end{aligned}$$
(B.14)

are presented in Table 1 and in Fig. 20.

There is an asymptotics: \(R_*(N)\rightarrow R_a(N)\), \(N=2\ell +1\rightarrow \infty \).

Table 1 Case odd \(N=2\ell +1\geqslant 7\)
Fig. 20
figure 20

Function \( R_a(N)\) on the interval \(7\leqslant N\leqslant 41\)

The inequalities

$$\begin{aligned} \lambda _{1\ell }^*<0,\quad 0<R<R_*(N),\quad \text {and} \quad \lambda _{1\ell }^*>0,\quad R>R_*(N), \end{aligned}$$
(B.15)

are valid. Accordingly (B.13), the conditions

$$\begin{aligned} \lambda _{1k}^* \geqslant 0,\quad R\geqslant R_*(N), \quad k=1,\ldots ,\ell \end{aligned}$$
(B.16)

are equivalent to the condition

$$\begin{aligned} \lambda _{1\ell }^* \geqslant 0,\quad R\geqslant R_*(N). \end{aligned}$$
(B.17)

1.2 Appendix B.2: The Properties of the Functions \(p_0^*(N,k)\)

We introduce the denotation

$$\begin{aligned} p_0^*(N,k)= \lambda _{1k}^*\lambda _{2k}^*-{\lambda _{0k}^*}^2,\quad k=1,\ldots ,\left\lfloor \frac{N-1}{2} \right\rfloor , \end{aligned}$$
(B.18)

where \(\lambda _{1k}^*\), \(\lambda _{2k}^*\) and \(\lambda _{0k}^*\) are given by (4.4).

The asymptotics

$$\begin{aligned} p_0^*\left( N,\frac{N-1}{2}\right)= & {} K_{1}^2(R\,B_1)\left( \frac{Q(N)}{R}+O\left( \frac{1}{R^2}\right) \right) ,\quad R\rightarrow \infty , \end{aligned}$$
(B.19)
$$\begin{aligned} Q(N)= & {} \frac{1}{4B_1}\left( 1-\cos {\frac{\pi (N-1) }{N}}\right) \left( 1+\cos {\frac{\pi (N-1)}{N}}-C_1-C_1^2\right) \end{aligned}$$
(B.20)

is valid.

Figure 21 shows the graphics functions \(\delta _{N,2}(R) p_0^*(N,\frac{N-1}{2}).\) The weight function

$$\begin{aligned} \delta _{N,2}(R)=-\frac{1}{Q(N)K_{1}^2(RB_1)}>0 \end{aligned}$$
(B.21)

is positive for odd \(N=2\ell +1\geqslant 5.\) The functions shown in Fig. 21 are negative: \(p_0^*(N,\frac{N-1}{2})<0\) for the pentagon \((N=5)\) at \(R>R_{05}\), and in all other cases \(N=2\ell +1\ge 7\) for all \(R>0\). Therefore, for \(N=2\ell +1\ge 7\) the condition (4.15) of Proposition 4.1 is valid for all \(R>0\).

Fig. 21
figure 21

Case of odd \(N=2\ell +1\geqslant 5\). The graphs of the functions \(\delta _{N,2}\cdot p_0^*(N,\frac{N-1}{2})\) at \(N=5,7,\dots , 21\) in the interval \(0< R\leqslant 20\). The graphs are located from top to bottom in order of increasing N

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurakin, L.G., Lysenko, I.A., Ostrovskaya, I.V. et al. On Stability of the Thomson’s Vortex N-gon in the Geostrophic Model of the Point Vortices in Two-layer Fluid. J Nonlinear Sci 29, 1659–1700 (2019). https://doi.org/10.1007/s00332-018-9526-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-018-9526-2

Keywords

Mathematics Subject Classification

Navigation