Skip to main content

Advertisement

Log in

Stationary Distribution and Extinction of a Stochastic HIV-1 Infection Model with Distributed Delay and Logistic Growth

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we propose a stochastic HIV-1 infection model with distributed delay and logistic growth. Firstly, we transfer the stochastic model with weak kernel case into an equivalent system through the linear chain technique. Then, we establish sufficient conditions for the existence of a stationary distribution of the model by constructing a suitable stochastic Lyapunov function. Moreover, we obtain sufficient criteria for extinction of the infected cells; that is, the uninfected cells are survival and the infected cells are extinct. Our results show that the smaller white noise can ensure the existence of a stationary distribution when the basic reproduction number \(R_{0}^{S}\) of the stochastic system is bigger than one, while the larger white noise can lead to the extinction of the infected cells when the basic reproduction number \(R_{0}\) of the deterministic system is smaller than one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson, R.M.: Mathematical and statistical studies of the epidemiology of HIV. AIDS 3, 333–346 (1989)

    Article  Google Scholar 

  • Anderson, R.M., May, R.M., Goldbeter, A.: Complex dynamical behavior in the interaction between HIV and the immune system. In: Goldbeter, A. (ed.) Cell to Cell Signalling: From Experiments to Theoretical Models, p. 335. Academic Press, New York (1989)

    Chapter  Google Scholar 

  • Bailey, J.J., Fletcher, J.E., Chuck, E.T., Shrager, R.I.: A kinetic model of CD4+ lymphocytes with the human immunodeficiency virus (HIV). Biosystems 26, 177–183 (1992)

    Article  Google Scholar 

  • Bonhoeer, S., May, R.M., Shaw, G.M., Nowak, M.A.: Virus dynamics and drug therapy. Proc. Natl. Acad. Sci. USA 94, 69–71 (1997)

    Google Scholar 

  • Culshaw, R.V., Ruan, S.: A delay-differential equation model of HIV infection of \(CD4^{+}\) T-cells. Math. Biosci. 165, 27–39 (2000)

    Article  Google Scholar 

  • Culshaw, R.V., Ruan, S., Webb, G.: A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay. J. Math. Biol. 46, 425–444 (2003)

    Article  MathSciNet  Google Scholar 

  • Dalal, N., Greenhalgh, D., Mao, X.: A stochastic model for internal HIV dynamics. J. Math. Anal. Appl. 341, 1084–1101 (2008)

    Article  MathSciNet  Google Scholar 

  • De Boer, R.J., Perelson, A.S.: Target cell limited and immune control models of HIV infection: a comparison. J. Theor. Biol. 190, 201–214 (1998)

    Article  Google Scholar 

  • Emvudu, Y., Bongor, D., Koïna, R.: Mathematical analysis of HIV/AIDS stochastic dynamic models. Appl. Math. Model. 40, 9131–9151 (2016)

    Article  MathSciNet  Google Scholar 

  • Grossman, Z., Feinberg, M.B., Kuznetsov, V., Dimitrov, D., Paul, W.: HIV infection: how effective is drug combination treatment? Immunol. Today 19, 528–532 (1998)

    Article  Google Scholar 

  • Grossman, Z., Polis, M., Feinberg, M.B., et al.: Ongoing HIV dissemination during HAART. Nat. Med. 5, 1099–1104 (1999)

    Article  Google Scholar 

  • Hasminskii, R.Z.: Stochastic Stability of Differential Equations. Sijthoff and Noordhoff, Alphen aan den Rijn (1980)

    Book  Google Scholar 

  • Herz, A.V.M., Bonhoeffer, S., Anderson, R.M., May, R.M., Nowak, M.A.: Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay. Proc. Natl. Acad. Sci. USA 93, 7247–7251 (1996)

    Article  Google Scholar 

  • Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)

    Article  MathSciNet  Google Scholar 

  • Hraba, T., Dolezal, J., Celikovsky, S.: Model-based analysis of CD4+ lymphocyte dynamics in HIV infected individuals. Immunobiology 181, 108–118 (1990)

    Article  Google Scholar 

  • Huang, Z., Yang, Q., Cao, J.: Complex dynamics in a stochastic internal HIV model. Chaos Solitons Fractals 44, 954–963 (2011)

    Article  MathSciNet  Google Scholar 

  • Intrator, N., Deocampo, G.P., Cooper, L.N.: Analysis of immune system retrovirus equations. In: Perelson, A.S. (ed.) Theoretical Immunology II, p. 85. Addison-Wesley, Redwood City (1988)

  • Ji, C., Liu, Q., Jiang, D.: Dynamics of a stochastic cell-to-cell HIV-1 model with distributed delay. Physica A 492, 1053–1065 (2018)

    Article  MathSciNet  Google Scholar 

  • Jiang, D., Liu, Q., Shi, N., Hayat, T., Alsaedi, A., Xia, P.: Dynamics of a stochastic HIV-1 infection model with logistic growth. Physica A 469, 706–717 (2017)

    Article  MathSciNet  Google Scholar 

  • Kirschner, D.E.: Using mathematics to understand HIV immune dynamics. Not. Am. Math. Soc. 43, 191–202 (1996)

    MathSciNet  MATH  Google Scholar 

  • Kirschner, D.E., Perelson, A.S., Arino, O., Axelrod, D., Kimmel, M., Langlais, M.: A model for the immune system response to HIV: AZT treatment studies. In: Mathematical Population Dynamics: Analysis of Heterogeneity. Theory of Epidemics Series, vol. 1, p. 295. Wuerz, Winnipeg, Canada (1995)

  • Kirschner, D.E., Lenhart, S., Serbin, S.: Optimal control of the chemotherapy of HIV. J. Math. Biol. 35, 775–792 (1997)

    Article  MathSciNet  Google Scholar 

  • Kutoyants, A.Y.: Statistical Inference for Ergodic Diffusion Processes. Springer, London (2003)

    MATH  Google Scholar 

  • Liu, Q.: Asymptotic behaviors of a cell-to-cell HIV-1 infection model perturbed by white noise. Physica A 467, 407–418 (2017)

    Article  MathSciNet  Google Scholar 

  • Liu, H., Yang, Q., Jiang, D.: The asymptotic behavior of stochastically perturbed DI SIR epidemic models with saturated incidences. Automatica 48, 820–825 (2012)

    Article  MathSciNet  Google Scholar 

  • Macdonald, N.: Time Lags in Biological Models, Lecture Notes in Biomathematics. Springer, Heidelberg (1978)

    Chapter  Google Scholar 

  • Mao, X.: Stochastic Differential Equations and Applications. Horwood, Chichester (1997)

    MATH  Google Scholar 

  • Peng, S., Zhu, X.: Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations. Stoch. Process. Appl. 116, 370–380 (2006)

    Article  MathSciNet  Google Scholar 

  • Perelson, A.S., Nelson, P.W.: Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41, 3–44 (1999)

    Article  MathSciNet  Google Scholar 

  • Perelson, A.S., Kirschner, D.E., Deboer, R.: Dynamics of HIV infection of \(CD4^{+}\) T cells. Math. Biosci. 114, 81–125 (1993)

    Article  Google Scholar 

  • Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D.D.: HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271, 1582–1586 (1996)

    Article  Google Scholar 

  • Pinto, C.M.A., Carvalho, A.R.M.: Stochastic model for HIV dynamics in HIV specific helper cells. IFAC-Papers On Line 48–1, 184–185 (2015)

    Article  Google Scholar 

  • Sánchez-Taltavull, D., Alarcón, T.: Stochastic modelling of viral blips in HIV-1-infected patients: effects of inhomogeneous density fluctuations. J. Theor. Biol. 371, 79–89 (2015)

    Article  MathSciNet  Google Scholar 

  • Sánchez-Taltavull, D., Vieiro, A., Alarcón, T.: Stochastic modelling of the eradication of the HIV-1 infection by stimulation of latently infected cells in patients under highly active anti-retroviral therapy. J. Math. Biol. 73, 919–946 (2016)

    Article  MathSciNet  Google Scholar 

  • Tam, J.: Delay effect in a model for virus replication. IMA J. Math. Appl. Med. Biol. 16, 29–37 (1999)

    Article  Google Scholar 

  • Tuckwell, H.C., Le Corfec, E.: A stochastic model for early HIV-1 population dynamics. J. Theor. Biol. 195, 451–463 (1998)

    Article  Google Scholar 

  • Wang, X., Liu, X., Xu, W., Zhang, K.: Stochastic dynamics of HIV models with switching parameters and pulse control. J. Frankl. Inst. 352, 2765–2782 (2015)

    Article  MathSciNet  Google Scholar 

  • Xu, D., Huang, Y., Yang, Z.: Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete Contin. Dyn. Syst. 24, 1005–1023 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are very grateful to the editor and the anonymous referees for their careful reading and valuable comments, which greatly improved the presentation of the paper. We also thank the National Natural Science Foundation of P.R. China (No. 11871473), Natural Science Foundation of Guangxi Province (No. 2016GXNSFBA380006) and the Fundamental Research Funds for the Central Universities (No. 15CX08011A), KY2016YB370 and 2016CSOBDP0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daqing Jiang.

Additional information

Communicated by Dr. Alain Goriely.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Jiang, D., Hayat, T. et al. Stationary Distribution and Extinction of a Stochastic HIV-1 Infection Model with Distributed Delay and Logistic Growth. J Nonlinear Sci 30, 369–395 (2020). https://doi.org/10.1007/s00332-019-09576-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-019-09576-x

Keywords

Mathematics Subject Classification

Navigation