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Abstract

Heteroclinic connections are trajectories that link invariant sets for
an autonomous dynamical flow: these connections can robustly form
networks between equilibria, for systems with flow-invariant spaces. In
this paper we examine the relation between the heteroclinic network
as a flow-invariant set and directed graphs of possible connections be-
tween nodes. We consider realizations of a large class of transitive
digraphs as robust heteroclinic networks and show that although ro-
bust realizations are typically not complete (i.e. not all unstable man-
ifolds of nodes are part of the network), they can be almost complete
(i.e. complete up to a set of zero measure within the unstable man-
ifold) and equable (i.e. all sets of connections from a node have the
same dimension). We show there are almost complete and equable
realizations that can be closed by adding a number of extra nodes
and connections. We discuss some examples and describe a sense in
which an equable almost complete network embedding is an optimal
description of stochastically perturbed motion on the network.
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1 Introduction

Heteroclinic cycles and networks appear in a range of dynamical models
posed as ordinary differential equations (ODEs) that try to capture “inter-
mittent” behaviour, for example, in the onset of fluid turbulence, encoding
of neural states or species competition in ecosystems: see for example Krupa
[20]. They manifest as attracting dynamics where the state remains close to
saddle equilibria for long periods of time, interspersed with rapid switches
between equilibria. This behaviour can remain robust to perturbations that
preserve some symmetries or other structures of the system: see for example
Weinberger and Ashwin [23] for a recent review.

In most cases, heteroclinic networks have been found and studied from
analysis of a given system of ODEs. However, in an attempt to understand
general properties of heteroclinic networks Ashwin and Postlethwaite [4] sug-
gest that the converse problem of designing a system of ODEs that realize
(i.e. embed) a given directed graph as a heteroclinic network is of interest. It
is also of potential interest in applications such as design of computational
systems that permit only certain transitions. Several recent papers, Ashwin
and Postlethwaite [4, 5], Bick [7] and Field [12, 13], have considered several
approaches to the design of systems that have specific heteroclinic networks.
These approaches to the realization of a graph as a heteroclinic network typ-
ically result in networks that are not asymptotically stable or even contain
unstable manifolds of all saddles. This is discussed in [13] where a hetero-
clinic network is called clean if it is compact and equal to the union of the
unstable manifolds of its equilibria. In the present article, we consider net-
works that are typically not compact – we call them complete if they contain
all unstable manifolds of their equilibria. Thus, a network is clean if and
only if it is compact and complete. The notion of completeness is related to
whether the network can be visible as an attractor: indeed it is necessary
for a network to be clean/complete for it to be asymptotically stable [13,
Remark 1.4].

This paper introduces some concepts, results and examples that aim to
clarify the structure and dynamics of heteroclinic networks by showing that
although we typically cannot realize arbitrary directed graphs (from a large
class) as clean heteroclinic networks, we can achieve almost completeness (the
network contains almost all of the unstable manifolds) and in addition ensure
equability (a property of a node meaning that all outgoing connections from
that node have the same dimension) of all nodes in the network.

To introduce this more precisely, we consider a system of ordinary differ-
ential equations

ẋ = f(x) (1)
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in Rn (n < ∞) with smooth f and a bounded globally attracting open set:
we will write ϕ(t, x0) to denote the flow generated by solutions x(t) of (1)
starting at x0. Clearly a variety of invariant sets may appear and be of
importance for the asymptotic behavior of typical initial conditions. These
not only organize the autonomous dynamics but also allow one to understand
how the dynamics behave under small perturbations of various types.

If (1) is equivariant under the action of a compact Lie group Γ acting
orthogonally on Rn, then there is an extensive literature considering many
heteroclinic networks with the remarkable property that they are persistent
or robust under perturbations of f that respect the symmetries Γ: see for
example the work of Krupa and Melbourne [20, 21, 22].

There are several possible ways to understand a heteroclinic network in
a graph-theoretic manner. Note that in many cases the directed graph (di-
graph) is referred to simply as a graph. Our approach gives the minimal
possible graph one could naturally associate with a heteroclinic network: we
say there is an edge between vertices if there is at least one connection be-
tween the corresponding nodes. Another approach is to have an edge for
every connection between nodes: this is appropriate for many cases investi-
gated in the literature (e.g. [21]), but typically results in infinite graphs for
the networks we consider here. Yet another choice could be to have an edge
for each connected component of the set of connections between nodes. In
some instances this may also result in a more complicated graph.

Many papers in the literature consider heteroclinic networks as unions
of heteroclinic cycles (e.g. Hoyle [16]) and in cases where there are one-
dimensional unstable manifolds this is highly appropriate. In this paper we
take a different view however – we consider the heteroclinic network as the
fundamental definition and show in Lemma 2.5 that a network is a union of
cycles, or cycles are cyclic subsets of a network.

This paper is structured as follows: in Section 2 we discuss the relation
between directed graphs and heteroclinic cycles and networks, introducing
the properties of complete, almost complete, equable and exclusive nodes
and networks and give examples of these. We also recall the definition of
a clean network. Section 3 shows in Theorem 3.1 that the simplex method
of [4] allows one to construct realizations of a large class of directed graphs
as an almost complete and equable heteroclinic network that is part of a
larger closed network. We conjecture, in Section 6, that this result can be
strengthened by (a) widening the class of directed graphs and (b) providing
a stronger result – that the embedding network is not just closed but clean.

In Section 4 we discuss a number of examples that clarify and illustrate
these results and concepts. Section 5 presents a simple stochastic model of
randomly perturbed dynamics on a heteroclinic network. For this model,
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typical trajectories will only explore an almost complete and equable sub-
network. In this sense, the almost complete and equable subnetwork can be
seen as an optimal realization of the network with added noise.

Section 6 concludes with a discussion.

2 Heteroclinic networks and directed graphs

Given the close relation between heteroclinic networks and directed graphs
(see for instance [4] or [13]), we begin with a section that establishes ter-
minology and notation that allows for an easy transition between the two.
A substantial part of this section is not original. We include it because we
believe that it is useful for most readers to have the relevant concepts framed
in a convenient way.

We denote by α(x) (resp. ω(x)) the usual limit set of the trajectory
through x as t → −∞ (resp. ∞). For a heteroclinic network, there is a
natural graph structure between nodes representing the equilibria, such that
edges in the graph correspond to connections between equilibria in the net-
work. However, the correspondence is more subtle than one might suppose
as the set of connections may consist of many, or even a continuum of tra-
jectories [2, 3].

We define the unstable and stable sets of an equilibrium ξ as usual

W u(ξ) = {x ∈ Rn : α(x) = ξ}, W s(ξ) = {x ∈ Rn : ω(x) = ξ}

and note that for hyperbolic equilibria ξ these are flow-invariant manifolds
with dimension corresponding to the dimensions of unstable and stable eigen-
spaces of ξ. Suppose we have a finite collection of hyperbolic equilibria

N = {ξ1, . . . , ξm}

for (1). We define the full set of connections from ξi to ξj (ξi, ξj ∈ N) as

Cij = W u(ξi) ∩W s(ξj).

This is a flow-invariant (possibly empty) set: if i 6= j we refer to each tra-
jectory in Cij as a connection from ξi to ξj. We include cases where Cij is
continuum of connections [2]. In the case i = j we call a connection homo-
clinic, otherwise we say it is heteroclinic.1

1In equivariant systems, if ξi 6= ξj but they are in the same group orbit, then some
authors consider the connection homoclinic. We do not make this distinction until Section
4.
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The full set of connections between equilibria in N is defined

C(N) =
⋃
i 6=j

Cij.

In what follows we use the notation C(.) to describe the connections associ-
ated with the object in brackets.

We make a standing assumption that there are no homoclinic con-
nections, i.e. we assume that Cii = {ξi} for all i.

Many references in the literature use the following definitions: A hete-
roclinic cycle is a union of finitely many hyperbolic equilibria connected by
trajectories in a cyclic way. A heteroclinic network is a connected union of
finitely many heteroclinic cycles.

When studying heteroclinic networks from directed graphs, another def-
inition may be convenient. The relation between the two is clarified in
Lemma 2.5. Recall that an invariant set Σ is indecomposable (cf [3]) for
the dynamics of (1) if for every ε > 0 and pair of points a, b ∈ Σ there is
a directed ε-chain from a to b within Σ, where an ε-chain is a sequence of
points {xk}nk=1 in Σ and times {tk > 1}n−1

k=1 such that x1 = a, xn = b and
|ϕ(tk, xk) − xk+1| < ε for k = 1, . . . , n − 1. By N(Σ) we denote the set of
equilibria in Σ which we will assume is finite. The following definition is
a special case of [3, Definition 2.26] where the nodal set is N(Σ) and the
“depth” [3, Definition 2.22] is one because all trajectories are either in the
nodal set, or limit to the nodal set.2

Definition 2.1. We say Σ is a heteroclinic network between equilibria N(Σ)
if it is an indecomposable flow-invariant set such that

N(Σ) ⊂ Σ ⊂ N(Σ) ∪ C(N(Σ)).

We refer to the equilibria N(Σ) = {ξ1, . . . , ξk} as the nodes of the network
and define

Cij(Σ) = Cij ∩ Σ.

as the connection from ξi to ξj within the network Σ. Note that there may
be many connecting trajectories between ξi and ξj in Σ and also some that
we do not include in a particular Σ. Note the decomposition

Σ = N(Σ) ∪ C(Σ)

is a disjoint union, where C(Σ) := C(N(Σ)) ∩ Σ denotes the connections
within the network.

2More general heteroclinic networks, in the sense of [3], can have higher depth connec-
tions in that they can contain trajectories that limit to connections.
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To structure our discussion of graphs associated with heteroclinic net-
works, we use the following notation to go between these concepts:

• G(Σ) to denote the graph related to a given heteroclinic network Σ;

• ΣG to denote a heteroclinic network associated to a given graph G (this
may not be unique).

We start with graphs. Associated with any heteroclinic network Σ there is a
digraph G(Σ) = (V,E) with vertices V = {v1, . . . , vk}, where vj corresponds
to node ξj ∈ N(Σ), and the set E of directed edges, where [vi → vj] ∈ E
corresponds to Cij(Σ) 6= ∅ with i 6= j. For a given G(Σ) we write N(v) to
denote the equilibrium corresponding to vertex v. Note that Cij(Σ) is the
full set of connections from ξi to ξj in Σ corresponding to the edge [vi → vj].

As usual3, we say that a cycle is a sequence of vertices and edges {v1, [v1 →
v2], v2, [v2 → v3], v3, . . . , [vm−1 → vm], vm} such that v1 = vm and all other
vertices are distinct. A cycle with m edges is called an m-cycle. A 3-cycle
is also called a triangle. In the context of digraphs, we reserve the term
m-cycle for those that are transitive, that is, an oriented circuit through all
the vertices; we use triangle for both the transitive and the non-transitive
case. Recall that G is transitive if for any two distinct vertices vi, vj there is
a directed path from vi to vj within G.

Definition 2.2. Suppose that G = (V,E) is a digraph.

• G is an ∆-clique if it is a triangle that is not transitive (see Figure 1).

• Let V ′ = {w, v1, . . . , vk} be the subset of all the distinct vertices of V
that w connects to. If the only edges of the graph induced on V ′ have
the form [w → vj] for j = 1, . . . , k, then we say w is a splitting vertex
of order k ≥ 2.

The use of ∆ in ∆-clique should not be mistaken for the maximum degree,
usually denoted by this symbol in graph theory. The symbol ∆ in the present
context has a visual association with the dynamics involved.

Note that w being a splitting vertex of order k is a somewhat stronger
assumption than simply saying w has out-degree k := #{j : [w → vj] ∈ E}
since it also makes assumptions on nearby edges. More precisely:

Lemma 2.3. Suppose G = (V,E) is a transitive digraph. Consider a vertex
w and all v1, . . . , vk such that there are edges [w → vj] ∈ E. Then w is a
splitting vertex for G = (V,E) if and only if the digraph induced on V ′ =
{w, v1, . . . , vk} has no ∆-clique or 2-cycle.

3There are several good references for graph theory, we refer the reader to for example
[11, 14].
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Figure 1: Two triangles: a 3-cycle (left) and a ∆-clique (right).

Proof. Suppose that w and V ′ are as above and there is at least one additional
edge in the graph G′ = (V ′, E ′) induced on V ′ to those required for a splitting
vertex. Then either there is an edge [vj → w] and hence there is a 2-cycle,
or there is an edge [vj → vl] and hence there is a ∆-clique on {w, vj, vl}.

We say ξ is a splitting node for Σ if the corresponding vertex is a splitting
vertex for G(Σ).

Now suppose G(Σ) = (V,E) and consider a subset N ′ ⊂ N(Σ) of nodes.
The induced subgraph G′ = (V ′, E ′) consists of all edges in G(Σ) between
vertices in N ′. This can be used to construct an invariant set

ΣG′ =

 ⋃
[vi→vj ]∈E′

Cij(Σ)

 ∪(⋃
v∈V ′

N(v)

)

however, there is no guarantee that ΣG′ is necessarily transitive or even con-
nected. As an illustration, consider the Kirk and Silber graph (see Fig-
ure 4 (left)). If N ′ = {v3, v4}, then E ′ = ∅ and ΣG′ is not connected. If
N ′ = {v2, v3, v4}, then E ′ = {[v2 → v3], [v2 → v4]} and ΣG′ is connected but
not transitive.

We say Σ is a heteroclinic cycle if G(Σ) is a k-cycle for some k ≥ 2. Note
that in such a case, the invariant set Σ is not necessarily a topological circle
because it may contain multiple connections between two nodes and still be
a cycle in our definition. Even worse, it is possible that connections may
accumulate on each other away from the equilibria (if this is not the case,
then the nodes are exclusive in a sense we define later). We now give a lemma
that characterizes the relation between heteroclinic networks and digraphs.

Lemma 2.4. For any heteroclinic network Σ on N , the graph G(Σ) is a
transitive digraph between vertices N(Σ). For any transitive subgraph H =
(VH , EH) ⊂ G(Σ) there is a heteroclinic network ΣH ⊂ Σ such that G(ΣH) =
H.
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Proof. Transitivity of the graph G(Σ) follows from Σ being indecomposable.
The network ΣH ⊂ Σ can be found by taking the union of equilibria in VH
and connections corresponding to EH :

ΣH =

 ⋃
[vi→vj ]∈EH

Cij(Σ)

 ∪( ⋃
v∈VH

N(v)

)
.

This can be used to show the following result, which – as mentioned above
– is often used as part of the definition of a heteroclinic network.

Lemma 2.5. A heteroclinic network (according to Definition 2.1) is a con-
nected union of heteroclinic cycles.

Proof. Consider a decomposition of a transitive graph G(Σ) into a finite
union of cycles G1, . . . , Gk. Each of the ΣGj

⊂ Σ is a heteroclinic cycle but
the union of cycles contains Σ, that is,

Σ ⊂
k⋃
j=1

ΣGj

as it contains all connections and nodes within Σ. Hence Σ is precisely this
union.

The minimum length cycles in Σ are of interest: we say that the hetero-
clinic network Σ contains a k-cycle for some k > 1 if G(Σ) contains a k-cycle.
Note that the decomposition of a heteroclinic network into cycles is usually
not unique. The proof of Lemma 2.5 implicitly uses a decomposition into
cycles that have length equal to the minimum length cycle that returns to
any edge but equally there may be a decomposition using longer cycles. Our
standing assumption means that G(Σ) only contains k-cycles for k ≥ 2.

2.1 Properties of nodes of heteroclinic networks

We now consider some properties of connections from nodes within hetero-
clinic networks.

Definition 2.6. Suppose that Σ is a heteroclinic network and ξi a node in
that network. We define the following:

• ξi is complete in Σ if W u(ξi) ⊂ Σ (see Figure 2).
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• ξi is almost complete in Σ if W u(ξi)\Σ is of measure zero (with respect
to Lebesgue measure for any volume form on W u(ξi)).

• ξi is equable in Σ, if there is a d = d(i) such that for all j with Cij(Σ) 6= ∅
the set Cij(Σ) is a manifold with dimCij(Σ) = d.

• ξi is exclusive in Σ (see Figure 3) if for all j where Cij(Σ) is non-empty
we have

Cij(Σ) ∩N(Σ) = {ξi, ξj}.

• Σ is a complete/almost complete/equable/exclusive network if all nodes
are respectively complete/ almost complete/ equable/exclusive.

• Σ is called clean [13, Definition 1.3] if it is compact and complete.

We note that the graph of a complete network is not necessarily a com-
plete graph (where every pair of vertices is directly connected by an edge).
The network in Figure 4 (right) is complete but the corresponding graph is
not (ξ3 and ξ4 are not directly connected, for instance).

If a node ξi is not exclusive, then there exist connections in Cij that are
arbitrarily close to a node in the network other than ξi and ξj. Note also
that an equable network may have connections of different dimensions. We
comment on the effects of equability on the dynamics in Section 5.

ξ
1

2
ξ

3
ξ

ξ
1

2
ξ

3
ξ

4
ξ 4

ξ

Figure 2: Let Σ be the network with nodes ξi, i = 1, 2, 3, 4 and connections
between them in R3. The node ξ2 on the left is complete as the origin is
unstable and the 1-dimensional unstable manifold of ξ2 is contained in Σ.
The node ξ2 on the right is not complete as some points in W u(ξ2) move
away from Σ.

The well-known network of Kirk and Silber [19] provides an example of
an equable network that is not complete, we comment on this in Subsection
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Figure 3: The splitting node ξi (left) is made complete by inserting an addi-
tional node ζ and additional connections (right).The node ξi is not equable
on the right as the dimension of the connections from ξi can be either 1,
[ξi → ζ], or 2, [ξi → ξj], j = 1, 2. On the left ξi is exclusive but on the right
it is not: ζ ∈ Cij, j = 1, 2. Note also that on the right ξi is no longer a
splitting node.

4.1. Other authors have implicitly noted the importance of graph structures
such as ∆-cliques for properties of clean heteroclinic networks [7, 13]. Note
that a clean network need not be equable: we give an example for this in
Subsection 4.2.

For a given set of equilibria N it is not necessary that C(N) ∪ N is
complete or even closed – this can be for a variety of reasons. Although it may
not be true that for a given N there is N ′ containing N such that N ′∪C(N ′)
is complete, in Section 3, we find constructions such that N ′ ∪ C(N ′) is at
least closed.

The following result highlights that a splitting node ξi in a complete and
equable network is either very simple and the splitting is of order 2, or it is
not exclusive – the closure of Cij contains a node ξk that is neither ξi nor ξj.
If this is the case, then there will be some ` 6∈ {i, j} such that Ci` 6= ∅.

Lemma 2.7. Suppose that the node ξi is complete in Σ. Then ξi is almost
complete in Σ. If in addition ξi is exclusive, equable and a splitting node of
order k ≥ 2, then k = 2 and dim(W u(ξi)) = 1.

Proof. Suppose dim(W u(ξi)) = d. If ξi is complete in Σ, then `(W u(ξi)\Σ) =
`(∅) = 0 where ` denotes d-dimensional Lebesgue measure on W u(ξi) and so
ξi is almost complete in Σ.

For the second part, pick some small δ > 0 such that S := {x ∈
W u(ξi) : |x − ξi| = δ} is diffeomorphic to a (d − 1)-sphere. Note that
the (d− 1)-sphere is connected for d ≥ 2 and has two components for d = 1.
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If ξi is also an equable splitting node of order k, then all connections from
ξi must have the same dimension. If ξi is exclusive then Cij ∩ S will not
intersect Cim for m ∈ {1, . . . , k}, m 6= j: hence there is a partition of S into
k closed disjoint sets. This is only possible for k = 2 and d = 1.

If Σ is a complete heteroclinic network, then by Lemma 2.7 it is almost
complete: moreover, in such a case it is maximal in the sense that

Σ =
⋃

ξ∈N(Σ)

W u(ξ) and Cij(Σ) = Cij.

There is also a partition of W u(ξ) into a union of connections from ξ. More-
over, from the proof it is easy to see that if ξi is a splitting node and W u(ξi)
is at least 2-dimensional, then ξi is not complete. If W u(ξi) is 2-dimensional
and ξi is complete, then it is not a splitting node.

Note that asymptotic stability of a compact heteroclinic network implies
that it is clean [13]. The opposite is not true: heteroclinic objects can lose
asymptotic stability through resonance bifurcations. Take the well-known
Guckenheimer-Holmes cycle in [15] for instance, which is complete, even
clean, but unstable when condition (c) in [15, Lemma 3] is broken. By
contrast, a transverse bifurcation involves a sign change for some eigenvalue
(or its real part) and thus affects the completeness of a cycle/network.

It follows from Definition 2.6 that if a node ξi is such that W u(ξi) = 1,
then ξi is equable; such a ξi is also exclusive if the nodes are equilibria and
the network is of depth one in the sense of [3].

If G has a ∆-clique, then it does not follow that there is a non-exclusive
or a non-equable node in ΣG. Take a B+

2 cycle (see Subsection 4.3) between
equilibria ξa and ξb for example. Add a fourth space dimension with an
equilibrium ξ on the extra axis, such that dim(W u(ξ)) = 1 and there are
connections from ξ to ξa and ξb. Then the three equilibria form a ∆-clique,
but ξ is exclusive and equable. This can be embedded in a heteroclinic
network in a higher dimensional space.

3 Realization as almost complete equable het-

eroclinic networks

The problem of realizing abstract digraphs as heteroclinic networks was
raised in [4, 5] and [12], and several methods have been proposed. Sup-
pose G = (V,E) is an arbitrary transitive digraph. We say the dynamics of
(1) realizes G as the heteroclinic network Σ if there is a choice of f and Σ
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such that G(Σ) = G. Without loss of generality we can choose Σ to be the
maximal choice, i.e.

Σ =

 ⋃
[vi→vj ]∈E

Cij(Σ)

 ∪(⋃
v∈V

N(v)

)
.

In [4], two methods are presented to show that, under minimal assumptions,
a digraph G can be realized as a heteroclinic network. The simplex method
embeds the graph in a simplex by placing the nodes on the coordinate axes.
This method realizes the graph provided it has neither 1- nor 2-cycles. The
cylinder method places the nodes along one coordinate axis and realizes any
graph provided it has no 1-cycles.

In this section we show that the simplex construction, for a certain choice
of parameters, gives a realization that is an almost complete, equable sub-
network of a closed heteroclinic network, and this is robust under certain
equivariant perturbations. We state and prove this as Theorem 3.1 and later,
in Subsection 4.1 give an example that elucidates the result and method of
proof.

According to [4, Proposition 1] any graph G without 1- and 2-cycles can
be realized as a heteroclinic network Σ = C(N) ∪ N on a set of equilibria
N . The resulting vector field on Rn, n = #N , is Zn2 -equivariant and yields
an equilibrium on each coordinate axis and connections in coordinate planes.
Theorem 3.1 shows that under the additional hypothesis that there are no
∆-cliques and with an appropriate choice of parameters, this can be done
in such a way that Σ is an almost complete, equable subnetwork of a closed
network Σ′. Although the vector field is as in [4, Proposition 1] our method
of proof involves the construction of Lyapunov-type functions that use the
additional hypotheses.

Theorem 3.1. Let G be a transitive directed graph on n vertices with no 1-
cycles, 2-cycles or ∆-cliques. Then there exists a Zn2 -equivariant vector field
f on Rn that realizes G as a network Σ(N) between nodes N = {ξ1, . . . , ξn}.
This realization is robust to Zn2 -equivariant perturbations. The vector field
can be chosen such that there is an additional set of nodes N ′ and a closed
heteroclinic network Σ′ between N ∪ N ′ such that Σ is an almost complete,
equable subnetwork of Σ′.

Proof. For j = 1, . . . , n we define the smooth vector field on Rn

ẋj = fj(x) := xjFj(x) (2)

12



where
Fj(x) := 1 +

∑
i

[(ε+ η)Aij − η(1− δij)− 1]x2
i . (3)

We set Aij = 1 if G prescribes a connection from ξi to ξj, and Aij = 0
otherwise, while δij is the Kronecker symbol and the constants ε, η satisfy
0 < ε < 1 and η > 0.

Since the vector field (2) satisfies the hypotheses of [4], only the last
statement requires proof.

There are equilibria at ξj corresponding to the unit basis for Rn. Let
N = {ξj} denote these equilibria of (2) on the coordinate axes.

Lack of 1- and 2-cycles can be expressed as Aii = 0, AijAji = 0 for all i
and j, while lack of ∆-cliques means that AijAjk = 1 implies Aik = 0 for any
i, j, k. We write

Oj := {k ∈ {1, . . . , n} : Ajk = 1}
for the non-empty set of indices corresponding to the outgoing directions
from ξj. The proof proceeds in the following steps.

Step 1 – existence of an absorbing region for the dynamics: We
write R := |x|2 =

∑
j x

2
j and calculate

d

dt
R =

∑
j

2x2
jFj(x)

=
∑
j

2x2
j

[
1 +

∑
i

[(ε+ η)Aij − η(1− δij)− 1]x2
i

]
= 2R− 2R2 + 2

∑
i,j

[
(ε+ η)Aij − η(1− δij)]x2

ix
2
j

]
.

But note that
−η ≤ (ε+ η)Aij − η(1− δij) ≤ ε

and so
−ηR2 ≤

∑
i,j

[(ε+ η)Aij − η(1− δij)]x2
ix

2
j ≤ εR2,

which implies

2R(1−R− ηR) ≤ d

dt
R ≤ 2R(1−R + εR).

This means that there is an absorbing region R0 < R < R1 where

R0 :=
1

1 + η
≤ R ≤ R1 :=

1

1− ε
.

13



Therefore, for any η > 0 and 0 < ε < 1 there is an absorbing spherical
annulus

S :=

{
x :

1

1 + η
≤ |x|2 ≤ 1

1− ε

}
.

If we fix j and define the invariant subspace

Ωj := {x : xk = 0 if k 6∈ Oj}

then ξj has an unstable manifold contained within the invariant subspace

Qj := Ωj ⊕ 〈ξj〉. (4)

Step 2 – Ωj attracts almost all initial conditions in Qj: In fact, every
trajectory in Qj that is not in the one dimensional subspace spanned by ξj
limits to Ωj. We define a function Φj : Qj → R by

tan Φj :=
x2
j∑

i∈Oj
x2
i

and note that for any x ∈ Qj and i ∈ Oj we have

ẋj = xj

1 +
∑
k∈Oj

[−η − 1]x2
k − x2

j


ẋi = xi

1 + [ε− 1]x2
j +

∑
i 6=k∈Oj

[−η − 1]x2
k − x2

i

 .
Note that

d

dt
[tan Φj] =

d

dt

[
x2
j∑

i∈Oj
x2
i

]
= (1 + tan2 Φj)

d

dt
Φj,

so that
d

dt
Φj =

1

1 + tan2 Φj

d

dt
[tan Φj] .

Hence we have

[
∑

i∈Oj
x2
i ]

2 + x4
j

[
∑

i∈Oj
x2
i ]

2

d

dt
Φj = 2

xjẋj[
∑

i∈Oj
x2
i ]− x2

j

∑
i∈Oj

xiẋi

[
∑

i∈Oj
x2
i ]

2
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for all x ∈ Qj \ {0}. This means that

d

dt
Φj = 2

xjẋj[
∑

i∈Oj
x2
i ]− x2

j

∑
i∈Oj

xiẋi

[
∑

i∈Oj
x2
i ]

2 + x4
j

= 2
−ηx2

j

∑
k∈Oj

x2
k[
∑

i∈Oj
x2
i ]− x2

j

∑
i∈Oj

x2
i [εx

2
j − η

∑
i 6=k∈Oj

x2
k]

[
∑

i∈Oj
x2
i ]

2 + x4
j

= −2
x2
j

∑
i∈Oj

x2
i (ηx

2
i + εx2

j)

[
∑

i∈Oj
x2
i ]

2 + x4
j

.

For any η > 0 and ε > 0 this quantity is clearly finite as long as x 6= 0
and non-positive except when x2

i = 0 for all i ∈ Oj. Hence Φj decreases
monotonically to 0 for any initial conditions in Qj ∩ S except when x2

i = 0
for all i ∈ Oj. This implies that all initial conditions except those on the
xj-axis converge to Ωj.

Step 3 – the dynamics restricted to Ωj is a gradient flow: Suppose
x ∈ Ωj so that R =

∑
i∈Oj

x2
i . Let

Vj = −1

2
R +

1

4
R2 +

1

4
η
∑
k∈Oj

x2
k

 ∑
l∈Oj , l 6=k

x2
l


and note that for any i ∈ Oj and x ∈ Ωj we have

− ∂

∂xi
Vj = xi(1−R)− ηxi

∑
k 6=i

x2
k = xjFj(x).

Hence the flow (2) is a gradient flow when restricted to any Ωj.
To conclude the proof, note that the only minima of Vj on Ωj correspond

to stable equilibria of the vector field which are at x = ξi for each i ∈ Oj.
These equilibria are linearly stable, meaning they are quadratic minima for
Vj on Ωj. All other stationary points of Vj are quadratically non-degenerate
and correspond to saddles or repellers of (2) on Ωj. This means that the flow
on Ωj is Morse-Smale and robust to perturbations. We define the separating
nodes N ′ to be the union of all additional stationary points of Vj, and we
define the heteroclinic network Σ′ to be the closures of the unstable manifolds
of the ξj.

Note that Qj contains W u(ξj) and almost any trajectory in Qj limits to
an equilibrium in Ωj. Hence by including all equilibria in Qj in N ′ we ensure
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that all W u(ξj) consist of connections between equilibria in the network.
More precisely, any initial condition in Qj that is in

Ti = {x ∈ Qj : x2
i > x2

k for all k ∈ Oj}

is asymptotic to ξi. Because W u(ξj) is transverse to the radial direction
〈ξj〉, almost all trajectories in W u(ξj) limit to one of the stable equilibria ξi,
ensuring that ξj is equable in Σ.

Note that the network Σ′ is not just closed but clean if all separating
nodes N ′ have unstable manifolds that are entirely contained within Qj for
some j. We see in Subsection 4.1 that this need not be the case, even for a
simple but nontrivial network.

4 Examples

In this section we discuss several examples to illustrate what it means for a
network/node to be (in)complete and/or equable. In an equivariant setting,
simple heteroclinic cycles4 have been classified into types A, B or C by Krupa
and Melbourne [22]. We use their terminology here to indicate the type of
a cycle (through the respective letter) and its number of equilibria (as a
subscript). The superscript +/− encodes information about the symmetry
group that is not relevant for our discussion.

All of our examples are equivariant under the action of some symmetry
group Γ. We identify objects in the same group orbit so that when the graph
has vertices ξi and ξj and an edge [ξi → ξj], the network has connections
between the corresponding elements in the group orbits Γ.ξi and Γ.ξj. These
connections are symmetric images of one another.

4.1 The Kirk and Silber/ (B−3 , B
−
3 ) network

The heteroclinic network of Kirk and Silber [19] consists of two cycles of type
B−3 with connections (typically viewed as one-dimensional) between equilibria
ξ1, ξ2, ξ3, ξ4 ∈ R4. Note that aspects of this network were previously discussed
in [13, Examples 2.10] and [18, Case I].

It realizes the graph given in Figure 4 (left). The vector field realizing the
network robustly has symmetry Z4

2 where the group acts as multiplication by

4Cycles are defined as simple in [22] if the nodes are in different connected components
of 1-dimensional fixed-point spaces and the connections are in 2-dimensional fixed-point
spaces.
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−1 in each coordinate. The node ξ2 is a splitting node and not complete.5

The closure of its unstable manifold contains a separating node ζ (in the
plane containing ξ3 and ξ4) and connections [ξ2 → ζ], [ζ → ξ3] and [ζ → ξ4],
see Figure 4 (right).

ξ
1

ξ
2

ξ
3

ξ
4

ξ
1

ξ
2

ξ
3

ξ
4

(2)

(2)

ζ

Figure 4: The (B−3 , B
−
3 ) network has an incomplete splitting node at ξ2

(left). Adding a node ζ and connections [ξ2 → ζ], [ζ → ξ3] and [ζ → ξ4]
to the network makes ξ2 complete (right). On the left, ξ2 is equable and
exclusive whereas on the right it is not. The numbers in brackets correspond
to the dimension of the connection when this is greater than one.

To better illustrate the construction in the proof of Theorem 3.1, we apply
it to this graph/network. With the given connection structure we obtain the
system (2,3) which can be written

ẋ1 = x1[1− |x|2 + ε(x2
3 + x2

4)− ηx2
2]

ẋ2 = x2[1− |x|2 + εx2
1 − η(x2

3 + x2
4)]

ẋ3 = x3[1− |x|2 + εx2
2 − η(x2

1 + x2
4)]

ẋ4 = x4[1− |x|2 + εx2
2 − η(x2

1 + x2
3)]. (5)

As required this system has four equilibria ξi on the unit coordinate axes.
We note that

Ω1 = {(0, a, 0, 0)}, Ω2 = {(0, 0, a, b)}, Ω3 = Ω4 = {(a, 0, 0, 0)}.

and (4) means that if x ∈ Q2 then x = (0, x2, x3, x4). Hence, if x ∈ Q2, we

5When a connection [ξi → ξj ] exists, the connection [ξi → −ξj ] also exists. However,
under the identification of objects in the same group orbit, only ξ2 is a splitting node.
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have

ẋ2 = x2[1− |x|2 − η(x2
3 + x2

4)]

ẋ3 = x3[1− |x|2 + εx2
2 − ηx2

4]

ẋ4 = x4[1− |x|2 + εx2
2 − ηx2

3].

In fact the only attractors in Q2 are ξ3 and ξ4: consider

tan Φ2 :=
x2

2

x2
3 + x2

4

,

then
d

dt
Φ2 = −2x2

2

ε(x2
3 + x2

4)x2
2 + η(x4

3 + x4
4)

x4
2 + (x2

3 + x2
4)2

which on Q2 is clearly decreasing to x2 = 0 unless x2
3 + x2

4 = 0. Finally, if we
define

V2(0, 0, x3, x4) := −R/2 +R2/4 + ηx2
3x

2
4/2

then on Ω2 we have

ẋ3 = −∂V2

∂x3

ẋ4 = −∂V2

∂x4

giving a gradient flow in Ω2, with almost all trajectories converging to ξ3 and
ξ4 (minima of V2).

Restricting the flow to Ω2 we find a separating node ζ = (0, 0, x3, x4)
such that x2

3 = x2
4 = 1

2+η
. As illustrated in the right panel of Figure 4,

ζ is a saddle in Ω2. Its unstable space includes however the direction of ξ1

showing that the unstable manifold of ζ is not contained in Q2. In this case a
clean network can be obtained by also including W u(ζ) which means having
a two-dimensional connection [ζ → ξ1] in the network.

4.2 The (B−3 , B
−
3 , C

−
4 ) network

This network, along with other examples, is discussed in the context of clean
networks in [13, Examples 2.10]. It also appears in Brannath [8] and Castro
and Lohse [10]. Its graph is given in Figure 5 and the simplex method
provides a vector field with symmetry Z4

2 as above that realizes it. The
(B−3 , B

−
3 , C

−
4 ) network has two ∆-cliques: one involving the nodes ξ2, ξ3 and

ξ4; the other involving the nodes ξ3, ξ1 and ξ4. Hence, it does not satisfy

18



the hypotheses of Theorem 3.1. However, the network is clean since the
nodes with out-degree greater than 1, ξ2 and ξ3, are complete. Note that
ξ2 and ξ3 are not equable: dim(Σ ∩ C23) = 1 6= 2 = dim(Σ ∩ C24) and
dim(Σ ∩ C34) = 1 6= 2 = dim(Σ ∩ C31).

ξ
1

ξ
2

ξ
3

ξ
4

(2)

(2)

Figure 5: The (B−3 , B
−
3 , C

−
4 ) network has no splitting nodes and is clean.

There are two ∆-cliques involving the non-equable, but complete, nodes ξ2

and ξ3. The numbers in brackets correspond to the dimension of the connec-
tion when this is greater than one.

There are infinitely many instances of the (B−3 , B
−
3 ) network with one-

dimensional connections as equable subnetworks. Their union forms an al-
most complete, but non-equable subnetwork with the same (B−3 , B

−
3 ) graph,

but there is no subnetwork of the (B−3 , B
−
3 , C

−
4 ) network that is both equable

and almost complete.

4.3 The (B+
2 , B

+
2 ) network

A network with two cycles of type B+
2 is described in Castro and Lohse [9].

Note that even though this object is usually referred to as a heteroclinic
network, our Definition 2.1 classifies it as a heteroclinic cycle. In this sense,
our definition of heteroclinic cycle is less strict than many definitions in the
literature. According to results in [4], the cylinder method can be used to
provide a vector field in R4 realizing the corresponding graph. The network is
clean and equable. It has no splitting nodes since all connections are between
the same two equilibria.
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The vector field supporting the (B+
2 , B

+
2 ) network has symmetry Z3

2 where
the action of Z2 is multiplication by −1 of each of the last three coordinates
of R4. There is a one-dimensional connection [ξa → ξb]. The full set of
connections Cba consists in three types (distinguished by isotropy) of connec-
tions: a one-dimensional connection contained in the (x1, x3)-plane, another
one-dimensional connection in the (x1, x4)-plane and a two-dimensional con-
nection in the (x1, x3, x4)-space. See Figure 6.

ξa
ξb

P13

P14

(dashed in P12)

Figure 6: The (B+
2 , B

+
2 ) network is clean, equable and exclusive. There are no

splitting nodes, the connection from ξa to ξb is one-dimensional, while the con-
nection back is two-dimensional. The shaded area shows a two-dimensional
set of the connections in Cba. The connection Cab (dashed) is contained in
P12.

Certainly many more examples can be found in the literature. For in-
stance, Kirk et al. [17] discuss a non-simple network in R4 with six equilibria
and Z3

2 symmetry that is clean, but not equable. It is obtained by neither the
simplex nor the cylinder method and there are nodes where the linearization
has complex eigenvalues.

5 A Markov switching process and almost

complete equable networks

To give some more insight to the importance of almost complete and equable
networks, we consider a heteroclinic network Σ = C(N) ∪N and define the
following idealized (but somewhat natural) discrete-time model of stochastic
dynamics on a network.
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For each node ξi ∈ N we consider a probability measure ρi(x) that is
supported and absolutely continuous on W u(ξi) with respect to a Lebesgue
measure, and whose density is non-zero in some neighbourhood of ξi. We
define a one-step discrete-time Markov switching process Ξ = {ξ(n) ∈ N ∪
{e}}n∈Z on Σ where e represents an “escaped” state. We define the switching
probability from ξj to ξk by

P(ξ(n+ 1) = ξk|ξ(n) = ξj) = ρj(Cjk(Σ)). (6)

Note that if a node is not almost complete, then paths of the process can
“leak out” from that node: If we define

P(ξ(n+ 1) = e|ξ(n) = ξj) = 1−
∑
k

ρj(Cjk(Σ)),

then this may be non-zero. Finally, we assume P(ξ(n+1) = e|ξ(n) = e) = 1.
The following proposition shows that in cases where this process al-

most surely does not escape, it explores an almost complete equable sub-
network of Σ. This subnetwork is obtained by ignoring for each node all
lower-dimensional connections (and corresponding nodes) that make it non-
equable, e.g. ζ and the connections leading to and from it in Figure 3. It
is maximal in the sense that it contains all other equable, almost complete
subnetworks.

Proposition 5.1. Consider a heteroclinic network Σ supporting a Markov
switching process Ξ. If Ξ starting at any point on N(Σ) almost surely avoids
escape, then Σ is almost complete. Moreover, there is an equable almost
complete subnetwork Σ∗ such that only transitions within Σ∗ are seen with
positive probability.

Proof. Note that by definition, Ξ only gives positive probability to transitions
that correspond to positive measure subsets of W u(ξj) for all j. If P(ξ(n +
1) = e|ξ(n) = ξj) = 0, then

∑
k ρj(Cjk(Σ)) = 1 for all j and so Σ is almost

complete.
Finally, note that (6) implies that a full set of connections Cjk such that

ρ(Cjk) > 0 has dimension equal to that of W u(ξj). This is because if a set
S ⊂ W u(ξj) is such that dim(S) < dim(W u(ξj), then the Lebesgue measure
of S in W u(ξj) is zero and, by absolute continuity of ρj, it is also ρj(S) = 0.
Hence, all full sets of connections from ξj have the same dimension (ξj is
equable) and belong to some equable almost complete subnetwork.

We note that Proposition 5.1 is not an equivalence. The converse, i.e.
that for an equable, almost complete network the Markov process almost
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surely avoids escape and explores the entire network, will not hold if there is
a connecting set Cij of dimension d but zero d-dimensional measure.

Consider the stochastic differential equation (SDE)

dx = f(x) dt+ α dWt,

where f realizes a given graph as an attracting heteroclinic network for (1),
α > 0 is some small constant and Wt a standard n-dimensional Wiener
process. As an example, the panels of Figure 7 show segments of a single
trajectory for the realization of the Kirk-Silber network (5) on R4 with added
noise as in [1]. The trajectory is calculated using a Heun integrator with
timestep 0.2. The figure shows the intersection of this trajectory with a
region {x ∈ R4 : x2

1 < 0.2}, that is a neighbourhood of the invariant set
(called Q2 in the previous section) given by x1 = 0. Note that this region
contains the unstable manifold of ξ2 = (0,±1, 0, 0), but it does not contain
the equilibrium ξ1 = (±1, 0, 0, 0). Figure 7 shows that a single trajectory
will, over successive visits to this region, explore almost all directions of exit
from the saddle ξ2. For smaller noise level α, observe that the links become
more concentrated around the one-dimensional connections, but still other
regions of the manifold are visited with apparent non-zero probability.

Note that a noise-forced heteroclinic system need not behave as a Markov
switching process on the last visited node, even in the low noise limit due to
the effect of “lift-off” [1, 6]. Nonetheless we do expect the Markov switching
process to be a reasonable model for the long-term behaviour of solutions of
the SDE in the low noise case if all saddles are “locally stable”, i.e. if the
real parts of all expanding eigenvalues at the saddle are smaller in magnitude
than the real part of the weakest contracting eigenvalue. This should be valid
for the constructions in the proof of Theorem 3.1, though for other choices
of parameters it may no longer be the case.

6 Discussion

In summary, we highlight that not only is it possible to realize quite general
directed graphs as heteroclinic networks, but also these realizations can be
maximal in the sense of being almost complete and equable. In addition
to the main result Theorem 3.1 and examples in Section 4, we present in
Section 5 a Markov model and a sense in which almost complete and equable
networks can be seen as optimal models of heteroclinic networks perturbed
by noise.

While an assumption of no 1-cycles in G is necessary for a robust realiza-
tion of G as a heteroclinic network, the lack of 2-cycles or ∆-cliques assumed
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Figure 7: Each panel shows segments of a single trajectory as they pass
near the unstable manifold of ξ2 = (0,±1, 0, 0) for the realisation (5) of the
Kirk-Silber network with ε = 0.02, η = 0.05 and increasing noise amplitude
α. In each case, the intersection of the trajectory with the region x2

1(t) <
0.2 is shown – successive visits apparently fill out a neighbourhood of the
2-dimensional unstable manifold of ξ2, and visit arbitrarily closely to the
additional node ζ on the diagonal, as shown in Figure 4. The simulation
uses a Heun integrator with timestep 0.2: for more details, see text.

in Theorem 3.1 is presumably not necessary. Indeed, other realization meth-
ods [4, 5, 12] give robust realizations for G purely on an assumption of no
1-cycles. We conjecture there are parameter choices that give an equivalent
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result to that in Theorem 3.1 in this more general case. This suggests the
following:

Conjecture 6.1. The conclusion of Theorem 3.1 holds even for directed
graphs G that may contain 2-cycles and ∆-cliques.

Explicit constructions are shown as the cylinder method of [4] and the
two layer network [5]. These show the existence of networks Σ that are
equable subnetworks realizing G as long as G has no 1-cycles, and these
realizations can be made robust to certain symmetric perturbations. The
problem remains to show that the network is almost complete. Note that
the (A+

2 , A
+
2 )- and (B+

2 , B
+
2 )-networks are simple and may be created by the

cylinder method. However, cycles or networks with more than two equilibria
that are generated in this way are not simple, because all equilibria are on
the same coordinate axis L – violating the condition that every connected
component of L \ {0} contains at most one equilibrium. Finally, the unsta-
ble manifolds for the cylinder construction are highly curved and it seems
much harder to find suitable Lyapunov-type functions as used in the proof
of Theorem 3.1.

Finally, we remark that the construction in Theorem 3.1 (or a strength-
ened version Conjecture 6.1) can presumably be strengthened in the following
way: It should be possible to show that under the same (or weakened) hy-
potheses of Theorem 3.1, an explicit realization can be chosen such that the
embedding network Σ′ is clean. The main obstruction to showing this is
explicitly making the separating nodes in N ′ ∩Qj transversely stable to Qj.
Although it is clear that this only requires a local change to the transverse
stability at all separating nodes, it is still a challenge to explicitly give the
construction.
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