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Abstract

We present an existence and stability theory for gravity—capillary solitary waves on
the top surface of and interface between two perfect fluids of different densities, the
lower one being of infinite depth. Exploiting a classical variational principle, we prove
the existence of a minimiser of the wave energy £ subject to the constraint 7 = 2u,
where 7 is the wave momentum and 0 < . < pg, where g is chosen small enough
for the validity of our calculations. Since £ and Z are both conserved quantities a
standard argument asserts the stability of the set D,, of minimisers: solutions starting
near D, remain close to D,, in a suitably defined energy space over their interval of
existence. The solitary waves which we construct are of small amplitude and are to
leading order described by the cubic nonlinear Schrédinger equation. They exist in a
parameter region in which the ‘slow’ branch of the dispersion relation has a strict non-
degenerate global minimum and the corresponding nonlinear Schrédinger equation is
of focussing type. The waves detected by our variational method converge (after an
appropriate rescaling) to solutions of the model equation as u | 0.

Keywords Water waves - Interfacial waves - Solitary waves - Variational methods -
Stability

1 Introduction
1.1 The Model

We consider a two-layer perfect fluid with irrotational flow subject to the forces of
gravity, surface tension and interfacial tension. The lower layer is assumed to be of
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infinite depth, while the upper layer has finite asymptotic depth /. We assume that
density p of the lower fluid is strictly greater than the density p of the upper fluid. The
layers are separated by a free interface {y = n(x, 7)}, and the upper one is bounded

from above by a free surface {y = & + 77(x,t)}. The fluid motion in each layer
is described by the incompressible Euler equations. The fluid occupies the domain
B(n) U (), where

X = {(x,y) eR*: —co<y <Q(x,t)},

T = {00 e R0 <y <h+in 0],

and n = (1, 7). Since the flow is assumed to be irrotational in each layer, there exist
velocity potentials ¢ and ¢ satisfying

Ap=0 in (), Ap =0 in X().
On the interface {y = n} we have the kinematic boundary conditions
— — 1. — 1
=0, —nd.=U+n)0b. =9 —n¢ =1+n)200.
where
2.1
n=(1+n)"2(1 -n)
is the upward unit normal vector to the interface. In particular, this implies that the

normal component of the velocity is continuous across the interface. At the free surface
{y = h + 7}, the kinematic boundary condition reads

— — 1 J—
W=y —N,by = (1 + 7200,
where
— I, D | _
n=1+n)"2(1,—n,)

is the outer unit normal vector at the surface. In addition, we have the Bernoulli
conditions

L 1 2 0,
ol + IVl +gn ) —p|\dp+IVE +gn)=—0 | — | ,
2 2 1+772

—X x

and

J1+72

_ 1 _
ﬁ(a,¢+ 5|V¢|2 +gﬁ> =7
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at the interface and surface, respectively, where g > 01is the acceleration due to gravity,
o > (the coefficient of surface tension,and o > 0 the coefficient of interfacial tension.
In order to obtain dimensionless variables we define

( / /) 1( ) t/ (g>2t
X, ==, 5 = = )
Y h Y h
70,1 1—< D) ‘(1) = 1( 0,
X = =nx,1), X ,t =nx,
mx, il n TEAGE
P Y1) =t p ), P Y ) = hxy D),
()2 g2 (h)zgz™

and obtain the equations (dropping the primes for notational simplicity)
Aq_&:O, y<n, (1.1)
A¢ =0, n<y<l+T, (1.2)

with boundary conditions

orn = ¢, —n9. y=mn, (1.3)
0 =y — 1 Py, y=n, (1.4)
8lﬁ:$y _ﬁxaxv y =1+ﬁs (15)
Vf — 0, y — —00, (1.6)
and
p\0d+IVOI +n) = (¢ + IV +n)=-B| —| .y=n
2 2 1+772
X x
(1.7)

%+ - |v<z>|2 =B —2—
J1+72

in which p :=p/p € (0, 1), B := g/(gﬁzﬁ) > 0and B = E/(gﬁzﬁ) > 0. The total
energy

,y=1+m, (1.8)

1 _ 1
5:—/7 p|V¢|2dxdy+—/ |Vo|? dx dy
2 J3m 2Jsm T
/(1—p>n dx
2

+2/pn dx—}—/ﬂ(,/l—i—gx 1) dx
+/pﬁ<,/1+ﬁ,%—1> dx

R

@ Springer



2604 Journal of Nonlinear Science (2019) 29:2601-2655

Fig.1 Sketch of the physical yA
setting and the waves obtained _ _
- O v y=1+n(x)
in this paper (in dimensionless -
variables) _‘—"“’/‘\/{*’”“_‘_’
7
y =n(x)
A\VARV4 >
4

and the total horizontal momentum
1= /Rﬂx(£|y=g - pq—5|y=g) dx + P/Rﬁx($|y=l+ﬁdx

are conserved quantities.

Our interest lies in solitary-wave solutions of (1.1)-(1.8), that is, localised waves
of permanent form which propagate in the negative x-direction with constant (dimen-
sionless) speed v > 0, so that n(x,7r) = nx + vt), n(x, 1) = nx + vr),
d(x,y,t) = p(x+vt,y)andd(x, y, 1) = ¢p(x+vt, y),and n(x +vt), H(x +vt) — 0
as |x + vt| — oo. Figure 1 contains a sketch of the physical setting.

1.2 Heuristics

The existence of small-amplitude solitary waves can be predicted by studying the
dispersion relation of the linearised version of (1.1)—(1.8). Instead of linearising (1.1)—
(1.8) directly, we may derive the dispersion relation by using the fact that these waves
are minimisers of an energy functional J,(n) = K(n) + Mz /L(n), where u is the
momentum (see Sect. 1.3 below). Writing the corresponding Euler-Lagrange equation
in the form K'(y) — v2L' () = 0, where v = u/L(7) is the wave speed, linearising
and substituting the ansatz n(x) = cos(kx)v, with v a constant vector, leads to the
equation

(P(k) —v*Fk)v =0,

where
1 —p+ Blk|? 0 )
P(k) = ( = — and
0 p(1+ Blk|?)
k| + plk|coth [k| —p-IKl_
Fk) = k] + pl ||k| |k| PSmnE (L.9)
= b A plk| coth |k|
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(The formula for J,i () and its linearisation can be obtained from Lemmas A.27
and A.28.) Equivalently, v? is an eigenvalue and v an eigenvector of the matrix

1

FO) ‘Pl = — —
oo |k| coth [k[ + plk|
(1 — p + BIk|?) coth [k| (1 + Bk s
(1=p +é|k|2)m (1 + BIk|?) (1 + p coth |k|)

(assuming that k # 0 so that F'(k) is invertible). The eigenvalues are given by

a—p+gm%+a+3mﬂammm+ph: 1
2]k|(1 4 p tanh |k|) 2|k|(1 + p tanh |k])

vV D(k),

Ax (k)=
with

_ 2
D) = ((1 = p+ BIKI) — anh k| + p) (1 + BIKP))

4p

o (L~ P+ B+ BlkP) > 0.

It follows that A_ (k) < A (k) forall £ # 0, meaning that for each wavenumber k # 0

there is an associated ‘slow’ speed \/A_(k) and a ‘fast’ speed /A4 (k) (see Fig. 2).
Moreover,

1
Ay (k) = I +O(lk) and A_(k) =1—p—p(1 = p)lk| + O(kI*)

as k — 0. As |k| — oo we have that

B+(+mBE|p-(+pF
201+ )

Ap (k) = k] + O(1).

Since
B—(1+0B| <p++0B.

we have that Ay (k) — o0 as |k| — o0. In view of the behaviour at 0, we conclude
that A_ (k) is minimised at some k = ko > 0.

In order to find solitary waves we will assume the following non-degeneracy con-
ditions.

Assumption 1.1
A_(k) > A_(ko) fork # *ko (1.10)
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Fig.2 Dispersion relation for 67
the parameter values p = 0.5,
B =1and g =0.2. The At (k)
dispersion relation has a slow 5
branch A_ (k) and a fast branch
A (k)
4
3 4
2 A (k)
l 4
0 T
0 1 2 3 4 S 6 7 8
k
and
2 (ko) > 0. (1.11)

The first part of the assumption is introduced in order to avoid resonances. The
second part is introduced in order to obtain inequality (1.14) below. This in turn
dictates the choice of model equation (the cubic nonlinear Schrodinger equation). We
note that these conditions are satisfied for generic parameter values, but that there are
exceptions; see Figs. 3 and 4.

Set vp = /A_(kp) and note that vy = (1, —a) is an eigenvector to the eigenvalue
v of the matrix F (ko) ~! P (ko), in which

L(1 = p + Blkol?) — 11 + Blkol?) (tanh [ko| + ) + 3 /Do)
a= —
(0 + ﬂ|k0|2)m

>

(1.12)
For future use we also introduce the matrix-valued function

g(k) := P(k) — viF (k)

_ <l—p—|—é|k|2 0 )_ 2<|k|+,0|k|c0th|k| —pﬁ"k‘ )

— 1%
0 p+pBlkl?) O\ —pgim elklcothlk]

(1.13)
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0.7 0.7 0.7
0.6 0.6 ! 0.6
0.5 0.5 /\_/ 0.5 |
0.4 0.4: 0.4—.
0.3 0.3‘ 0.3
0.2 0.2: 0.2
0.1 0.1 | 0.1
00 1 2 3 4 5 6 7 8 O0 1 2 3 4 L 6 7 8 00 1 2 3 4 5 6 7 8
k k
(a) 3=0.04 (b) 3~ 0.055 (c) B=0.07

Fig. 3 Graphs of A_(k) for p = 0.5, B = 1 and three different values of B. In cases (a) and (c) both
conditions (1.10) and (1.11) are satisfied. In case (b) condition (1.10) is violated

Fig.4 Numerical computations 0.94 4
indicate that A_ (k) has a

degenerate minimum at k = 1

G =r"1)y=2"1) =0,

A0V (1) > 0) for p ~ 0.063,

B~ 0.939, B ~ 0.232, in 0.93 1
violation of condition (1.11)

0.92 1

0.90

which satisfies g(ko)vgp = 0 and (due to the second part of Assumption 1.1 and
evenness)

glw - w = (h_(k) — A (ko)) F()w - w > c(|k| — ko)*|w|? (1.14)

for ||k| — ko| < 1, where c is a positive constant.
Bifurcations of nonlinear solitary waves are expected whenever the linear group
and phase speeds are equal, so that v’ (k) = 0 [see Dias and Kharif (1999, Sect. 3)]. We

therefore expect the existence of small-amplitude solitary waves with speed near vy,
bifurcating from a linear periodic wave train with frequency kovo. Making the ansatz

1 .
n=5uAX, T)e 00D ¢ e yvg 4+ O (u?),
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X = pux +vot), T =2ko(voF(ko)vo - vo) ' p’t,

where ‘c.c.” denotes the complex conjugate of the preceding quantity, and expanding
in powers of p one obtains the cubic nonlinear Schrodinger equation

2iAr — JA2Axx + 3 (5As + A4) |APA =0, (1.15)
for the complex amplitude A, in which
Az = g" (ko)vo - vo
and A3 and A4 are functions of p, g and B which are given in Proposition 2.27 and
Corollary 2.24. At this level of approximation a standing wave solution to Eq. (1.15)

of the form A(X, T) = e/"Nts Ty (X) with ¢(X) — 0 as X — oo corresponds to a
solitary water wave with speed

v = vy + 2o F (ko)vo - o)~ WP VNLS -

Lemma 1.2 A, > 0 under Assumption 1.1.

Proof Let v(k) be a smooth curve of eigenvectors of F k)~LP(k) corresponding to
the eigenvalue A_ (k) with v(0) = vg. Then

(P (k) — A_ (k) F' (k))v(k) + (P (k) — A_(k)F(k))v' (k) = A"_(k)F (k)v(k)
and

(P"(k) — A—(k)F" (k))v(k) 4+ 2(P' (k) — A— (k) F'(k))v' (k)
+ (P (k) — A_(k)F (k))v" (k)
= (k) F()v(k) + 21 (k) F' (k)v(k) + 20" (k) F (k)v' (k).

Evaluating the first equation at k = ko and using that A”_(kg) = 0, we find that
g’ (ko)vo = —g(ko)v' (ko).

Taking the scalar product of the second equation with v(k), evaluating at k = ko and
using the previous equality, we therefore find that

8" (ko)vo - vo = A" (ko) F (ko) vo - vo + 2g(ko)v' (ko) - v/ (ko).

where we have also used that g (ko) vy = 0. This concludes the proof since 1” (ko) > 0
and F (ko) and g (ko) are positive definite. O

It follows that a necessary and sufficient condition for Eq. (1.15) to possess solitary
standing waves is that the coefficient in front of the cubic term is negative.
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Assumption 1.3
1
§A3+A4 < 0. (1.16)

It seems difficult to give a general criterion for when this assumption is satisfied.
In specific cases it can be verified numerically.

Example 1.4 Consider the two choices of parameter values in Fig. 3a, ¢, thatis, p = 0.5,
B =land(a) B = 0.040r(c) B = 0.07. Numerical computations reveal that ky &~ 4.99

and TA3+ A4 ~ —2.11 x 10'3 in case (a), while ko ~ 0.245 and A3 + A4 ~ —50.7
in case (c). Thus, Assumption 1.3 is satisfied in both cases.

Furthermore, in some cases it is possible to verify both Assumptions 1.1 and 1.3
using asymptotic analysis.

Example 1.5 Assume that 8 < 1/4 and B = 1/3, and consider the limit p — 0.
Straightforward computations show that

(1+ Blk|?) tanh [k| 1+ BIk|?
k]| T k]

A_(k) = A* (k) := min :

locally uniformly. Moreover, all derivatives also converge locally uniformly away
from points where the two functions in the bracket are equal (that is, where D*(k) :=
((1 + Blk|?) — (1 + Blk|?) tanh |k[)? = 0). Since A* (k) has a unique strict and non-
degenerate positive global minimiser k) = 1/ \/E with

Mk =2/ <1

(note that (1 + B|k|?)tanh |k|/|k| > 1 under the assumption f > 1/3) and
limg|— o0 A— (k) = oo uniformly in p, we find that A_ (k) has a unique strict and non-
degenerate positive global minimiser kg for sufficiently small p, and that ko — 1/ \/E
and A_(kg) — 2\/2 as p — 0. Using the formulas in Propositions 2.23, 2.27 and
Corollary 2.24 one now verifies that

Lasras— -2 <0
- —— <
Y]

as p — 0. Thus, under the conditions 8 < 1/4 and B > 1/3, Assumptions 1.1 and 1.3
are both satisfied if p is sufficiently small.

Example 1.6 Consider next the limit 7 — oo. Note that 8, 8 — 0 as h — oo.

Moreover, we expect kg to diverge. Therefore, it is convenient to introduce the new
length scale i := /o /(gp), the non-dimensional length parameter H := h/h, the
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non-dimensional surface tension parameter B := SH> = f/ B =17/(po) (note that
B=1/H 2) and the new non-dimensional wavenumber K := k/H. We then find that

(1—p+|K®) + (1 + B|K|?)(tanh(|K |H) + p)
2|K|(1 + ptanh(|K |H))

1
vV D(k),

+
2|1K|(1 + p tanh(|k|H))

Hhy(k) =

with

2 2\
D(k) = <(1—p+|K| ) — (tanh(|K'|H) + p) (1 + B|K| ))

4p

+——" 1 -p+|K)A+ BIK]?).
COsthK'H)( o+ K|7)( IK|9)

It follows that

1— K|?> 1+ B|K|?
HA_(k)—>Ai(K):=min{ p+IKI" 1+ B '}

(I+pIK| = K|

uniformly for |K| > §, where 6 > 0 is arbitrary, and that all derivatives converge
uniformly on the same set away from points where the functions within the brackets
coincide. On the other hand, HA_ (k) can be made arbitrarily large for | K| < § by first
choosing § sufficiently small and then H sufficiently large depending on §. Choosing
B > (1 — p)/(1 + p)?, we find that the function A* (K) has the unique strict and
non-degenerate positive global minimiser K = /T — p with

21 —=0p

MKy = T

Therefore, A_(k) has a unique strict and strict and non-degenerate positive global
minimiser ko forlarge H withko/H — Kgas H — oo. Straightforward computations
now yield

;A3 +HAL (1= p)?

2
e — 24(1+p)2(11p —42p +11)

as H — oo. The right-hand side is negative for p < p* = (21 — 8«/3)/11 ~ (.28 and
positive for p > p*. Thus,if B > (1—p)/(1+ p)?and p < p* both Assumptions 1.1
and 1.3 are satisfied if 7 is sufficiently large, while if p > p* then Assumption 1.1 is
satisfied but not Assumption 1.3.

The following lemma gives a variational description of the set of solitary waves of
the nonlinear Schrodinger equation (1.15) [see Cazenave (2003, Sect. 8)].

Lemma 1.7 Assume that Ay > 0 and %A3 + As < 0. The set of complex-valued
solutions to the ordinary differential equation

@ Springer
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1 3 (A3
—ZA2¢” — 2UNLs® + 2 (7 + A4> 19179 =0

satisfying ¢(X) — 0as X — oo is DNLs = (e ®pnrs(- + y):we[0,2r),y € R},
where

9“1%1Ls A3 ;
=—NLS (224 4,),
UNLS 84 > 4

1
3 /A 2 3 A
dNLS(x) = anLs (—A—2 (73 + A4>> sech <—%2LS (73 + A4) x) )

These functions are precisely the minimisers of the functional Exis : H'(R) — R
given by

I B N S 4
SNLS<¢>—/R{8A2|¢| +8<2 +A4> 6] }dx

over the set Nnis = {¢ € H'(R) : ||¢l3 = 2anis}, where anis = 2(voko +
vop F (ko)vg - vo) ™!, the constant 2vNy s is the Lagrange multiplier in this constrained
variational principle and

. 3a3 Az 2
InLs = inf {EnLs(@): ¢ € Nnps) = — =5 (=2 4 Ay ) .
4A, 2

1.3 Main Results

The main result of this paper is an existence theory for small-amplitude solitary-
wave solutions to Egs. (1.1)—(1.8) under Assumptions 1.1 and 1.3. The waves are
constructed by minimising the energy functional £ subject to the constraint of fixed
horizontal momentum Z; see Theorem 2.4 for a precise statement. As a consequence
of the existence result we also obtain a stability result for the set of minimisers; see
Theorem 2.5.

Before describing our approach in further detail, we note that the above formulation
of the hydrodynamic problem has the disadvantage of being posed in a priori unknown
domains. It is therefore convenient to reformulate the problem in terms of the traces
of the velocity potentials on the free surface and interface. We denote the boundary
values of the velocity potentials by ®(x) := ¢(x, n(x)) and ®(x) = (®; (x), Dy (x))
where ®; (x) := ¢(x, n(x)) and ®(x) := ¢(x, 1 + 7(x)). Following Kuznetsov and
Lushnikov (1995) and Benjamin and Bridges (1997) (see also Craig and Groves 2000;
Craig et al. 2005) we set

E(x) = Q(x) — p®@;(x), E(x) 1= pdy(x); (1.17)

the natural choice of canonical variables is (7, &), where = (Q, n), & = (§ , §).
We formally define Dirichlet-Neumann operators G (Q) and 6(21) which map (for a
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given 1) Dirichlet boundary data of solutions of the Laplace equation to the Neumann
boundary data, i.e.

C)@ =1+ 1) (V- m)lyy.
God (Ewm@xm) <_>-= —(1+g§)%(va-a>|yzg ,
G21(n) Gaa(n) SN+ Dymrin)

see Appendix A for the rigorous definition. Note that G only depends on 7, whereas
G depends on n and 7. The boundary conditions (1.3)—(1.4) imply that

G® =—(Grm®i + G2 Py). (1.18)
If we define
B(m) = Gu() + pG(n), (1.19)
we can recover ® and ® from & using the formulas
@ =B""Gu& - BTG,
(1.20)

_ » 1= =
®; =—-B GE - —B" G128,
> p

under assumption (1.18). Moreover, the total energy and horizontal momentum can
be re-expressed as

2

( 1+ 2 — \/7 >}dx (1.21)

1
£, &) = { “EGE + —L 2+§ﬁ
+8

and
T(n, §) = f 0 Edxt f 7,8 dx, (1.22)
R R
respectively, where we have abbreviated

G = [ EWBMIGum - —G@Bm ™ Gum)_
V=N -GumBm TG LGam) — TGumBm) T Grm)
(1.23)
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Note that

_ Gm®
GmE = <621(7I)6x +622(ﬂ)51> ’

We now give a brief outline of the variational existence method. We tackle the
problem of finding minimisers of £(n, &) under the constraint Z(y, £) = 2u in two
steps.

1. Fix n # 0 and minimise £(y, -) over T, := {§ eX:I(n &) = 2/1}, where the

space X is defined in Definition A.16. This problem (of minimising a quadratic
functional over a linear manifold) admits a unique global minimiser &.

2. Minimise 7, (n) := £(, &,) over n € U\{0} with U := By (0) C (H*(R))*,
Because &, minimises £(1, -) over T}, there exists a Lagrange multiplier y; such
that

Gmé&, = yyny-
Hence,
&y =G ..
Furthermore, we get

m

VWZT")’

1
L) = E/R”K(")" dx, (1.24)

where

KO = —0,G0) "0y = —a, <pﬁn(ﬂ1) + N —pﬁu(n)> ).

—pN21(n) PN ()
(1.25)
with N () := G(n)~" and
~ Ni(m) Nip) =1
Nn) == — =G ;
() <N21(77) sz(ﬂ)) &
see Proposition A.19. For 7, () we obtain the representation
u2
J, =K+ ——, 1.26
(1) ) Za (1.26)
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where
K@) = K@) + K@,

&(g)z/ {@f—i—ﬁ 1+g§—g} dx,
R

— 1 —_ —_
/C(m:pf {§ﬁ2+ﬁ 1+ﬁ,%—ﬂ} dx.
R

We address the problem of minimising 7, using the concentration-compactness
method. The main difficulties are that the functional is quasilinear, non-local and
non-convex. These difficulties are partly solved by minimising over a bounded
set in the function space, but we then have to prevent minimising sequences from
converging to the boundary of this set. This is achieved by constructing a suitable
test function and a special minimising sequence with good properties using the
intuition from the nonlinear Schrodinger equation above.

Our approach is similar to that originally used by Buffoni (2004) to study solitary
waves with strong surface tension on a single layer of fluid of finite depth, and later
extended to deal with weak surface tension (Buffoni 2005, 2009; Groves and Wahlén
2010), infinite depth (Buffoni 2004; Groves and Wahlén 2011), fully localised three-
dimensional waves (Buffoni et al. 2013) and constant vorticity (Groves and Wahlén
2015). Our main interest is in investigating the non-trivial modifications needed to
deal with multi-layer flows. We give detailed explanations when needed and refer
to the above papers for the details of the proofs when possible. In particular, a new
challenge is that we need to consider vector-valued Dirichlet—-Neumann operators.
This is discussed in detail in Appendix A. Another novelty is related to the special
minimising sequence mentioned above. Since 3 is vector-valued it is not sufficient to
prove that the spectrum of the special minimising sequence concentrates around the
wavenumbers £k¢. In addition, we need to identify a leading term related to the zero
eigenvector vg of the matrix g(kp) and estimate the minimising sequence in a more
refined way. Finally, as already discussed in Sect. 1.2, the multi-layer case allows for
a much richer variety of scenarios in the weakly nonlinear regime. In particular, this
means that we have to make some assumptions in order for the approach to work. We
have, however, made these as weak as possible, and the examples in Sect. 1.2 show
that they are satisfied in important special cases.

Note that we could also have considered a bottom layer with finite depth. This
introduces an additional dimensionless parameter in the problem (the ratio between
the depths of the two layers), which allows for other phenomena. (For example, the slow
speed can have a minimum at the origin.) We refer to Woolfenden and Péarau (2011) for
a discussion of the dispersion relation and numerical computations of solitary waves
in the finite depth case. One of the reasons why we chose to look at the infinite depth
problem is that it entails some technical challenges which invalidates the use of certain
methods which are widely used to find solitary waves in hydrodynamics. In particular,
the idea originally due to Kirchgissner (1982) of formulating the steady water-wave
problem as an ill-posed evolution equation and applying a centre-manifold reduction
cannot be used. The variational method that we use is less sensitive to these issues.
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Note, however, that Kirchgédssner’s method has been extended to deal with the issues
due to infinite depth by several authors (see Barrandon and Iooss 2005 and references
therein) and this could have been used in order to construct solitary waves also in our
setting. These methods give no information about stability, however.

As far as we are aware, there are no previous existence results for solitary waves in
our setting. However, Iooss (1999) constructed small-amplitude periodic travelling-
wave solutions of problem (1.1)—(1.8) in two situations. The first situation is when
the parameters are chosen so that v> = A (k) or v> = A_ (k) for some wavenumber
k # 0 which is not in resonance with any other wavenumber (i.e. A+ (nk) # v? for all
n € Z) and A/ (k) # 0 (where the sign is chosen such that 14 (k) = vz). The second
situation is the 1 : 1 resonance, that is when k is a non-degenerate critical point of
A+. In both situations he proved the existence of small-amplitude waves with period
close to 2w /k using dynamical systems techniques. The second situation includes
our setting, but is somewhat more general. (The critical point is, for example, not
assumed to be a minimum.) There are also a number of papers dealing with solitary
or generalised solitary waves (asymptotic to periodic solutions at spatial infinity) in
the related settings where either one or both of the surface and interfacial tension
vanish (see Barrandon 2006; Barrandon and Iooss 2005; Dias and Iooss 2003; Iooss
et al. 2002; Lombardi and Iooss 2003; Sun and Shen 1993 and references therein).
The variational method presented in this paper does not work in those settings since
it requires both surface tension and interfacial tension. Finally, let us conclude this
section by mentioning that our assumptions exclude two possibilities which could
be interesting for further study (by variational or other methods), that is when A_
has a degenerate global minimum at kg (see Fig. 4) or when the minimum value is
attained at two distinct wavenumbers (Fig. 3). Also, when Assumption 1.1 is satisfied,
but the corresponding nonlinear Schrodinger equation is of defocussing type (so that
Assumption 1.3 is violated), one would expect the existence of dark solitary waves.

2 Existence and Stability

This section contains the main results of the paper. We begin by proving that the func-
tional 7, has a minimiser in U\{0}. This is done by using concentration-compactness
and penalisation methods as in Buffoni (2004, 2005, 2009), Buffoni et al. (2013),
Groves and Wahlén (2011, 2015), and we refer to those papers for the details of some
of the proofs. The outcome is the following result.

Theorem 2.1 Suppose that Assumptions 1.1 and 1.3 hold.

(i) The set Cy, of minimisers of J,, over U\{0} is non-empty.
(i) Suppose that {n,,} is a minimising sequence for [J,, on U\ {0} which satisfies

sup [, ll2 < M. 2.1
neN

There exists a sequence {x,} C R with the property that a subsequence of
{n,,(xn + )} converges in (H"(R))?, 0 < r < 2 to afunction g € Cp.
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The first statement of the theorem is a consequence of the second statement, once
the existence of a minimising sequence satisfying (2.1) has been established. The
existence of such a sequence can be proved using a penalisation method, cf. Buffoni
(2004), Buffoni et al. (2013) and Groves and Wahlén (2011, 2015). A key part of the
proof of Theorem 2.1 is the existence of a suitable ‘test function’ , which satisfies
the inequality

() < 2vop — e

This implies in particular that any minimising sequence {7, } satisfies this property
for n sufficiently large. We construct such a test function in Appendix B. Once the
existence of the test function has been proved, the remaining steps in the construction
of the special minimising sequence satisfying (2.1) are similar to Buffoni (2004),
Buffoni et al. (2013) and Groves and Wahlén (2011, 2015), to which we refer for
further details. In fact, this special minimising sequence satisfies further properties
which will be used below. (Note that a general minimising sequence satisfies the
weaker estimate ||n,, > < cu by Proposition A.29.)

Theorem 2.2 Suppose that Assumptions 1.1 and 1.3 hold. There exists a minimising
sequence {i,,} for J,, over U\{0} with the properties that |1, ||% <cwand J,(4,) <
2vop — cu3f0r eachn € N, and lim;,_, oo ||‘7;;,('~7n)”0 =0.

The second statement of Theorem 2.1 is proved by applying the concentration-
compactness principle (Lions 1984a,b) [a form suitable for the present situation can
be found in Groves and Wahlén (2015, Theorem 3.7)] to the sequence {u,} defined
by

= |1,1> + |, 1%

where {1, } is a minimising sequence satisfying (2.1). Taking a subsequence if neces-
sary, we may suppose that the limit £ := lim,_, ffooo Uy, (x)dx > Qexists (£ =0
would imply that lim,,_, o J}, () = 00). Similar to Buffoni et al. (2013, Lemma 3.7)
it is easy to show that the vanishing property

X+r
lim sup/ uy,(x)dx )| =0 forallr >0

n— o0 ieR Ji—r

leads to a contradiction to the estimate [|5,[/1,00 > cpu® which any minimis-
ing sequence has to satisfy because of the estimate J,(n,) < 2vou — cu’ [see
Lemma 2.29 and Buffoni et al. (2013, Lemma 3.4)]. We now comment on the
more involved case ‘dichotomy’. Let us assume that there are sequences {x,} C R,
{M,(ll)}, {M,(,z)} C R and a real number « € (0, ¢) with the properties that M,(,l),
M — oo, MV /M — 0,

Mn(l) M’s2)
Uy (x + x,)dx — «, Up(x + x,)dx — «
e o

n
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as n — oo. Furthermore,

X+r
lim (sup/ un(x)dx> <k
"7\ feR Ji-r

for each r > 0, and for each ¢ > 0 there is a positive, real number R such that

R
/ Up(x +x,)dx >k — ¢
—R

for each n € N. We abbreviate the sequence {,,(- + x,)} to {,,} and define sequences
"1, (121 by the formulas

1D (o) =, (0 <M“>> <2>(x)—nn(x>( (#))

where x € C°(—2,2) with x = 1in [—1,1]and 0 < x < 1. The ‘splitting
properties’

im D)2 ; 2))12 . 1 )

lim [p" 13 =, lim 9P} =€ -k, lim |n, — " =P =
n—00 n—00 00

and hence

lim (K = K@) — K@) =o,

are straightforward consequences of these definitions [see Buffoni et al. (2013, Lemma
3.10 and Appendix C)]. The corresponding splitting property

Jlim (L) = L") = L)) =0,

for the non-local functional £ is not as direct, but nevertheless follows using its
‘pseudo-local’ properties [see Appendix D, in particular Theorem D.6, in Buffoni et al.
(2013) and Sect. 2.2.2, in particular Theorem 2.36, in Groves and Wahlén (2015)].
Taking subsequences, we can assume that all of the sequences {K(7,)}, {IC(n,gl))},
{lC(ﬂ(z))}, {L(m,)} {ﬁ(ﬂf,l))} and {[,(17;2))} converge and that the limits are positive
[see Buffoni et al. (2013, Lemma 3.10 and Appendix C)]. Setting

lim;,— 00 E(”lgl)) lim,, ;o E(U(Z))

B = L M= p———
lim;,— o0 £(1,,) lim, . L(,,)

we obtain that © = w1 + w2, i1, 2 > 0 and
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2
Tlim 7, (1,) = lim (’C(”") * /:(m))

2
L(n n)2

n— 00

~ lim (IC(ﬂn)+ ﬁ(rm)

L ”))

i, </C(ﬂ(2))+ YATRE (n@)))

lim (/C(n<1>)+ jl) >+ lim (/C(n<2>)+ & )
oo Laph) o L)

— 1 (eY) (2)
- n11>nolo jm (T[n ) + nlggo jﬂz (77;1 )

Tim. (lc(n ‘>)+E( i

The next key step in the analysis of dichotomy is to show that the function
w1y = inf{7, () g € U\{0}}

is strictly sub-additive.

Theorem 2.3 Suppose that Assumptions 1.1 and 1.3 hold. The number I,, has the strict
sub-additivity property

Tugtpn < Ty + 1uys 0 < pr, w2, 1 + p2 < po.

Theorem 2.3 is obtained using a careful analysis of the special minimising sequence
from Theorem 2.2, which is postponed to the end of this section. With this at hand,
the dichotomy assumptions lead to the contradiction

. 1 . 2 .
Iy < Ty + 1y, < nlglgo Jm(”; ) +nlggo jul(nfz ) = nlglgo Tu(m) = 1.

It follows that the sequence {u,} concentrates, that is, there is a sequence {x,} C R
with the property that for each ¢ > 0 there exists a positive real number R with

R
/ Up(x +x,)dx > € —¢
—R

for each n € N. Arguing as in the proof of Lemma 3.9 of Buffoni et al. (2013),
one finds that the sequence {», (- + x,)} admits a subsequence which converges in
(H"(R))2,0 < r < 2, to a minimiser of Jy, over U\{0}. This concludes the proof of
Theorem 2.1.

The next step is to relate the above result to our original problem of finding min-
imisers of £(1, &) subject to the constraint Z(n, £) = 2u, where £ and 7 are defined in
Egs. (1.21) and (1.22). The following result is obtained using the argument explained
in Sect. 5.1 of Groves and Wahlén (2015). In fact, we first minimise £(y, -) over T,
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and then minimise J,(n) = £(1, §,) over By (0) C H?(R) (cf. Theorem 2.1) as
indicated in Sect. 1.3.

Theorem 2.4 Suppose that Assumptions 1.1 and 1.3 hold.

(i) The set D, of minimisers of € over the set

Sy =1, & eUxX:Z(n, & =2u)

is non-empty.
(ii) Suppose that {(n,,, &,)} C S, is a minimising sequence for £ with the property
that

sup [[n,12 < M.
neN

There exists a sequence {x,} C R with the property that a subsequence of
{n,(xn + ), &,(x, + )} converges in (H"(R))? x X, 0 < r < 2 to a function in
D,.

We obtain a stability result as a corollary of Theorem 2.4 using a contradiction
argument as in Buffoni (2004), Theorem 19. Recall that the usual informal interpre-
tation of the statement that a set V of solutions to an initial value problem is ‘stable’
is that a solution which begins close to V remains close to V' at all subsequent times.
The precise meaning of a solution in the theorem below is irrelevant, as long as it
conserves the functionals £ and Z over some time interval [0, 7] with 7 > 0.

Theorem 2.5 Suppose that Assumptions 1.1 and 1.3 hold and that (9, §): [0, T] —
U x X has the properties that

EM@), &) =EM0),£(0), Z(n®),&1)) =Z(n(0),£(0)), t€[0,T]
and

sup ()2 < M.
+e[0,T]

Choose r € [0, 2), and let ‘dist’ denote the distance in (H" (R))? x X. Foreache > 0
there exists § > O such that

dist((9(0), £(0)), D,) <8 = dist((n(?),&(1)), Dy) < ¢
fort € [0, T].

This result is a statement of the conditional, energetic stability of the set D,,. Here
energetic refers to the fact that the distance in the statement of stability is measured
in the ‘energy space’ (H" (R))? x X, while conditional alludes to the well-posedness
issue. At present there is no global well-posedness theory for interfacial water waves
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(although there is a large and growing body of literature concerning well-posedness
issues for water-wave problems in general). The solution ¢ +— (9(¢), £(¢)) may exist
in a smaller space over the interval [0, T'], at each instant of which it remains close
(in energy space) to a solution in D,. Furthermore, Theorem 2.5 is a statement of
the stability of the set of constrained minimisers D,; establishing the uniqueness
of the constrained minimiser would imply that D, consists of translations of a single
solution, so that the statement that D, is stable is equivalent to classical orbital stability
of this unique solution.

Let us finally discuss the relation to nonlinear Schrédinger waves and confirm the
heuristic argument given in Sect. 1.2. Due to the relation

Ju(n,) = 2vo + Inusi® + 0(1),

for the special test function 5, obtained in Lemma B.1 (constructed via the function
¢nLs form Lemma 1.7) and the variational characterisation of Dnrs from Lemma 1.7
one can prove the following result by contradiction as in Groves and Wahlén (2011,
Sect. 5; 2015, Sect. 5.2.2). Since the proof is similar, we omit the details.

Theorem 2.6 Under Assumptions 1.1 and 1.3, the set D,, of minimisers of £ over S,
satisfies

sup inf I, — épris (- + x)voll; — 0
(@.6)eD,, @€l0.27],xeR U

ikox

as it | 0, where we write nf(x) = %/Lqﬁn(ux)e and 17?' = -F_I[X[ko—&),ko—&-%]fl]

with §y € (0, %ko). Furthermore,

I, = 2voi + Inusp® + o(i?)

and the speed v, of the corresponding solitary wave satisfies

v = vo + 200 F (ko) vg - v0) ™ unist? + o(u?)

uniformly over (1, &) € D,,.

Note in particular that since vg = (1, —a) with a > 0 (cf. Eq. (1.12)) the surface
profile 7 is to leading order a scaled and inverted copy of the interface profile n
(cf. Fig. 1). The fact that we do not know if the minimiser is unique up to translations
isreflected by the lack of control over w; for the model equation, the minimiser is in fact
not unique up to translations (see Lemma 1.7). Using dynamical systems methods (see,
for example, Barrandon and Iooss 2005), we expect that one can prove the existence of
two solutions corresponding to @ = 0 and w = 7 above, but without any knowledge
of stability. Since the proof of Theorem 2.6 follows Groves and Wahlén (2015, Sect.
5.2) closely, we shall omit it.

The goal of the rest of this section is to prove Theorem 2.3, which follows directly
from the strict sub-homogeneity of I, (see Corollary 2.32). We will work under
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Assumptions 1.1 and 1.3 throughout the rest of the section, without explicitly men-
tioning when they are used. We begin by giving an outline of the proof. The heuristic
argument in Sect. 1.2 (verified a posteriori in Theorem 2.6) suggests that the spectrum
of minimisers should concentrate at wavenumbers +kq and that they should resemble
the test function », identified in Lemma B.1 for small x. Consequently, /,, should be
well approximated by the upper bound 2vou + InLs > + o(u?), the first two terms of
which define a strictly sub-homogeneous function. The strict sub-homogeneity prop-
erty is rigorously established by proving results in this direction for a ‘near minimiser’
of J, over U\{0}, that is a function in U \ {0} with

17113 < eps Tu(@) < 2vop — e, T @0 < u?,

for some N > 3. The existence of near minimisers is a consequence of Theorem 2.2.
One of the main tools that we will use is the weighted norm

1
2
mwm:(éu+u4mm—mﬁm®9%>

and a splitting of 7 in view of the expected wavenumber distribution. A difference
compared to previous works is that 7 is vector-valued and that we therefore have to
identify aleading term related to the zero eigenvector v of the matrix g (ko) in Sect. 1.2.
We establish weighted and non-weighted estimates for the different components of # in
Lemma 2.19. These estimates allow us to identify the dominant term in the ‘nonlinear
part’

2

A@@w=aum—2%5—mxm

of J,(i7) for near minimisers 7, the key ingredients being a Modica—Mortola-type
argument in the proof of Lemma 2.29 and the effect of the concentration of the Fourier
modes, cf. Lemma 2.20. Finally, we can show in Proposition 2.31 monotonicity of the
function s > 579 M2, (sq) for a certain g > 2. The strict sub-homogeneity follows
easily from this (see Corollary 2.32).

Turning now to the details of the proof, it follows from Appendix A.3 that the
functionals KC and £ are analytic on U with convergent power series expansions

Koy =Y Ketn, L= Li(.
k=2 k=2

Moreover, the gradients K’ () and £’ () exist in (L2(R))? for each 5 € U and define
analytic operators U — (L*(R))?. Formulas for some of the terms in the power series
and their gradients can be found in Appendix A.3. In particular, the quadratic part
L>(n) can be expressed as
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1 —0
Lo(y) = —/ nK’ndx + B/ nK ydx,
2 Jg— — 2 Jr
using the Fourier multiplier operators
K'n=F "'k and K'n=F"[Fol,

with

Ik
Faoy = (Mop M~
— SR A |k| coth |k|

We will also use the notation Cpi(n) = K1) — Ka(n), Lu(p) := L) — L2(n)
for the superquadratic parts of the functionals. (The corresponding gradients are the
nonlinear parts of K" and £, respectively.)

We next seek to split each # € U into the sum of a function »; with spectrum near
k = +£ko and a function 5, whose spectrum is bounded away from these points. To
this end we write the identity

2 2
, M / _ 1< /
T, () = K5(n) + Ky (n) — <_£(n)> L£5Gn) <_£(n)) Ly (m)

2 2
— Ky ) — Ly(n) + Ky ) — ((%}1)) - v%) Ly(n) — (ﬁ”)) Ca(n)

in the form

2 2
s ! _ / L /
gty =F {Ju(n) KO + ((t(")> )/32(11) + <£( )> /lnl(r/)} ,

where g (k) is given by (1.13). We decompose it into two coupled equations by defining
n, € (H*(R))? by the formula

2 2
nz=f‘1[(1—xs(k))g(k)—lf[J,im)—lc;ﬂ(n)+((ﬁ’(‘n) - ) 2(n)+<£( )) ﬁ;ﬂ(n)ﬂ

and n, € (H*>(R))? by 5, = 1 — 15, so that §j; has support in § := [—ko — 89, —ko +
do] U [ko — 80, ko + So], where 8o € (0, ko/3). Here we have used the fact that

e FH A= xskng® ™ Fo|
is a bounded linear operator (L2(R))? — (H%(R))2.
It will also be useful to express vectors w = (w, w) in the basis {vg, vg}, where v

is the zero eigenvector of the matrix g(ko) (see Sect. 1.2) and vg J v. The exact choice
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of the complementary vector vg is unimportant, but in order to simplify the notation

later on we choose vg = (0, 1). This implies that

8
w=cvg+ czvg = w0 + wv,

where ¢y = w and ¢» = W + aw.
The following propositions are used to estimate the special minimising sequence.
The proofs follow Groves and Wahlén (2015, Sect. 4.1) and are omitted.

Proposition 2.7

. . a a —0

(i) The estimates |10 < cu?lnlle 1K 0l < cuflnller 1K;mllo <
i lInllle hold for each y € (H*(R))%.

(ii) The estimates

1"+ &kgnllo < cu®limlla
and
KD ™ oo 1R D P lloe < 1S llmlles n=0,1,2,...,
hold for each n € (H*(R))? with supp# < S.
Proposition 2.8 Any near minimiser 1 satisfies the inequalities

R < —— — vp < Ra(iD).

= L®)
and
Ri() — My (i) < c—() — vy < Ra(@) — M, (i)
where
N AN Lo -
Ri) = =0 (UM G+ 40, ).
N (T, m 1 - MG
Rt = = (MG )+ 4, ) —
and
nw
Mu® = 265~ Ty

Proposition 2.9 The estimates

1L3)| < clmlZAmlln.co + 10" + k3nllo),
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[KCa(n)] 2 722
{|£4(ﬂ)|} <clnliznll,oe + IIn" + kgnllo)”,

[ICr ()] 3 p ) 5
{|ﬁr(ﬂ)|} <clnllzUnl,co + IIn" + kgnllo)

hold for each y € U.

Proposition 2.10 The estimates

—0
125 llo < cllnll2(lnlhco + 0"+ kgnllo + 1K nlloo + 1K nlloo),

{II’CQ(W)IIO
L5 llo

{II’Q(H)IIO
1L (mllo

—0
} < clnllzUmllieo + 10" +kgnllo + 1K 0lloo + 1K nlloc)?,
} < clnli3Amli.co + 10" + K2nllo)?

hold for each y € U.

It is also helpful to write

L) =m@, n). L5 =m@.n), L5m) =m@m,n) = (m(%’ ﬁ)> + i (n, 1),

where m € L2(H*(R), L*(R)) and m € L2((H*(R))?, (L*(R))?) are defined by

1 1
mu,, uy) = —550@15%2) - 55"@25‘@1)

Lo o 1 1 1
- 55 w K uy — FWixlloy — Sligcly T SU

| | | =0 —0_ _ —0 —0 _
Ty, uy) = [ 2%142x + Uty F sy iy + 5 (Kyuy + 1&(2]141)(1(1122 + K pu2)

, | — =0 —
IxUox — zULexl2 — qloxxl] — 53 (Kpjuy + K1) (Kp uy + Kppliz)

2
—0 —0 —0 _ —0 —0 —0 _
+1 [&6(21([&622+I&(2)M2))+K1(1)(22(K1121+I&%M1))
2 —K o (1 (Ko uy + Kppt2)) — Koy (U (Kp 1y + Koyity))
—0 _ —0 —0 _ —0 _ —0 —0 _
4 1 _l(ozl(ulg(ozlﬂz +l(022”2)) _521(“2g(021£1 +l(022”1))
2\ Kip(uy (K g + K1pin) 4 K 5 (uy (K 1y + K pp11))

and similarly

L3() =n(.n,m), L3 =7a@,n,m, L3 =n@,n,n) =n, 0,10
+pnr(n, n,n),

where n; € ES(H2(R), R), j = 1,2, 3, are defined by

1 1
nluy 1) = ¢ [R Plujuyus] dx — - /R PLUEK ;) (K uy)us] dx
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1
A, u, u3) = / Pluyuytt — uyuyuz]dx
R

1 —0 —0 _ =0 —0 _
+ g/ P[(Kn!l + K i) (Kqquy + K12“2)£3] dx
R

1 —0 =0 — =0 7o\
— 6 /I‘QP I:(K21E] + K22M1)(K21E2 + K22M2)M3] dx.

The symbol P[-] denotes the sum of all distinct expressions resulting from permuta-
tions of the variables appearing in its argument.

Similarly to Groves and Wahlén (2015, Proposition 4.6) we obtain the following
estimates by direct calculations.

Proposition 2.11 The estimates

lm(n , u)llo < cllln, 0o + 07 +kn llo + 1K 1 111,00 s 12,
| 11 11 21 21
_ —0
Im @y, u)llo < cllimillico + 107 +kgmillo + 1K 7, 100 + 1K 01ll1.00) 12 ll2,
In(ny, w2, u3)| < c(lmlhco + 107 + kgnillo + 1K 7, 11,00

—0
+ 1K 71 111,00) 12 ]|2 |23 1|2

hold for each y € U and uy, us € (H*(R))>.

Using Proposition 2.9 and arguing as in Groves and Wahlén (2015, Proposition 4.6
and Lemma 4.7) we obtain the following estimates.

Lemma 2.12 The estimates

M, () = —vEL3(n) + Ka(p) — v La(n)

w I
— — L L
(132(77) VO)(ﬁz(n) + VO) (L3(m) + La(m))

2
w
ML
(M, (). 1) + 4uMy () = =3v5L3(n) + 4(Ka(m) — v5La(0))

3 w
_ _ 3L 4L
<£2(ﬂ) V0><£2(1’) + vo) BL3(n) +4Ls(y))

2
_t 2 3 L.

* £ + 0> cotln” +k
(52(”))3( 3(1)) (2l cot+lm Znlo)?

(L3 + 0 (ot + Kanllo)).

and

2
M) = —p! ( ) (L3(n) + Lam) + O (Ill1.00 + 17 + K27ll0)D)

_r
L>(n)
hold for each n € U with |52 < cu% and Lo() > cu.
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The following proposition is an immediate consequence of the definition of 5;.

Proposition 2.13 The identity

xsF[{L5mp}] =0
holds for each n € U.

As a consequence, 1 satisfies the equation

g®; = xs(FISm)], 2.2)

where

2 2
/ / M / M / /
S =T, — Ky + <<Tﬂ)> - V(%) L,(n) + <Tﬂ)> (L) — L3(01)).

In keeping with Eq. (2.2) we write the equation for 3, in the form

m+ H =7~ [( = xst)g 0~ FIS] 23)
—— ——
=13

2
H(p) = —F"! [g(k)“f [(%ﬂ)) ’3<n1)ﬂ : 2.4)

the decomposition § = 5y — H () + 13 forms the basis of the calculations presented
below. An estimate on the size of H (1) is obtained from Eq. (2.4) and Proposition 2.11.

where

Proposition 2.14 The estimate

_O
IHmM 2 < clmillico + 107 +kgnillo + 1K 7, 100 + 1K 01ll1.00 + Im3l2) 11112
holds for each n € U.

The above results may be used to derive estimates for the gradients of the cubic
parts of the functionals which are used in the analysis below.

Proposition 2.15 Any near minimiser 1 satisfies the estimates
~ ~ 1 ~ ~ ~
125G — L5GD N0 < e (i .00 + 17T + k5 llo
~ —0. ~
1K 1100 + 1K i1 l1.00)% + i3 12)-
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Proof Observe that

L) — L5(ny) = m(H®n), H(n)) +m(y3, n3) — 2m(p,, H®))
—2m(n3, H()) + 2m(ny, n3)

and estimate the right-hand side of this equation using Propositions 2.11 and 2.14. O

An estimate for £3(#) is obtained in a similar fashion using Propositions 2.11,2.13,
and 2.14.

Proposition 2.16 Any near minimiser 1 satisfies the estimates

~1

~ ~ - ~ —0. ~
L3 < (i oo + 177+ K31l + 1K R, 11,00 + 1K1 l1.00)> + 2l 12).

Estimating the right-hand sides of the inequalities

L@@ — L5@D o < IL:@ o + 1£5@ llo + I1£5G) — L3G1) lo,
|Lar()] = 1L+ [La()] + [£3(D)]

(together with the corresponding inequalities for C and £). Using Propositions 2.9
and 2.10, the calculation
_()
1901,00 + 10"+ k31llo + 1K nllco + 1K 1lloc
—0
< c(mlloo + 0} + Ky llo + IIKOQIIIm + 11K nilloc + 1HmIl2 + In3112)

—0
<clmilco + 107 +konillo + 1K 0 oo + 1K nill1co + Insll) (2.5

and Propositions 2.15 and 2.16 yield the following estimates for the ‘nonlinear’ parts
of the functionals.

Lemma 2.17 Any near minimiser 3 satisfies the estimates

K@l | _ 1o . .
- A c(u? + i)+ K2y llo + 11K
{llﬁfﬂ(ﬂ)—ﬁg(m)no < c(w2 iy lh,oo + 177 + kg llo + 1K 111,00

—0. 1o
1K Wi ll1.00)” + 12 M173112),

=~/

Ka(q - - -
{' “1(”)'} < (g0 + 1] + ki lo + 1K, I 0o

| Lo ()]
—0 - -
1K i1y l1,00)? + 1llizll2).

We now have all the ingredients necessary to estimate the wave speed and the
quantity [[[7; [[le-
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Proposition 2.18 Any near minimiser 1 satisfies the estimates

=~

'—~ — VO’
L) < c((liir .00 + 17} + Ky llo

—~ — V0
Lo(1) ‘

~ —0. ~ _1
HIK 7 1100 + 1K G111,00)° + i3l + 1V 72).

Proof Combining Lemma 2.12, inequality (2.5) and Lemma 2.17, one finds that

(M@ MG, i)+ 4 M @)

~ ~ ~ ~ —0. ~
< (Ul ll.o0 + 1] + K llo + 1K°7, 11,00 + 1K ll1.00)% + 22115 12).

M@ < e(Ulilheo + 177 + k51 ll0) + 1K, 111,00

—0 . ~
+ 1K iy 11,00)% + [l3112),

from which the given estimates follow by Proposition 2.8. O

8
Lemma 2.19 Any near minimiser ij satisfies ||ij; ||> < cut, ||f7'1)°||(2) < cpit? ||f73||§ <
3t and ||H(77)||% < cprte fora < 1.

Proof Lemma 2.17 and Proposition 2.18 assert that

2

- B - N - —0 . L
[nsw)no < (2 Ui oo + 1] + k5 lo + I1K%7, 1100 + 1K i1 111,00)% + 122 Hﬂ3||2+MN)],

which shows that

~I

N 1 N - —0.. 1
[un3||2 < c(r2 (.o + 1] + k31 lo + 1K, 11,00 + 1K i1 l11,00) +M2||ﬂ3|\2+uN)]

and therefore

~ 1 . - ~ ~ —0.
17302 < (2 Uiilhoo + 177 + k57100 + 1K°7, 1100 + 1K W1 l11.00)° + 1),
(2.6)
and
/ g FT7, 1P dk
R
< c(u(lliy .00 + 177 + Kginllo @7

~ —0. -
+ 1K 7, 100 + 1K A ll00)* + mlliisl3 + 1Y)

- - ~ ~ —0.
< (il + 17 + kgitillo + 1K, oo + 1K i1 l11.00)* + 1*V).
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—4a

Multiplying the above inequality by u and adding ||, ||(2) < ||% < c, one finds

that

~ _ ~ ~ ~ ~ —0.
7% < (' =i lco + 177 + kit lo + 1K 7, 1.0 + 1K i1 l11.00)* + 1)
< (" g + ) (2.8)

where Proposition 2.7 and the inequality
lg)wl* > c(llk| — kol*[w™ > + [w0|?) > c||k] — kol*|w|? 2.9)

for k € S have also been used. The latter follows from (1.14) and the fact that g (k) vg #=
Ofork € S.

The estimate for 7; follows from the previous inequality using the argument given
by Groves and Wahlén (2010, Theorem 2.5), while those for 73 and H () are derived
by estimating |||7; |||§ < cuinEq. (2.6) and Proposition 2.14. Finally, as a consequence
of (2.7)—(2.9) we obtain the inequality

17°13 < ¢ /R 1) Fli 117 dk < e 2N 1% + 1Y) < et

using that ||, 12 < c p. o

The next step is to identify the dominant terms in the formulas for M, (1) and
(M;L(i;), n) + 4,u/\;tﬂ(1~;) given in Lemma 2.12. We begin by examining the quan-
tities /C4(77) and L4(%) using a lemma which allows us to replace Fourier multiplier
operators acting on functions with spectrum localised around certain wavenumbers
by multiplication by constants. The result is a straightforward modification of Groves
and Wahlén (2011, Proposition 4.13; 2015, Lemma 4.23), and the proof is therefore
omitted.

Lemma 2.20 Assume thatu,v € H?(R) with suppit, supp 0 € S and |||ulle, |v]le <
c,u%for some a < 1 and let ut := F~ ' [x10.00)it], v* 1= F [ x10.00)0] and u™ :=
F- [X(—oc0,018], vV := F [X(—00,010] (sO that u™ = ut andv= = vt). Then u and
v satisfy the estimates

(i) L@*) = m(kou* + O(u2*),
(ii) Lty = mQkoyutvt + O+,
(iii) Lu=v™) = m(=2kg)u~v™ + O(u'+¥),
(iv) Lutv™) = m@utv™ + 0"+ %),
where L = F~'[m(k)-] is a Fourier multiplier operator whose symbol m is locally
Lipschitz continuous, and O(uP) denotes a quantity whose Fourier transform has

compact support and whose L*(R)-norm (and hence H*(R)-norm for s > 0) is
O (u?).
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Remark 2.21 Note in particular that we cantake L € {9y, K, E?j} in estimates (i)—(iv)
in Lemma 2.20 and that we can take m (k) = (g(k)_l),-j in (ii)—(iv) since (g(k)_l),-j
is locally Lipschitz on R\ S.

Using formulas (A.16), (A.20), (A.21), Lemmas 2.19 and 2.20 (with « sufficiently
close to 1), and the identity 77'1’0 = ﬁ 1(1, —a) we now obtain the following estimates.

Proposition 2.22 Any near minimiser 1 satisfies the estimates
Ka() Ka@®) 3
= ~ +o0 .
{mm Lyt T O
Proposition 2.23 Any near minimiser 1 satisfies the estimates
5 3 1 _
KaGi?) = A [ it dx o), Al = g8+ pBabi,
L B
~ ~ —2
Ls@)") = A3 /jo‘ dx +o(u®), A=A+ pAy,
A=
£24 = _8 0>
—2 1/ — — _ _
Ay=—3 ((Fn (ko) — aF12(ko)) — @’ (Fa1 (ko) — anz(ko»)ké,
1/— _ 2, _ _
+ 2 (Futo) —aF o) (2F1(0) + Fuuko)
1, _ 2, _ _
+ =a*(Fako) — aFn ko)) (2F22(0) + F (ko))
6
1 /— _ _ _ _ _
— 3a(Fui) = aF ) (Fai ko) = aF o) ) (2P 0) + Fa1 ko) ).
Corollary 2.24 Any near minimiser 3 satisfies the estimate
~ 2p =y ~4 3
Ka ) — R La() = Ag /Rgl dx + 0(i).
where
Ay = AL —v2A2%

We now turn to the corresponding result for £3(%). The following result is obtained
by writing

#t #t #t
La@=n@° +1,° — H@) + i3, 130 +0,0 — H@) s, 10 +7,° — H@) + i),

expanding the right-hand side and estimating the terms using Propositions 2.7 and 2.11,
Lemma 2.19 and the identity n(;, 71, ;) = 0.
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Proposition 2.25 Any near minimiser 3 satisfies the estimate
L) = = [ LG H@ax+ 00
R
Proposition 2.26 Any near minimiser 1 satisfies the estimate

H@) = =3 F " [g007 FLLSGIN] + o).

Proof Noting that

- ~ _1
< N2 + Nl + 1N "2) = o',

135G lo < cu i llalill: = O

(see Propositions 2.7 and 2.10, Corollary 2.18 and Lemma 2.19) one finds that
H) = —3F [0 FIL G| + 0 0w+ )
= 3 F ! et FLLs DY + o)
recalling the definition of H in (2.4). The proof is concluded by estimating
L3(0) — L3(i1") = o(n?)
(cf. Propositions 2.7 and 2.11, and Lemma 2.19). O

Combining Propositions 2.25 and 2.26, one finds that

L5(i) = v} /R ()T FILL @) - FILL @M1 dk + o(1?). (2.10)

Expanding the right-hand side using Lemma 2.20 we then obtain the following result.

Proposition 2.27 Any near minimiser 3 satisfies
CR L) = Ay / it dx + oY),
R
where

1 _ 2 _
Ay =—38Cko) T A3 Ay - 22071 AT 47,

Al = 12 ( 3k — 3(F11(ko) — aF12(ko)> — F11(2ko) (F 11 (ko) — aF 12(ko)) )
3 O\ =3k3a® + §(Fa1(ko) — aF 2 (ko))> — aF2(2ko)(Fa1 (ko) — aF (ko))
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T o2 (—af21(2k0)@21(k0) - @22(1%))) n (Vékg)
O\ =F12(2ko) (F11(ko) — aF2(ko)) 0 )
= p2 ( 5k = 3(Fi1(ko) — aF12(ko)> = F11(0)(F11 (ko) — aF12(ko)) )
O\ —3k2a® + $(Fai (ko) — aFa(ko))* — aF2(0)(Fai (ko) — aF (ko))

12 (—ale(o)@21(ko) - @22(160)))
O\ —=F12(0)(F11(ko) — aF12(ko)) )

A3

The following estimates for M, (j) and (M, (), 7)) + 41‘/\;1#(77) may now be
derived from Corollary 2.24 and Proposition 2.27.

Lemma 2.28 The estimates
Mg, (5i) = =G L3 @) + s* (Ka(@) — viLa(@D) + 570 (1),
(M, (1), s7) + 45 M2, (50)
= =355 L3 (@) + 45 (KKa () — vg La(@) + 5 0(u?)
hold uniformly over s € [1, 2].

Proof Lemma 2.12 asserts that
M2, (s7) = =5 L3@) + s* (Ka(@) — v5 La (i)

2
M 2\ (3, 0m 4p o~
- ((EM;)) —vo> (s”L3(m) + s"La(@))

st

(L2())?

~ 3 . o ~
+ (L3@)* + O™ 12 (17ll,00 + 17" + K3iill0)?)

uniformly over s € [1, 2]. The first result follows by estimating

=~ 1

lillioo + 17"+ K3iillo < (¥ illla + 17302) < ep?*3
(See Eq' (2'5))7
£3(1~7) = O(I,LZJFO‘), [:4(;,) — 0(M2+a)

(by Propositions 2.22, 2.23 and 2.27) and

- _1
—vo| < el 2 + sl + 1N "2) < cp'te.

’ n
Lo(1)
The second result is derived in a similar fashion. O

Lemma 2.29 Any near minimiser satisfies the inequality

M, (@) < —ep.
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Proof Note first that an arbitrary function n € U\{0} satisfies the inequality

2
u Ka(n)

IC 2 2
Loy TR0 Z 207y = 2

where we have used that
2 1 A
Ka(m) —vgLa(n) = 3 IRg(k)n -ndk >0

(cf. (1.14)). The result now follows from the calculation

Mz 3
Lo(1)

M) = T @) - — Ka(i)) < 2vop — cp® = 2vop = —cp

Corollary 2.30 The estimates

M2, (s7) = (7 A3 + s4A4)/ iy dx +s%0(u?),
R

(Mo, (sT1), 577) + 452 M2, (s7) = (357 Az + 4s* Ag) /R iy dx + s70(u?),

hold uniformly over s € [1,2] and

/ Tfltdx > cu3.
R

Proof The estimates follow by combining Corollary 2.24, Proposition 2.27 and
Lemma 2.28, while the inequality for 7 | is a consequence of the first estimate (with

s = 1) and Lemma 2.29.

O

Proposition 2.31 There exist so € (1,2] and g > 2 with the property that the function

s> 57 I Mg, (sh), s €[, 50]

is decreasing and strictly negative.

Proof This result follows from the calculation

d
o (7 M 2, (5)

= 570D (g Mg, G0 + (M, (5, 5T)o + 48 1M, (57))

=s~@th (( —q(s’As + 5% Ag) + 35745 + 45 Ay) / ffl‘ dx + s30(u3))
L
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=s%qOe—qmg+n4—@A0/§yn+ow%)

R

< —cp?
<0,

fors € (1, sp) and g € (2, qo), where we have used Corollary 2.30 and chosen sg > 1

and go > 2 so that (3 — ¢)A3z + s(4 — gq) A4, which is negative fors = 1 and g = 2
(by Assumption 1.3), is also negative for s € (1, sop] and g € (2, go]. O

The sub-homogeneity of I, now follows using a simplified form of the argument
in the proof of Groves and Wahlén (2015, Corollary 4.32), which is repeated here for
the reader’s convenience.

Corollary 2.32 There exists 1o > 0 such that the map (0, po) > p +— 1, is strictly
sub-homogeneous, that is

Iy < sI, @2.11)

whenever 0 < (1 < sp < [Lo.

Proof It follows from the previous lemma that there exists ¢ > 2 such that
1 g -
My (s2i) < s2 My (@), s € [1, s3]

Combining this with Lemma 2.29 and letting {#,,} be the special minimising sequence
in Theorem 2.2, we find that

ISM = %u(s%ﬁn)
1 52 2 1
= Ka(s27,) + 1. + Ms,u(szrln)
Lo(s21,)
w? . 1 .
L2y + Mu,("y;)) + Mm(S“?n) - SM;/.(”n)
< sTuGiy) + (51 = )My (i)

Ssju(ﬁn)—c(s% — s € [1,s§].

=

=39S (K:2(ﬁn) +

As n — oo this inequality ylelds
I, <sl, —c(s2 —
SU Sty C(A S)[,l, < SI[L’ s € (l,So].

For s > sg choose p > 2 such thats € (1, sép | and note that

1 2
Iy <spl po1 <sPl p2 <o <sly.

s P s P
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Theorem 2.3 follows from Corollary 2.32 using a classical argument. Indeed, if
0 < pp < py with uy + w2 < o, then

K1+ 2 K2
Tuips < TIM =l + Elm =y + Iy,
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A The Functional-Analytic Setting
The goal of this section is to introduce rigorous definitions of the Dirichlet-Neumann

operators G (Q) and E(n) and their inverses N (Q) and N(ﬂ), as well as the operators
G(n) and K ().

A.1 Definition of Operators
A.1.1 Lower Fluid
In order to define G (n) and N (i), we first introduce suitable function spaces on which

these operators are well defined. We begin by recalling the definition of the Schwartz
class S(£2) for an open set 2 C R”:

S(Q) :={u € C®(Q): sup |x|"|0%u(x)| < oo forall m, a € Nj]
xeQ
Definition A.1

(i) Let H 5 (R) be the completion of S(IR) with respect to the norm

k|| (k)|* dk '
el 4 gy = </R| k)] ) :

(ii) Let H -3 (R) be the completion of SMR) = {u € S(R): 7(0) = 0} with respect
to the norm

1

k|7 ao))? dk :
el g gy = (/}éu k)| ) :
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(iii) Let H'(S2) be the completion of S(Q) with respect to the norm

) 3
lullg1q) == (/QIVM dxdy) .

The following resultis classical, and the proofis therefore omitted. (We do, however,
present a proof of a similar result for the upper domain later; see Proposition A.7.)

Proposition A.2

(i) The trace map u +— u|y:E defines a continuous map Hl(z(ﬂ)) — H% (R) and
has a continuous right inverse H% (R) — Hl@(g)).
(ii) The space H -3 (R) can be identified with (H 3 (R)).

Definition A.3 For n € W!*(R), the bounded linear operator G (1): H %(R) —
H™? (R) is defined by

.1
(G2, @) = / Vo, -Vo,dxdy, @, P, € H2(R),
PAQ)

where (-, -) denotes the H_%(R) X H%(R) pairing and fj’ Jj = 1,2, is the unique
function in I:Il(g(z)) such that Qj ly=y = @; and

/ V¢ . -Vydxdy =0
= 7

for all ¢ € Hl@(g» with ¢r[y=, = 0.

Using Proposition A.2 and the definition of G (1), we find that

@@g®=/

IVo|* dx dy > c[|®]? (A.1)
= H2(

R)

for some constant ¢ > 0 which depends on ||7]|yy1.00 (). From this we immediately
obtain the following result.

Lemma A.4 The Dirichlet—Neumann operator Q(Q): H% R) — I-'I_% (R) is an iso-
morphism for each n € W1Lo(R).

Definition A.5 Forn € W12°(R), the Neumann—Dirichlet operator N (m: H~? (R) —
H 5 (IR) is defined as the inverse of G(n).
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A.1.2 Upper Fluid

We next discuss the same questions for the upper fluid. Here we have the additional
difficulty that both boundaries are free. Choose hy € (0, 1). In order to prevent the
boundaries from intersecting, we consider the class

={n=@.meW °®:1+inf( —n) > ho}

of surface and interface profiles.
Definition A.6

1
(i) Let H. (R) be the completion of S(R) with respect to the norm

iy o= (et dk) ,

_1 —
(ii) Let H, *(R) be the completion of S(R) with respect to the norm

[lue]| (/(1+k2)zk || dk)
H*

(iii) Let X be the Hilbert space
— JE 1 — —
(@ = (3.3, € (H!®)*: B, — B € H(R))
equipped with the inner product

D, D))y = (B, P2) + (P s— D1, Poy— Do) 1 .
(@1, ®2)x = (P 2>(H}(R))2 (@1, Li» P2 2,1)H%(R)

(iv) Let Y be the Hilbert space
. _ _1
(W=, 0,) e H R : ¥, +T; € H, *(R)
equipped with the inner product

W, W)y = (W, W) | (U 4+, Was+ W) 1 .
(W1, Wa)y = (¥ 2)(H )y (Wi Li» Was 2,1)H*2(R)

Note that we have the inclusions
. 1 _1 .
HZ(R)C HZ(R) C HZ(R) and H, (R) C H 2(R) C H 2 (R).

The reason for introducing the space X is that it is the natural trace space associated
with H!(Z(»)). Since this is not completely standard, we include a proof.
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Proposition A.7 Fixn € W. The trace map u +— (uly=y, u|y=1+5) defines a continu-
ous map H! (f(r])) — X with a continuous right inverse X — H! (f(r])).

Proof We flatten the domain using the transformation (x, y) — (x, y'(x, y)), where

y—n(x)

Y,y = ————
T T ) - @)

'[ihis_rnaps the .dogain f(ﬂ) onto the strip o = {(x, y) € R%: 0 < y < 1}, and

H' () to HY(Zp). Letting x € C3°(R) be a cut-off function with x (0) = 1 and

support in [—1/2, 1/2], we find that

d ~ ~ N = —
o WIS, »IP) = x' NPk, Y)I* +2x (V) Re(pk, )y (k, y)), ¢ € S(Xo)
and hence
fR (k) =Yk *|1p (K, 0)|* dk < /f (k1 K, Y + 21k b (K, Y|y (k, y)]) dk dy
0

< 2/f (KPIB K. )P + 1y (k. »P) dk dy
0

=20l 5,
Moreover,
1 2
_ 2 _ 2 _
/R(¢(x,1) é(x,0)) dX—fR(fo ¢>ydy) dx = lloll 5,
It follows that ||¢(-, 1) — @ (., O)IIH%(R) < C||¢||]_']1(§0), and hence that ||(¢],=o,

Sly=Dlx =< cll@llmp o) The continuity of the trace map now follows by a density
argument. o o
Conversely, given (®;, ;) we formally define u € H L(Zy) by

sinh(.k(l — y))é\, si@(ky)é:'
sinh(k) sinh(k)

U=

This means that u is the element of H'! (To) whose partial derivatives have Fourier
transforms

Flugk, y) = ik kA =) sinhky) 2

sinh(k) ' sinh(k)
_cosh(k(l —y)= cosh(ky) =
Fluylk y) = =k —2 e ¥ T G

It is clear from these formulas that the map X > (®;, ®5) — u € H'(Zg) is
continuous. m|
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1 _1
Note that (H,” (R))’ can be identified with H, *(R). A straightforward argument
shows that the dual space of X is Y.

Proposition A.8 The space Y can be identified with the dual of X using the duality
pairing

(W, ®)yxx = (¥, Dy — D, + (U, + U, @;)

i) 1 1 1 [
""HTI®R)xH2 (R) H, 2(R)xH2 (R)

Definition A.9 For n € W, the bounded linear operator G(3): X — Y is defined by

G &, ) = ﬁ VE - Vérdrdy, @8 c X,
()

where (-, -) denotes the Y x X pairing and aj, j = 1,2, is the unique function in
H'(Z(n)) such that @ ;| y—1 17 = D 5, ¢jly=y = @, ; and
ﬁ Vo, Virdxdy =0
()
forall v € H'(E () with ¥|y—, = 0 and ¥/|,—j 45 = 0
As in the case of the lower fluid, we obtain that

G®, ®) > c||®]3, (A.2)

for some constant ¢ > 0 which depends on Ao and |[9]ly1. ), and the following
consequence.

LemmaA.10 The operator G(n): X — Y is an isomorphism for each n € W.

Definition A.11 For n € W, the Neumann-Dirichlet operator N@:Y — Xis
defined as the inverse of G ().

A.1.3 Further Operators
We now proceed with the rigorous definition of the operators G (), N () and K ().

Recall that the definition of G (p) involves various combinations of the components
of G(n) (cf. (1.23)). We can formally write

— = (G 612(17)) (51')
GH® = (= — i I
) (szn Goo(m) \ @,
but since the definition of the function space X involves the condition O, — P; €

H? (R) which couples the components ®; and ®;, the definition of the components
G; j requires some care. Note, however, that (H 3 (R))? C X, so that the components

@ Springer



2640 Journal of Nonlinear Science (2019) 29:2601-2655

G; () define bounded operators H 7 R)y > H -3 (R). The components N; () can
_1
similarly be defined by considering the subspace (H, 2(R))> C Y.

_ _ _1
Proposition A.12 The operators G;;(): H2(R) — H~2(R) and Ni;(n): H, * (R)
1
— H? (R) are continuous.

Lemma A.13 For each y € W, the operator B(y) = 611(7]) + ,OQ(Q) is an isomor-
phism H* (R) — H~?(R).

Proof Recall that G (Q): H 7 R) — H -3 (R) is an isomorphism, with

2
> cl| @7

GNP, D) . .
(Cme _>H E ®)xH %(R) H2(R)

(cf. (A.1) and Lemma A.4) for some ¢ > 0. On the other hand,

5.2
cl@ill®

el D D >
(G ()P, ¢1)H7%(R)XH%(R) = HE®)

by Definition A.6 and (A.2) with ®; = 0. It follows that

2
= c[[®]”

BOPD) et m = V4

and hence B(n): H? R) — H™? (R) is an isomorphism. O
Recall that we formally defined the operator G (5) by

Gon e [ EWBD™Gum  —GmBG™Gum)_
V= \-GamBm TG Lonm ~ LGumBm T Grm )

It is not difficult to see that G () is bounded (H?(R))2 — (H~3(R))2. However, we
need to extend it to a larger space in order to define K (n). We record some lemmas
which enable us to do this.

Lemma A.14 The operators Ell(n)B_l(n) and 621(17)B_1(17) are bounded on
. 1
H™2(R).

Proof The first part follows from the facts that GumB ') =1— ,oQ(Q)B’1 n)
as well as Q(Q)B’1 (n) € E(H’% (R), I-'I’% (R)). The second part now follows from

_ _ _1
the fact that G11(5) + Ga1 () € L(H? (R), H, 2 (R)). o

Corollary A.15 The maps B~ (0)G11(n) and B~ (9)G 12(y) extend to bounded map-
pings on H? (R) by duality.
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Recall that & is defined in terms of ® and @ through (1.17). Conversely, we can
formally recover ® and @ from & through (1.20) under assumption (1.18). We now
investigate these relations in more detail. We begin defining appropriate function
spaces for & and G (n)é&.

Definition A.16 (i) Let X be the Hilbert space

_ 1 _ .
E=@EDeHIR): £+E e HIR)

equipped with the inner product

€1.825 = <El,§2)(H*%(]R))2 + (&, +§1,§2 +§2>H%(R)'

(ii) Let ¥ be the Hilbert space
— .1 — _1
{t=0¢.0eH IR 7 —¢ € H *R)}
equipped with the inner product

(81,8205 = (81, 82) (1 -6,.6-8,)

| 1 .
(H™2(R))? H, % (R)

An argument similar to Proposition A.8 shows that ¥ is dual to X.

Lemma A.17 Equation (1.20) defines bounded linear operators
£ ®: X — HI(R)
and
EP: X > X
with
GNP = —(Grim®i + G2 D).

Proof By definition, we have that

@ =B"'MGumE— B MGnmE
=B'MGumE+& — B (G + Gia(n)E.

This defines an element of H 2 (R) by Corollary A.15 and the continuity of
_ _ 1 1
(GuO +Grm): H (R) - H 2(R).
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Similarly,

1 — _
®; = —B (NG )& — ;B”(n)cu(n)s
=-B7' MG +§)

1 — — 1 — _ _
+ ;B_l(n)(pQ(Q) +Gri(m)E — ;B_l(n)(Gn(n) +Gr2()E

_ — 1— 1 __ _ _ _ 1
= =BT MGmE+E + - F = BT G + G € H R).
— _ 1 —
It is obvious that & = %Sj € H? (R). To see that ® € X, we note that

— — _ 1 — _ _
D, — @, =B MG +E) + ;B*%n)(cu(m +Grm)E € HI(R).

Itis easily seen that all of the involved operators are bounded. The final formula follows
by straightforward algebraic manipulations. O

Proposition A.18 The operator G(n) is bounded X > Y.

Proof Assume that & € X. A direct computation then shows that

GmBm 'Gii(E — GBmM ' GranE
=GmBmM~'Giimé — B~ Gia(m¥)
— G € H 2 (R),

where we have used Lemma A.17. Similarly,

—GamBmM ™' GE + (G — G mBm ' Grm)E
=Gum (=B~ 'GmE - 2B 'Gra(nE) + G () s
=Gou(®; + G dy € H_%(R)-

L .1
We have to show that the last expression is actually an element of H ™2 (R). To see
this, we note that

_ _ _ _ _ _1
GiM®; + G2 Ps + Gor ()P + G Py € H, *(R), (A3)
by the definition of Y and Definition A.9. On the other hand,
— J— J— J— . 1
Gium®i + Gr2M®s = -G(P € H 2(R).
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This shows that G2 () ®; + Go())Ds € H~*(R). The fact that (G()&)y —
1

(G(n)&)1 € H, >(R) follows from (A.3). The boundedness of G (1) follows from
the above formulas and Lemma A.17. O

Define

oN11()) +N() —pNi2(n)
N = — = - .
o ( —pN21(n) PN (1) >

Proposition A.19 G(y): X — Y is invertible with
G~ =Nm.

Progf We~begin by shgwing that N () defines an operator Y —> X. Indeed, if ¢ =
(¢,¢) € Y, then (¢, —¢) € Y whence

Nume - Npm? = NaE. -D) € HER®),
“Wa1nE + Na)T = ~(N)(&, ~D))a € H2 (R),
and
N@)¢ € HI(R).
Finally,

(N1i¢ = Ni2()?) + (—=Nar()¢ + Niao()?))
= (V11 E = Niam?) — N (g — Nia(0)) € H2 (R),

which implies that
J— J— i J— — — — .1
p((N11(ME = Ni2(m¢) + (=Nart(mg + Ni2§)) + N(m)¢ € H2(R).
The equation G ()& = ¢ € Y can equivalently be written

Gim®; + G ®, = -,
G (@i + Go())Ds = ¢,

with the unique solution
® =Nm)(—¢.0).
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On the other hand, we also have G(n)® = ¢, so that & = N(n)¢. It follows that
G(n)& = ¢ if and only if

E=d—p® = (pN1 () + Nt — pN12(n)¢

and

& =p®; =—pNa(¢ +pNnm)e.
Hence, N () is the inverse of G (). O
We are now finally ready to discuss the operator K ().

Definition A.20 (i) Let X be the Hilbert space

=5 eHI R &—FeH(R)
equipped with the inner product

€6y =616 1 +(E —§,.85 &)

(HI®)? HE®)

(i) Let Y be the Hilbert space

=@ eH IR : T+ e H2(R)

equipped with the inner product

(€1.82) 5 = (61, &2) 1+ 0FE)

(H™ 2 ®)? HI®)

Note X and Y are each other’s duals and that (H% (R))? — X, Y < (H_% (R))?.

Proposition A.21 The formula K () = —9x N (3)0y defines an isomorphism XY
with

(K&, &)y, 5 = clél.

Proof The fact that K () is a bounded operator from Y to X follows by noting that o,
is an isomorphism from X to ¥ and from X to Y. The lower bound follows by setting
§ (&, —£) and noting that

(K&, &)y, 5

= p(NWREAE) )y NERE )y

> (|03 + 196017, )
~— H 2R
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>c(EN*., +IE—EI*, ).
(H2(R))? - H2(R)

This also shows that K (») is an isomorphism. O

It will be useful to write K () in the form

K@) 0
0

K@) = ( 0) +pK (), (A4)

where K () := —0dxN(n)dx and

K@) = —b, ( Nii(n) —le(ﬂ)) o,

—Na(p)  Nxnn)

A.2 Analyticity and Higher Regularity
In this section we discuss the analyticity of the operators K (1) and K (17) as functions
of 5 and n, respectively. We also discuss how they act on higher-order Sobolev spaces,
assuming that g is sufficiently regular. We begin by considering the second operator
using the method explained by Groves and Wahlén (2015). First, note that N (n) is
given by

NV = ¢lyy.

where ¢ € H! (g(ﬁ)) is a weak solution of the boundary value problem

A¢ =0,
- (A.5)

that is,
/ V¢~V1/fdxdy:/gw|y:ndx
=m - R -

forall v € H' (Z(n)).

We study the dependence of N (57) by transforming this boundary value problem
into an equivalent one in the fixed domain X := X(0). For this purpose we make the
change of variables

and define
Fx,y)=(x,y +nx)
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and
ux,y") = ¢(FEx, y")
This change of variable transforms the boundary value problem (A.5) into

V(I +Q)Vu) =0 y <0,
I+ Q)Vu-(0,1) =, y=0,

(0 -n
Q‘(—zx Qi)

and the primes have been dropped for notational simplicity. The weak form of this
problem is

where

f(l+Q)V4~dexdy=f£w|y:0dx
P - R

forall w € H' (). Fix n, and write fj = n — n,, and

Q. =) 0"x.y), Q" =m"@{H"),
n=0

where m" € E’;(WI’OO(R), (L% (R?))%*2) (in which L? denotes the set of bounded,
symmetric, n-linear operators). We seek a solution of the above boundary value prob-
lem of the form

uGe,y) =y u'(x.y)., " =m"{iH",
n=0

where m" € L:‘(WI’OO(R), H! (X)) is linear in W. Substituting this ansatz into the
equations, one finds that

V(I +0%Vu®) =0 y <0,
I+ 0"vu’ (0, 1) =w, y =0,
and
V(I +Q")Vu")y =V . F" y <0,
(I+Q")Vu" - (0,1) = F"- (0, 1), y =0,
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where

These equations can be solved recursively. Estimating the solutions we obtain the
following result.

LemmaA.22 The Dirichlet—-Neumann operator G(-): WLooR) — E(H% R),
I:I_%(R)) and the Neumann—Dirichlet operator N(-): WL (R) — E(I-.I_%(]R),
H ? (R)) are analytic.

The upper domain can be treated in a similar way. Set

Y = y—n
1+7—1n’

so that
y=Y+fxy), fey)=n+G-ny, (A.6)

andlet F(x, y") = (x, ¥’ + f(x,Y")). The function #(x, y) = ¢(F(x, y)) then solves
the boundary value problem

V- (I+Q)Vu)=0,0 <y<l, (A7)
I+ 0)Vu-(0,1) = oy, y=1, (A.8)
(I4+Q)Vu-(0,-1)=;, y =0, (A.9)

where

Proceeding as before, we obtain the following result.

Lemma A.23 The Dirichlet—]\fumann operator G(-): W — L(X,Y) and the
Neumann—Dirichlet operator N(-): W — L(Y, X) are analytic.

The next theorem follows from the above lemmas and the definitions of the involved
operators.

Theorem A.24 The operators K(-), K(-): W — L((H2(R)2, (H™2(R))?) and
K(): Wh®(R) — L(HZ(R), H~2 (R)) are analytic.
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Itis also possible to study these operators in spaces with more regularity. A straight-
forward modification of the techniques in Groves and Wahlén (2015), Lannes (2013)
results in the following theorem. The key is to study higher regularity properties of
solutions to the involved boundary value problems defining the corresponding opera-
tors.

Theorem A.25 The operators K(-), K(-): (H*T3(R)2 N W — L((H"3(R))2,
(H* T2 (R)?) and K(-): H*T3 (R) — L((H*T2(R)), (H**2(R))) are analytic for
each s > 0.

A.3 Variational Functionals

In this section we study the functionals

1
L) = E/RQK(U)de, (A.10)

1 _
L) = EfRnK(n)ndx, (A.11)

and

1-— _ _
K(ﬂ)=/ﬂ{{%gz+gﬁz+g 1+ =B+ pB 1+ﬁ§—pﬁ}dx.
(A.12)

Note that

L) = L) + pL() (A.13)

by equations (1.24) and (A.4).

As a direct consequence of the above formulas and Theorem A.25 we obtain the
following result.
Lemma A.26 Egquations (A.10), (A.11) and (A.12) define analytic functionals L:
HS3@®R) — R L: (HR)2NW — Rand K: (HF2(R)? — R for each
s > 0.

In particular, this lemma implies that 7, € C*(U\{0}, R), where U = By (0) C
H?*(R) with M sufficiently small.

We turn now to the construction of the gradients g(ﬂ) and Z/(n) in L?(R) and

(L?(R))?, respectively. The following result can be proved by a direct computation
similar to Groves and Wahlén (2015, Sect. 2.2.1).

Lemma A.27 The gradient L' (n) in L?(R) exists for each ne H*3 (R) and is given
by the formula

, 1
Lo = §<(1 + i — uﬁ) |
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This formula defines an analytic function L' : H s+3 (R) - Hf +3 (R).
We also find that
Ly = Ky = F k),

1 1
L5 = —E(Kog)z - Egi —m_ — KK ),

Lym) =nn_ K+ K’ K°(nKn) + K>,

and
1 0
Ly(n) =z | nK'ndx, (A.14)
1
Ly =5 [ (@)? = &"m?) ndx, (A.15)
2 R X
1
L) = 5 /R (QZQXXKOQ + QKOQKO(QKOQ)) dx (A.16)
where Qk(ﬁ), k =12,3,...,are the terms in the power series expansion of é(ﬁ) at the
origin.

Lemma A28 The gradient L () in (L*(R))? exists for each n € (H**3 (R))> N W
and is given by the formula

- 1 1472
£/ = —< 2——x 2)‘ =0,
() (2 T T2 ) g T

L/ L+n
G eI |

This formula defines an analytic function - (HH'% ®YINW — (HH% (R))2.
The first few terms in the power series expansion of L are given by

o) =K n = FFW0il,
Z5(n)
_ ( 1+ K? + Ky (K + K1) — Ky (Ko + Kyp) )
T\ T - K+ Ko — Ko (K1 + Koy + Ky n(® Yy + Koo}
L)
_ ((f?l 1+ Koy, 0+ Ky K + K pm) — Koy (Ko + ?gzn»)) B
31+ Koy @71+ Ko (1(Koyn + K9om) — Ky (n(Kyn + K i) o
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where
_ k|coth k| —-Kl__
F(k) = o |k|| |~ ) (A17)
~ SRR |k| coth |k|
and
_ 1 —0
Lr(m) = —/ nK ndx, (A.18)
2 Jr

— 1 —0 —0 _ _ —0 —0 _ 2\
Ly = 3 /R [=(@? = ®lin+ K00+ (@07 = Rayn + Koo )7} d,
(A.19)
= 1 —0 —0 _ —0 =0 __ _
La(n) = 7 /1‘@ {(Knﬂ+ Klz’?)ﬁxxﬂz + (K310 + Ky, 7
—0 —0 _—0 , —0 —0 _
+ (K n+ Kip,mK (K yn+ Kn)
—0 —0 _—0 _ —0 —0 _
—2n(K 10+ Kpm Ko (7(Kon + K1)
_—0 —=0 _—0 _ —0 —0 _
Note that the previous results together with (A.13) immediately imply that
L: (H”% (R))?> N W — Ris analytic for each s > 0 and has a gradient in (L>(R))?
. —/
given by £/(n) = L/(7) + pL ().

The first terms in the power series expansion of K (n) will also be needed later (the
corresponding gradients are readily obtained from these expressions):

1 _
Ka(n) = 5/ {1 = pyn? + o7 + BT + p ) v,
R (A.21)

_ 1 24 4
Katn = = [ {oBmt +pat] a.

Note in particular that

1 1
a0 = 5 /H;{ P(OR Ak and Lo =5 /R FMi-idk,  (A22)

where P (k) and F (k) are given by Eq. (1.9).
We end this section by recording some useful inequalities.

Proposition A.29 The estimates

K =}, el < Loy Loy < clnld

hold for each y € U.

Proof The first estimate is immediate from the form of KC(5). The estimates for £(7)
follow directly from Proposition A.21, while those for £;(n) follow from (A.22). O
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B Test Function

In order to show that C,, is non-empty we have to construct a special test function. Here
the eigenvector vg = (1, —a) to the eigenvalue A_ (ko) of the matrix F (ko)L P (ko)
plays an important role (see Sect. 1.2).

LemmaB.1 Suppose that Assumptions 1.1 and 1.3 hold. There exists a continuous
invertible mapping ( — e(iL) such that

Tu(ny) = 2vop + InLsp® + o(i),

where
7, (x) = ed(ex) cos(kox) + 8210(8x) cos(2kox) + szg(sx),
1 1
¢ =nisvo, ¥ = —S9Ris8 (ko) A4S and &= —-@luse(0)7 AL

Proof We expand the functional C(y) — vgﬁ(n) evaluated at 5, in powers of . We
begin by computing the contribution from C(», ). We have

K = Ka(m) + Ka(n) + K (),
where Ky and K4 are given by (A.21). Using the formulas

. (x) = 2¢/(ex) cos(kox) — ekop(ex) sin(kox)
+ &3¢/ (ex) cos(2kox) — 2koe> ¥ (ex) sin(2kox) + &3¢/ (ex),
1! (x) = e3¢ (ex) cos(kox) — 26%ko@’ (ex) sin(kox) — ekjd(ex) cos(kox)
+ e*9" (ex) cos(2kox) — 4&3 koW’ (ex) sin(2kox)
— 482k3 (ex) cos(2kox) + ¢ (ex),

we find that
E —
Ka01) = 501 = p 4 G +0p(1 + B [ dhusan

3
+ 58+ pP) / Gs)? dx
R
i
4
3

+5—</(1—p)§2dx+/ pEzdx)+0(e4)
2 \Jr = R

((1—p+ 4gk3>f Y2 e+ p(1 + 4Ek%>/ ¥’ dx)
R R

and
& 4 454 4 4
Ks(n,) = —6—4(3ﬁk0 + 3pa” Bky) /RqﬁNLS dx 4+ O(&).
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Finally, the remainder term satisfies /C;(n,) = 0(8%) in vielv of Proposition 2.9.
We next compute the contribution from £(n) = L(n) + pL(n), beginning with the
first term. Recall that

L) = L) + L3(m) + L4(n) + L, (),

where £,, L5 and L, are givenin (A.14)—(A.16). In particular, £, (Q) = % fR QK_OQ dx,
where K is the Fourier multiplier operator with symbol |k|. Straightforward calcula-
tions yield the formulas

K¢ (ex)) = &2 (K¢ (ex),
K(e¢(ex) cos(kox)) = e¢p/ (ex) sin(kox) + ek (ex) cos(kox) + O ("),
KO (¥ (ex) cos(2kox)) = €3¢/ (ex) sin(2kox) + 2koe> ¥ (ex) cos(2kox) + O (e"),

for each n € N uniformly over x € R (because q’; € S(R)). Using the formulas
(A.14)—(A.16) we therefore find that

ek &3k
Ly(n) = TO /qu]%ms dx + TO /R£2 dx + 0(e"),
r _ £3k8 5 4
_3(2*) - - 4 R¢NLS£dx + 0(8 ),

kg 4 4
é4(77 )=-— /¢NLde+0(8 ).
—k 16 R

Again, the remainder term satisfies £, (Q*) =0 (s%) by Proposition 2.9.
Similarly,

L) = L2(n) + L3() + La(n) + Le(n),

with £>(n), £3(n) and L4(n) given by (A.18)—(A.20). In particular, Lr(p) =
% R nfoﬂ dx, where fo(n) = F~F (k)] and F (k) is given in (A.17). Writing

— ko 1~ /k+ko
)UO+§¢NLS( - )vo,

I~ k
Fled(ex) cos(kox)] = S dis(—

we find that
F (k) Flep(ex) cos(kox)]

1r— — 1—y -~ k
= 5[Ftko) + F (ko) k — ko) + S (ko) k — ko)? | s (

_ko)vo

k—i—ko)vo

l - -/ 1—// -~
+ 5| Flko) = F o)k + ko) + 5 F'ko) k + ko)* [ s (

+ 81(k),
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and hence
?0(805(836 ) cos(kox)) = epnrs (ex) cos(kox) F (ko)vo
+ 2 s (ex) sin(kox) F (ko) vo
1 —//
— 5 #iws (6x) cos(kox) F (ko) vy + 81 (x),

where S satisfies the estimates ||S [|loo = O (&%), [|S1]l1 = 0(8%). Similarly, we find
that

K (29 (ex) cos(2kox)) = £2 cos(2kox) F (2ko) ¥ (ex)
+ &3 sin(2kox) F (2ko) ¥ (ex) + S2(x),
K (22 (ex)) = e2F(0)¢ (ex) + So(x),

where S, satisfies the same estimates as S| and IISém) lo = O(e™*3/2). Note also that

[oeof Stf oo f St o ar = 0

forall 9 € SR),n € Nand my,...,my € Nwithm; £--- £my # 0. (Write
the product of the trigonometric functions as a linear combination of sine and cosine
functions and integrate by parts.) Using the above rules and formulas (A.18)—(A.20)
we find that

3
Lr(n,) = Z [R%%]Lsf(ko)vo ~vpdx + % /R(d’l/\ILS)2f//(k0)”0 o dx
&8 [ = &S [ =
+ */ FQ2ko)¥ - ¥ dx + */ F0)¢ -¢dx + 0(84),
4 Jr 2 Jr

_ 332 [, ek [ o
L3(,) = — 3 /R(ﬁNLsﬂdx 72 _/]R‘f’NLSSd)C

3

+ 5 Frito) —aFratho) (Fi@ho) [ duswor + Fraho) [ duston)
& — = 2 [ 42 a F 2 [ g2

+ 5 Frato) —a Frato? [ ddusy ar+ 5 (Fuito) —a Pk [ diuseds
3

+ 5 Futo) - aFrato) (Fuo [ Ruscar+ Foo) [ ssto)

383/(8612 P 831((2)’(12 =
3 fR‘f’NLSI/’dx"‘ 1 /R‘PNLsfdx

3
+ —8; (F21(ko) — a Faa (ko)) (721(2k0)/R¢1%1Ls£dx + 722(21(0)/R¢§L5de)

&3 - 2 2 = £ = F 2 st
- 5 P00 —aFoho))? [ ghos¥ e = G (Pt —aFonho))? [ gy s

3 — _ — _
+ 5+ (Fai ko) — a P (ko)) (F21<0) /R 9RLsE dx + F2(0) /R IRLSC dx) + 0,
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and

= 3| 3K — — 3k} — —
L4(m,) =¢ —E(Fu(ko) —a Fi2(ko)) + T (F21(ko) — a Faz(ko))

1 _— _ _ _
+ 1 Fritko) —a F12(ko))*(F11(2ko) + 2F11(0))

+ %(Fn(ko) —a F12(ko)) (F21(2ko) + 2F21(0))(F21 (ko) — a F22(ko))
2
+j‘—6® (ko) — a F(ko))* (F22(2ko) + zfzz«)))] A Prs dx + O (eh).

Again, Z;(n,) = O(e?).
Combining the above expansions, we find that

l 14 /
e300 — L) = 58" Gawo - v /R (Gars)* dx
3 1 1
+ <§A4 - 1—68(2ko)_1A§ A} — gg(O)‘lAﬁ : A%) / PrLs dx
R
1
4 / L ko) + 102 s8(2k0) ALy - (¥ + 1p% se ko) AL) dx

+ / Lo + L2581 AD - (¢ + L2se(0) 1 AD) d

+ 0(87).

. S . 1 .
Our choice of ¥ and ¢ minimises the above expression up to O(e2), and we obtain
that

K(n) — 3L@m,) = & (Az /R (Shs)? dx + A3 /R s dx) +0@h

7
e’ Envs(onis) + O(e2)
=& Ints + 0(8%).

The mapping

voF (ko)vg - v
e voLl(n,) = M[ ¢NLS dx + 0(53)

is continuous and strictly increasing and therefore has a continuous inverse p — &(u),
such that e(u) = u + o(w). Furthermore,

Ju(n,) —2vop = K(n,) — viL(n,) = InLsi® + o(1?),

which concludes the proof. O
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