Skip to main content
Log in

Asymptotic Properties of Multi-species Lotka–Volterra Models with Regime Switching Involving Weak and Strong Interactions

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

This work focuses on multi-species Lotka–Volterra models with regime switching modulated by a continuous-time Markov chain involving a small parameter. The small parameter is used to reflect different rates of the switching among a large number of states representing the discrete events. Using perturbed Lyapunov function methods and the structure of the limit system as a bridge, stochastic permanence and extinction are obtained. Sufficient conditions under which the measures of the original system converge to the invariant measure of that of the limit system are provided. A couple of examples and numerical simulations are given to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Badowski, G., Yin, G.: Stability of hybrid dynamic systems containing singularly perturbed random processes. IEEE Trans. Autom. Control 47, 2021–2032 (2002)

    Article  MathSciNet  Google Scholar 

  • Bao, J., Yin, G., Yuan, C.: Two-time-scale stochastic partial differential equations driven by \(\alpha \)-stable noises: averaging principles. Bernoulli 23, 645–669 (2017)

    Article  MathSciNet  Google Scholar 

  • Benaïm, M., Lobry, C.: Lotka–Volterra with randomly fluctuating environments or “how switching between beneficial environments can make survival harder”. Ann. Appl. Probab. 26, 3754–3785 (2016)

    Article  MathSciNet  Google Scholar 

  • Du, N.H., Kon, R., Sato, K., Takeuchi, Y.: Dynamical behavior of Lotka–Volterra competition systems: non-autonomous bistable case and the effect of telegraph noise. J. Comput. Appl. Math. 170, 399–422 (2004)

    Article  MathSciNet  Google Scholar 

  • Du, N.H., Nguyen, D.H., Yin, G.: Conditions for permanence and ergodicity of certain stochastic predator–prey models. J. Appl. Probab. 53, 187–202 (2016)

    Article  MathSciNet  Google Scholar 

  • Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., Holling, C.S.: Regime shifts, resilience, and biodiversity in ecosystem management. Ann. Rev. Evol. Syst. 35, 557–581 (2004)

    Article  Google Scholar 

  • Hutchinson, G.E.: The paradox of the plankton. Am. Nat. 95, 137–145 (1961)

    Article  Google Scholar 

  • Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  • Krishnamurthy, V., Topley, K., Yin, G.: Consensus formation in a two-time-scale Markovian system. Multiscale Model. Simul. 7, 1898–1927 (2009)

    Article  MathSciNet  Google Scholar 

  • Kurtz, T.G.: Semigroups of conditioned shifts and approximation of Markov processes. Ann. Probab. 3, 618–642 (1975)

    Article  MathSciNet  Google Scholar 

  • Kushner, H.J.: Approximation and Weak Convergence Methods for Random Processes, with Applications to Stochastic Systems Theory. MIT Press, Cambridge (1984)

    MATH  Google Scholar 

  • Li, X., Yin, G.: Switching diffusion logistic models involving singularly perturbed Markov chains: weak convergence and stochastic permanence. Stoch. Anal. Appl. 35, 364–389 (2017)

    Article  MathSciNet  Google Scholar 

  • Li, X., Jiang, D., Mao, X.: Population dynamical behavior of Lotka–Volterra system under regime switching. J. Comput. Appl. Math. 232, 427–448 (2009)

    Article  MathSciNet  Google Scholar 

  • Liu, M., Fan, M.: Permanence of stochastic Lotka–Volterra systems. J. Nonlinear Sci. 27, 425–452 (2017)

    Article  MathSciNet  Google Scholar 

  • Liu, H., Li, X., Yang, Q.: The ergodic property and positive recurrence of a multi-species Lotka–Volterra mutualistic system with regime switching. Syst. Control Lett. 62, 805–810 (2013)

    Article  Google Scholar 

  • Luo, Q., Mao, X.: Stochastic population dynamics under regime switching II. J. Math. Anal. Appl. 355, 577–593 (2009)

    Article  MathSciNet  Google Scholar 

  • May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (2001)

    Book  Google Scholar 

  • Mao, X.: Stochastic Differential Equations and Applications, 2nd edn. Horwood Publishing, Chichester (2008)

    Book  Google Scholar 

  • Mao, X.: Stationary distribution of stochastic population systems. Syst. Control Lett. 60, 398–405 (2011)

    Article  MathSciNet  Google Scholar 

  • Mao, X., Yuan, C.: Stochastic Differential Equations with Markovian Switching. Imperial College Press, London (2006)

    Book  Google Scholar 

  • Nguyen, D.H., Yin, G.: Coexistence and exclusion of stochastic competitive Lotka–Volterra models. J. Differ. Equ. 267, 1192–1225 (2017)

    Article  MathSciNet  Google Scholar 

  • Nguyen, D., Yin, G.: Recurrence and ergodicity of switching diffusions with past-dependent switching having a countable state space. Potential Anal. 48, 405–435 (2018)

    Article  MathSciNet  Google Scholar 

  • Rishel, R.: Necessary and sufficient dynamic programming condition for continuous-time stochastic control. SIAM J. Control Optim. 8, 559–571 (1970)

    Article  MathSciNet  Google Scholar 

  • Simon, H.A., Ando, A.: Aggregation of variables in dynamic systems. Econometrica 29, 111–138 (1961)

    Article  Google Scholar 

  • Slatkin, M.: The dynamics of a population in a Markovian environment. Ecology 59, 249–256 (1978)

    Article  Google Scholar 

  • Takeuchi, Y., Du, N.H., Hieu, N.T., Sato, K.: Evolution of predator–prey systems described by a Lotka–Volterra equation under random environment. J. Math. Anal. Appl. 323, 938–957 (2006)

    Article  MathSciNet  Google Scholar 

  • Tao, R., Wu, Z., Zhang, Q.: Optimal switching under a regime-switching model with two-time-scale Markov chains. Multiscale Model. Simul. 13, 99–131 (2015)

    Article  MathSciNet  Google Scholar 

  • Wang, L.Y., Khargonekar, P.P., Beydoun, A.: Robust control of hybrid systems: performance guided strategies, In: Antsaklis, P., Kohn, W., Lemmon, M., Nerode, A., Sastry, S. (eds.) Hybrid Systems V. Lecuture Notes in Computer Science, vol. 1567, pp. 356–389. Berlin (1999)

  • Wang, R., Li, X., Mukama, D.S.: On stochastic multi-species Lotka–Volterra ecosystems with regime switching. Discrete Contin. Dyn. Syst. Ser. B 22, 3499–3528 (2017)

    MathSciNet  MATH  Google Scholar 

  • Wu, F., Xu, Y.: Stochastic Lotka–Volterra population dynamics with infinite delay. SIAM J. Appl. Math. 70, 641–657 (2009)

    Article  MathSciNet  Google Scholar 

  • Wu, F., Yin, G., Wang, L.: Stability of a pure random delay system with two-time-scale Markovian switching. J. Differ. Equ. 253, 878–905 (2012a)

    Article  MathSciNet  Google Scholar 

  • Wu, F., Yin, G., Wang, L.: Moment exponential stability of random delay systems with two-time-scale Markovian switching. Nonlinear Anal. Real World Appl. 13, 2476–2490 (2012b)

    Article  MathSciNet  Google Scholar 

  • Yin, G., Zhang, Q.: Continuous-Time Markov Chains and Applications: A Singular Perturbation Approach. Springer, New York (1998)

    Book  Google Scholar 

  • Yin, G., Zhu, C.: Hybrid Switching Diffusions. Properties and Applications. Springer, New York (2010)

    Book  Google Scholar 

  • Yuan, C., Yin, G.: Stability of hybrid stochastic delay systems whose discrete components have a large state space: a two-time-scale approach. J. Math. Anal. Appl. 368, 103–119 (2010)

    Article  MathSciNet  Google Scholar 

  • Zhang, Q., Jiang, D.: The coexistence of a stochastic Lotka–Volterra model with two predators competing for one prey. Appl. Math. Comput. 269, 288–300 (2015)

    MathSciNet  MATH  Google Scholar 

  • Zhu, C., Yin, G.: On competitive Lotka–Volterra model in random environments. J. Math. Anal. Appl. 357, 154–170 (2009)

    Article  MathSciNet  Google Scholar 

  • Zu, L., Jiang, D., O’Regan, D.: Persistence and stationary distribution of a stochastic predator–prey model under regime switching. Discrete Contin. Dyn. Syst. 5, 2881–2897 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyue Li.

Additional information

Communicated by Paul Newton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xiaoyue Li was supported in part by the National Natural Science Foundation of China (No. 11971096), the Natural Science Foundation of Jilin Province (No. 20170101044JC), the Education Department of Jilin Province (No. JJKH20170904KJ), the Fundamental Research Funds for the Central Universities. George Yin was supported in part by the U.S. Army Research Office under Grant W911NF-19-1-0176.

A Appendix: Proof of Theorem 3.1

A Appendix: Proof of Theorem 3.1

To obtain the weak convergence, we first prove the tightness of \(\{(x^{\varepsilon ,N}(\cdot ),{\bar{\gamma }}^\varepsilon (\cdot ))\}.\)

Lemma A.1

\(\{(x^{\varepsilon ,N}(\cdot ),{\bar{\gamma }}^\varepsilon (\cdot ))\}\) is tight in \(D(\bar{\mathbb {R}}_+;{\mathbb {R}}^{r}_+\times {\bar{{\mathbb {S}}}})\).

Proof of Lemma A.1

Since \(\{ {\bar{\gamma }}^\varepsilon (\cdot )\}\) is tight, it suffices to consider the tightness of \(\{x^{\varepsilon ,N}(\cdot )\}\). Fix any \(T>0.\) By (3.1) and the boundedness of \(x^{\varepsilon ,N}(t)\), for any \(\delta >0,\)\(0\le t\le T\), and \(0<s\le \delta ,\) there is an \({{{\mathcal {F}}}}^\varepsilon _t\) measurable and bounded random variable \({\tilde{K}}(\omega )>0\) such that \({\mathbb {E}}_t^{\varepsilon }\Big |x^{\varepsilon ,N}(t+s)-x^{\varepsilon ,N}(t)\Big |^2 \le \tilde{K}(\omega ) \delta (\delta +1).\) Note that \(\displaystyle \lim _{\delta \rightarrow 0}\overline{\lim _{\varepsilon \rightarrow 0}} {\mathbb {E}}{\tilde{K}}(\omega )\delta (\delta +1)=0.\) The desired assertion follows by virtue of the tightness criterion (see, e.g., Kushner 1984, Theorem 3, p. 47).

Proof of Theorem 3.1

In view of Lemma A.1, \(\{(x^{\varepsilon ,N}(\cdot ),{\bar{\gamma }}^\varepsilon (\cdot ))\}\) is tight. By Prohorov’s theorem (see, e.g., Kushner 1984, Theorem 2, p. 28), we can extract a weakly convergent subsequence and denote the limit by \((x^{N}(\cdot ),{\bar{\gamma }}(\cdot ))\). For notational simplicity, still denote the subsequence by \(\{(x^{\varepsilon ,N}(\cdot ),{\bar{\gamma }}^\varepsilon (\cdot ))\}\). Thus by Skorohod imbedding (see, e.g., Kushner 1984, p. 29, Theorem 3), we may assume that \((x^{\varepsilon ,N}(\cdot ),{\bar{\gamma }}^\varepsilon (\cdot ))\) converges to \((x^N(\cdot ),{\bar{\gamma }}(\cdot ))\) a.s. with a slight abuse of notation.

To prove \((x^N(\cdot ),{\bar{\gamma }}(\cdot ))\) is the solution to the martingale problem with operator \({\mathcal {L}}^{N}\) in (3.3), it suffices to show that for each \(k\in \bar{\mathbb {S}}\), any \(g(\cdot , k)\in C^2_0( {\mathbb {R}}^r,\bar{\mathbb {R}}),\) and any positive integer \(\iota ,\)\(\phi _j(\cdot ,k)\in C_b({\mathbb {R}}^{r}_+;{\mathbb {R}})\) for \(j\le \iota ,\) for any \(t,s\ge 0,\) and any \(0\le t_j\le t\) for \(j\le \iota ,\)

$$\begin{aligned}&{\mathbb {E}}\left[ \prod _{j=1}^{\iota }\phi _j(x^{N}(t_j),{\bar{\gamma }}(t_j))\Big (g( x^{N}(t+s),{\bar{\gamma }}(t+s))-g(x^{N}(t),{\bar{\gamma }}(t))\right. \Big .\nonumber \\&\left. \quad -\int _{t}^{t+s}{\mathcal {L}}_x^Ng(x^{N}(u),{\bar{\gamma }}(u))\hbox {d}u \Big )\right] =0. \end{aligned}$$
(A.1)

Since \((x^{\varepsilon ,N}(\cdot ),{\bar{\gamma }}^\varepsilon (\cdot ))\) solves the martingale problem with operator (3.2), we have

$$\begin{aligned}&{\mathbb {E}}\left[ \prod _{j=1}^{\iota }\phi _j(x^{\varepsilon ,N}(t_j),{\bar{\gamma }}^\varepsilon (t_j) )\Big (g( x^{\varepsilon ,N}(t+s),{\bar{\gamma }}^\varepsilon (t+s))-g(x^{\varepsilon ,N}(t),{\bar{\gamma }}^\varepsilon (t))\right. \Big .\nonumber \\&\quad \left. \Big .-\int _{t}^{t+s}{\mathcal {L}}_x^{\varepsilon ,N}g(x^{\varepsilon ,N}(u),{\bar{\gamma }}^\varepsilon (u))\hbox {d}u \Big )\right] =0. \end{aligned}$$
(A.2)

It follows from weak convergence and Skorohod imbedding that

$$\begin{aligned}&{\mathbb {E}}\left[ \prod _{j=1}^{\iota }\phi _j(x^{\varepsilon ,N}(t_j),{\bar{\gamma }}^\varepsilon (t_j) )\Big (g( x^{\varepsilon ,N}(t+s),{\bar{\gamma }}^\varepsilon (t+s))-g(x^{\varepsilon ,N}(t),{\bar{\gamma }}^\varepsilon (t)) \Big )\right] \nonumber \\&\quad \rightarrow {\mathbb {E}}\left[ \prod _{j=1}^{\iota }\phi _j(x^{N}(t_j),{\bar{\gamma }}(t_j) )\Big (g( x^{N}(t+s),{\bar{\gamma }}(t+s))-g(x^{N}(t),{\bar{\gamma }}(t))\Big )\right] . \end{aligned}$$
(A.3)

Next, we deal with the integration term of the operator \({\mathcal {L}}_x^{\varepsilon ,N}\) in (A.2). From the definitions of \( \bar{b}_i(\cdot ),~{\bar{a}}_{ij}(\cdot ),\) and \(\bar{\sigma }_{i\iota }(\cdot )\bar{\sigma }_{j\iota }(\cdot )\) for \(1\le i,j\le r,\)\(1\le \iota \le d,\)

$$\begin{aligned}&{b_i}(\gamma ^\varepsilon (u))-\bar{b}_i({\bar{\gamma }}^\varepsilon (u))=\sum _{k=1}^{l}\sum _{v=1}^{m_k} {b_i}(s_{kv})\Big [I_{\{\gamma ^\varepsilon (u)=s_{kv}\}}-\pi ^{k}_{v}I_{\{\gamma ^\varepsilon (u)\in {\mathbb {S}}_k\}}\Big ], \end{aligned}$$
(A.4)
$$\begin{aligned}&a_{ij}(\gamma ^\varepsilon (u))-{\bar{a}}_{ij}({\bar{\gamma }}^\varepsilon (u))=\sum _{k=1}^{l}\sum _{v=1}^{m_k} a_{ij}(s_{kv})\Big [I_{\{\gamma ^\varepsilon (u)=s_{kv}\}}-\pi ^{k}_{v}I_{\{\gamma ^\varepsilon (u)\in {\mathbb {S}}_k\}}\Big ], \end{aligned}$$
(A.5)

and

$$\begin{aligned}&{\sigma }_{i\iota }(\gamma ^\varepsilon (u)){\sigma }_{j\iota }(\gamma ^\varepsilon (u))-\bar{\sigma }_{i\iota }({\bar{\gamma }}^\varepsilon (u))\bar{\sigma }_{j\iota }({\bar{\gamma }}^\varepsilon (u))\nonumber \\&\quad =\sum _{k=1}^{l}\sum _{v=1}^{m_k} {\sigma }_{i\iota }(s_{kv}){\sigma }_{j\iota }(s_{kv})\Big [I_{\{\gamma ^\varepsilon (u)=s_{kv}\}}-\pi ^{k}_{v}I_{\{\gamma ^\varepsilon (u)\in {\mathbb {S}}_k\}}\Big ]. \end{aligned}$$
(A.6)

From (Yin and Zhang 1998, p. 187), it is known that there is a constant \(k_0>0\) such that for any \(u\ge t\), \(1\le k\le l,\)\(1\le v\le m_k,\)

$$\begin{aligned} {\mathbb {E}}_t^{\varepsilon }\Big [I_{\{\gamma ^\varepsilon (u)=s_{kv}\}}-\pi ^{k}_{v}I_{\{\gamma ^\varepsilon (u)\in {\mathbb {S}}_k\}}\Big ]=O(\varepsilon +\hbox {e}^{-k_0(u-t)/\varepsilon }). \end{aligned}$$
(A.7)

(A.4)–(A.7) together with \((x^{\varepsilon ,N}(\cdot ),{\bar{\gamma }}^\varepsilon (\cdot )) \Rightarrow (x^N(\cdot ),{\bar{\gamma }}(\cdot ))\) implies

$$\begin{aligned}&{\mathbb {E}}\left[ \prod _{j=1}^{\iota }\phi _j(x^{\varepsilon ,N}(t_j),{\bar{\gamma }}^\varepsilon (t_j) ) \right. \nonumber \\&\left. \quad \int _{t}^{t+s} g_x(x^{\varepsilon ,N}(u),{\bar{\gamma }}^\varepsilon (u))\hbox { diag}(x_1^{\varepsilon ,N}(u),\dots ,x_r^{\varepsilon ,N}(u))\Big . q_N(x^{\varepsilon ,N}(u)){b}(\gamma ^\varepsilon (u))\hbox {d}u\right] \nonumber \\&\quad \rightarrow {\mathbb {E}}\left[ \prod _{j=1}^{\iota }\phi _j(x^{N}(t_j),{\bar{\gamma }}(t_j) ) \right. \nonumber \\&\left. \quad \int _{t}^{t+s} g_x(x^{N}(u),{\bar{\gamma }}(u))\hbox { diag}(x_1^{N}(u),\dots ,x_r^{N}(u))\Big . q_N(x^{N}(u))\bar{b}({\bar{\gamma }}(u))\hbox {d}u\right] . \end{aligned}$$
(A.8)

Similarly, we deduce that

$$\begin{aligned}&{\mathbb {E}}\left[ \prod _{j=1}^{\iota }\phi _j(x^{\varepsilon ,N}(t_j),{\bar{\gamma }}^\varepsilon (t_j) )\int _{t}^{t+s} g_x(x^{\varepsilon ,N}(u),{\bar{\gamma }}^\varepsilon (u))\hbox { diag}(x_1^{\varepsilon ,N}(u),\dots ,x_r^{\varepsilon ,N}(u))\right. \nonumber \\&\qquad \left. \times q_N(x^{\varepsilon ,N}(u)){A}(\gamma ^\varepsilon (u))x^{\varepsilon ,N}(u)\hbox {d}u\right] \nonumber \\&\quad \rightarrow {\mathbb {E}}\left[ \prod _{j=1}^{\iota }\phi _j(x^{N}(t_j),{\bar{\gamma }}(t_j) )\int _{t}^{t+s} g_x(x^{N}(u),{\bar{\gamma }}(u)) \hbox { diag}(x_1^{N}(u),\dots ,x_r^{N}(u))\right. \nonumber \\&\qquad \left. \times q_N(x^{N}(u))\bar{A}(\bar{g}(u)) x^{N}(u)\hbox {d}u\right] , \end{aligned}$$
(A.9)
$$\begin{aligned}&{\mathbb {E}}\left[ \prod _{j=1}^{\iota }\phi _j(x^{\varepsilon ,N}(t_j),{\bar{\gamma }}^\varepsilon (t_j) )\int _{t}^{t+s} \frac{1}{2}\hbox {trace}\left[ q_N(x^{\varepsilon ,N}(u))\sigma ^\mathrm{T}(\gamma ^\varepsilon (u))\hbox { diag}(x_1^{\varepsilon ,N}(u),\dots ,x_r^{\varepsilon ,N}(u)) \right. \right. \nonumber \\&\qquad \left. \left. \times g_{xx}(x^{\varepsilon ,N}(u),{\bar{\gamma }}^\varepsilon (u))\hbox { diag}(x_1^{\varepsilon ,N}(u),\dots ,x_r^{\varepsilon ,N}(u))\sigma (\gamma ^\varepsilon (u))\right] \hbox {d}u\right] \nonumber \\&\quad \rightarrow {\mathbb {E}}\left[ \prod _{j=1}^{\iota }\phi _j(x^{N}(t_j),{\bar{\gamma }}(t_j) )\int _{t}^{t+s} \frac{1}{2} \hbox {trace}\left[ q_N(x^{N}(u))\bar{\sigma }^\mathrm{T}({\bar{\gamma }}(u))\hbox { diag}(x_1^{N}(u),\dots ,x_r^{N}(u)) \right. \right. \nonumber \\&\qquad \left. \left. \times g_{xx}(x^{N}(u),{\bar{\gamma }}(u))\hbox { diag}(x_1^{N}(u),\dots ,x_r^{N}(u))\bar{\sigma }({\bar{\gamma }}(u))\right] \hbox {d}u\right] , \end{aligned}$$
(A.10)

and

$$\begin{aligned}&{\mathbb {E}}\left[ \prod _{j=1}^{\iota }\phi _j(x^{\varepsilon ,N}(t_j),{\bar{\gamma }}^\varepsilon (t_j) )\int _{t}^{t+s} {\hat{Q}} \bar{g}(x^{\varepsilon ,N}(u),\cdot )(\gamma ^\varepsilon (u))\hbox {d}u\right] \nonumber \\&\quad \rightarrow {\mathbb {E}}\left[ \prod _{j=1}^{\iota }\phi _j(x^{N}(t_j),{\bar{\gamma }}(t_j) )\int _{t}^{t+s} {\bar{Q}}g(x^{N}(u),\cdot )({\bar{\gamma }}(u))\hbox {d}u\right] . \end{aligned}$$
(A.11)

(A.8)–(A.11) together with (A.3) implies (A.1). Therefore, \((x^N(\cdot ),{\bar{\gamma }}(\cdot ))\) is the solution to the martingale problem with operator (3.3). By Assumption  1,

$$\begin{aligned} \lambda _{\max }^{+}(\bar{C}\bar{A}(k)+\bar{A}^\mathrm{T}(k)\bar{C})\le \bar{\lambda }(k):=\sum _{v=1}^{m_k}\pi ^k_v\lambda _{kv}\le 0,~~\forall k\in \bar{\mathbb {S}}, \end{aligned}$$
(A.12)

holds, which implies the solution of (3.4) with any given initial value is unique (see Li et al. 2009). Let \(\bar{x}(\cdot )\) be the solution of (3.4) given \(\bar{x}(0)=\bar{x}_0,{\bar{\gamma }}(0)={\bar{\gamma }}_0.\) Let \(P(\cdot )\) and \(P^N(\cdot )\) be the probability measures induced by \((\bar{x}(\cdot ),\bar{\gamma }(\cdot ))\) and \((x^N(\cdot ),\bar{\gamma }(\cdot ))\), respectively, on the Borel subsets of \(D(\bar{\mathbb {R}}_+;{\mathbb {R}}^{r}_+\times \bar{\mathbb {S}})\). Then, \(P(\cdot )\) is unique, and for any \(T>0,\)\(P(\cdot )\) must agree with \(P^N(\cdot )\) on all Borel subsets of the set of paths in \(D(\bar{\mathbb {R}}_+;{\mathbb {R}}^{r}_+\times \bar{\mathbb {S}})\) whose values are in \(\bar{B}_N(0)\times \bar{\mathbb {S}}\) for each \(t\le T.\) By \(\lim _{N\rightarrow \infty }P(\sup _{t\le T} |\bar{x}(t)|\le N)=1\) and \((x^{\varepsilon ,N}(\cdot ),\bar{\gamma }^{\varepsilon }(\cdot )) \Rightarrow (x^N(\cdot ),\bar{\gamma }(\cdot )),\) we have \((x^{\varepsilon }(\cdot ),\bar{\gamma }^{\varepsilon }(\cdot )) \Rightarrow (\bar{x}(\cdot ),\bar{\gamma }(\cdot )).\) Since the limit is unique, this result is independent of the chosen subsequence. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Li, X. & Yin, G. Asymptotic Properties of Multi-species Lotka–Volterra Models with Regime Switching Involving Weak and Strong Interactions. J Nonlinear Sci 30, 565–601 (2020). https://doi.org/10.1007/s00332-019-09583-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-019-09583-y

Keywords

Mathematics Subject Classification

Navigation