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Abstract: We derive time-averaged L1 estimates on Littlewood–Paley decomposi-
tions for linear advection-diffusion equations. For wave numbers close to the dis-
sipative cut-off, these estimates are consistent with Batchelor’s predictions on the
variance spectrum in passive scalar turbulent mixing.

1 Introduction

1.1 Model and main results

In this short paper, our aim is to derive bounds on the Littlewood–Paley projections
of solutions to linear advection-diffusion equations with rough velocity fields. These
equations are of the form

∂tθ + u · ∇θ − κ∆θ = 0, (1)

where θ = θ(t, x) ∈ R is a tracer (or “passive scalar”), u = u(t, x) ∈ Rd is a given
divergence-free velocity field,

∇ · u = 0, (2)

and κ is the positive diffusivity constant. We neglect any boundary effects by suppos-
ing that the evolution takes place in a box [0, L]d with periodic boundary conditions.
We equip the problem with an initial condition, that is,

θ(0, ·) = θ0.

For simplicity, we shall assume that the spatial integral of the square of the
fractional velocity gradient ∇su is constant in time, or equivalently,

〈|∇su(t)|2〉1/2 = Gs, (3)
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for some constant Gs, where 〈·〉 = L−d
∫

[0,L]d
· dx denotes the spatial average, and

s ∈ [0, 1]. Velocity constraints of this form are natural in industrial processes, where
G2

0 is the kinetic energy and G2
1 the power or viscous dissipation rate. The fractional

Sobolev norm on the left-hand side is defined on the Fourier level by

〈|∇su|2〉 =
∑

m∈ 2π
L
Z

d

|m|2s|(Fu)(m)|2,

where Fu is the Fourier transform of u, whose definition will be recalled in (4) below.
Clearly, mild regularity assumptions on u (in general much weaker than those

in (3)) and the periodic boundary conditions imply that (1) preserves the spatial
average, i.e., d

dt
〈θ〉 = 0. We may thus choose θ with vanishing spatial average without

losing any generality. Likewise, a Galilean transformation allows the restriction to
mean-zero velocity fields, that is, 〈u〉 = 0.

Before stating our main result, we shall introduce the Littlewood–Paley decom-
position of our scalar function θ, whose time-dependency we neglect for a moment.
We start by recalling the Fourier transform.

The Fourier transform Fζ of an integrable periodic function ζ on [0, L]d is defined
by

(Fζ)(m) = −

∫

[0,L]d
ζ(x)e−im·x dx for m ∈

2π

L
Z

d. (4)

In this context, m is usually referred to as wave number. The Fourier transform Fφ
of a Schwartz function φ on Rd is defined by

(Fφ)(ξ) =
1

(2π)d/2

∫

R

d

φ(x)e−iξ·x dx for ξ ∈ Rd.

Here, ξ is the frequency.
We now select a family of Schwartz functions {φℓ}ℓ∈Z defined on Rd such that

their Fourier transforms satisfy

(Fφ0)(ξ) 6= 0 only if |ξ| ∈
(

2−1, 2
)

, (5)

(Fφℓ)(ξ) = (Fφ0)(2
−ℓξ) for all ξ and ℓ, (6)

∑

ℓ∈Z

(Fφℓ)(ξ) = 1 for any ξ 6= 0. (7)

The Littlewood–Paley decomposition {θℓ}ℓ∈Z of θ is then defined by

θℓ := φℓ ∗ θ,

where the operation “∗” is the convolution in space. We refer to θℓ as the Littlewood–
Paley projection of θ at frequency |ξ| ∼ 2ℓ.

Our main result provides an L1 estimate for the Littlewood–Paley projections
of θ. It involves weighted long-time averages 〈〈·〉〉ϕ = lim supT→∞

1
T

∫ T

0
〈·〉 eϕ(t)dt for

some positive increasing function ϕ = ϕ(t).
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Theorem 1. For any positive increasing function ϕ = ϕ(t) it holds that

〈〈|θℓ|〉〉ϕ . κ−1

(

2−(s+2)ℓ〈|∇su|2〉1/2 + 2−3ℓ‖
dϕ

dt
‖∞

)

〈〈|∇θ|2〉1/2〉ϕ. (8)

The estimate gives a bound on the L1 norm of the Littlewood–Paley projections
of the tracer variable in terms of the velocity gradient and the average dissipation
rate. It is obvious that this estimate is optimal in the case of no stirring, u = 0.
Whether this estimate is mathematically sharp for certain no-trivial mixing flows
is not clear to the author. In the following subsection, however, we will comment
on the (weak) significance of this estimate for the mathematical theory of passive
tracer turbulent mixing.

We have chosen the L1 norm of the Littlewood–Paley projections over other
Lebesgue norms in order to be able to estimate the nonlinearity (or, more precisely,
the commutator of advection and Littlewood–Paley projection) against the L2 norms
of the velocity and the dissipation, which have both physical meaning. Moreover,
the inclusion of time weights is necessary in order to compensate the dissipation to
zero in the long-time average. This can be already seen on the level of the purely
diffusive equation, where (Fθ)(t, k) = e−κ|k|2t(Fθ0)(k) for every wavenumber k. Here
ϕ(t) = κ|k0|

2t for the smallest relevant wavenumber k0 would be an appropriate
choice.

We remark that our analysis of Littlewood–Paley projections is modelled after
existing similar estimates in the context of the two- and three-dimensional Navier–
Stokes equations by Constantin [5] and Otto and Ramos [22] and for the temperature
distribution in Rayleigh–Bénard convection by the author [23].

1.2 Physical interpretation

The linear advection-diffusion equation (1) describes the evolution of a scalar quan-
tity θ that is simultaneously transported by the flow of the vector field u and diffused
at rate κ. We interpret the vector field u as the velocity of an incompressible fluid,
cf. (2), and θ is a tracer marker or a physical quantity.

If the flow is sufficiently turbulent, mixing of trace markers and physical quan-
tities is a ubiquitous phenomenon. It can be observed in various areas of fluid
dynamics, for instance, the mixing of saltwater and fresh water in estuaries or the
dispersion of pollutants in the earth’s atmosphere. Besides their relevance in nature,
mixing flows are of fundamental importance in numerous applications in industrial
process engineering. Their theoretical study has been a major focus of research for
many years; it has been frequently reviewed, see, e.g., [21, 25, 27]. Flow mediated
mixing is frequently referred to as stirring.

In the past years, fluid mixing attracted a remarkable attention by the math-
ematical fluid dynamics communities and beyond. The majority of the rigorous
works, however, addressed the purely advective model, for instance, with a focus on
absolute lower bounds on mixing rates [8, 17, 18, 24, 13], optimal mixing strategies
[17, 18, 1, 2, 28], or universal mixers [11]. In the diffusive setting, it was shown that
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mixing flows enhance diffusive relaxation [6, 4, 7], while diffusion itself slows down
the mixing rates [19].

In 1959, Batchelor analyzed the variance transfer from lower to higher frequencies
that accompanies the creation of gradients of θ by the turbulent fluid motion [3].
He predicts that for wave numbers in the so-called advective subrange k ≪ kB, the
variance spectrum scales as

E(k) ∼ χτk−1. (9)

The advective subrange is the part of the equilibrium range for which the tracer’s
Fourier components are (thought to be) independent of molecular diffusion. The
Batchelor wave number kB is inversely proportional to the Batchelor dissipation scale
at which stirring and diffusion balance, and it determines the large time decay rate of
the tracer variance. To be more specific, if, in a typical mixing scenario, the smallest
length scales are reduced to the order of the Batchelor scale, the subsequent variance
decay is essentially governed by the slowest diffusion rate, namely e−2κk2

B
t. This

decay rate has been obtained for shear flows in [4] (modulo logarithmic corrections).
We will now show that our main result, Theorem 1, is consistent with the decay

of the variance spectrum (9) for wave numbers that are of the order of the Batchelor
wave number kB, if the normalizing factor eϕ is chosen in such a way that it bal-
ances the variance decay rate e−2κk2

B
t. This rigorous result thus weakly connects a

hypothesis on the large time mixing rate with the scaling of the variance spectrum.
The interpretation applies to the case s = 1 only.

Let us define the time-averaged Littlewood–Paley variance spectrum at frequency
k as

ELP
ϕ (k) :=

〈〈|θℓ|〉〉
2
ϕ

k
if k ∈ [2ℓ−1, 2ℓ). (10)

Notice that this spectrum is sort of a (time-averaged) L1 version of the traditional
variance spectrum E(k), which can be defined as

E(k) =

∫

|m|=k

|(Fθ)(m)|2 dS(m).

The variance decay rate is given by χ = − d
dt
〈θ2〉 = κ〈|∇θ|2〉. As we expect for

large times that the variance decays exponentially fast with rate κk2B, we shall
time-average χ and consider χϕ = 〈χ1/2〉2ϕ with dϕ/dt . κk2B. Finally, in order to

define the stirring time scale, we set τ = G−1
1 = 〈|∇u|2〉−1/2. Taking into account

the constraint (3) on the velocity field, the Batchelor wave number kB is given by
kB = (G1/κ)

1/2. Notice that for s = 1, the stirring and diffusion time scales are of
the same order.

With these notations, estimate (8) can be rewritten as

ELP
ϕ (k) .

[

(

kB
k

)4+2s

+

(

kB
k

)6
]

χϕτk
−1,

where ϕ(t) ≈ κk2Bt. Arguing as in [5, 22], this implies that

ELP
ϕ (k) . χϕτk

−1,
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for every k ∈ [βkB, β
−1kB] with β < 1 and a non-displayed constant dependent on

β. Therefore, one side of (9) holds in the last decades before the dissipative cut-off,
if the variance spectrum is defined as in (10). For the most interesting range of wave
numbers less than kB, no statement can be derived.

The scaling of the Batchelor spectrum (9) is the passive scalar mixing analogue of
Kolmogoroff’s k−5/3 law for the decay of the energy spectrum in the inertial subrange
in turbulent flows [15, 20, 12]. In fact, in mixing, the creation of filaments by the
stirring velocity field can be interpreted as the transfer of tracer variance from small
to large wave numbers, analogous to the energy transfer in turbulent flows in the
celebrated K41 theory. It is, however, by now commonly believed that the −5/3
power law is not exact. Responsible for deviations are intermittency effects which
seem to alter the numerical value of this exponent [12, 26, 14, 9]. Nonetheless, there
are attempts to approach the scaling of the energy spectrum rigorously, see, e.g.
[22].

In contrast, Batchelor’s −1 power law seems to be rather sturdy; even strong
intermittency effects leave the law unchanged [16]. Yet, the literature on this topic
reports quite controversial experimental and computational results, see, for instance,
[10] and the discussion therein.

We turn now to the proof of Theorem 1.

2 Proofs

It will be necessary to localize θ on an even finer level (than θℓ) in Fourier space. For
this purpose, we cover the annulus {ξ ∈ Rd : |ξ| ∈ (2ℓ−1, 2ℓ+1)} by a finite family of
balls {Bσ2ℓ(ξj)}j=1,...,J , where σ is a small positive number that will be fixed later,
and denote by {ψℓ,j}j=1,...,J a family of Schwartz functions whose Fourier transforms
form a partition of unity subordinate to this covering. Notice that we can construct
the ψℓ,j’s by scaling analogously to (6), namely

(Fψℓ,j(ξ) = (Fψ0,j)(2
−ℓξ) for all ξ, ℓ, and j. (11)

We then introduce a refinement of φℓ by setting φℓ,j = φℓ ∗ ψℓ,j and define

θℓ,j = θ ∗ φℓ,j = θℓ ∗ ψℓ,j.

Our first result is a scale-by-scale energy estimate.

Lemma 1. There exists a universal constant C > 0 such that

d

dt
〈|θℓ,j|〉+

22ℓκ

C
〈|θℓ,j|〉 ≤ 〈|[u·, φℓ,j∗]∇θ|〉, (12)

where [u·, φℓ,j∗] is the commutator of the operations “multiply by u” and “convolute
with φℓ,j”.

Proof. We start by localizing the advection-diffusion equation (1) in Fourier space
in the balls Bσ2ℓ(ξj),

∂tθℓ,j + u · ∇θℓ,j − κ∆θℓ,j = [u·, φℓ,j∗]∇θ.
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Here, we have used the fact that temporal and spatial derivatives commute with the
operation φℓ,j∗. Let A(s) denote a smooth approximation of the modulus function
s 7→ |s|. An application of the chain rule then yields

∂tA(θℓ,j) + u · ∇A(θℓ,j)− κA′(θℓ,j)∆θℓ,j = A′(θℓ,j)[u·, φℓ,j∗]∇θ.

Thanks to the periodic boundary conditions and the fluid’s incompressibility en-
coded in (2), the advection term on the left-hand side drops out when averaged over
the cell [0, L]d,

∂t〈A(θℓ,j)〉 − κ〈A′(θℓ,j)∆θℓ,j〉 = 〈A′(θℓ,j)[u·, φℓ,j∗]∇θ〉.

(Notice that the original advection term still survives in the commutator term.) We
will now carry out the approximation by choosing A(s) = |s|, which can be realized
on a distributional level. We then obtain the estimate

∂t〈|θℓ,j|〉 − κ〈sign (θℓ,j)∆θℓ,j〉 ≤ 〈|[u·, φℓ,j∗]∇θ|〉.

For the statement of the lemma, it remains to prove that

− 〈sign (θℓ,j)∆θℓ,j〉 & 22ℓ〈|θℓ,j|〉. (13)

For this purpose, we select a Schwartz function ζ whose Fourier transform is con-
stantly 1 on the unit ball, (Fζ)(ξ) = 1 for |ξ| ≤ 1. We then define

ζℓ,j(x) = (2ℓσ)dζ(2ℓσx)eiξj ·x

and observe that (Fζℓ,j)(ξ) = (Fζ)
(

ξ−ξj
2ℓσ

)

= 1 for ξ ∈ B2ℓσ(ξj). As a consequence,

ζℓ,j leaves θℓ,j invariant under convolution, θℓ,j = θℓ,j ∗ ζℓ,j. It follows that

∆θℓ,j + |ξj|
2θℓ,j =

(

∆ζℓ,j + |ξj|
2ζℓ,j

)

∗ θℓ,j ,

and application of Young’s convolution estimate then yields

〈|∆θℓ,j + |ξj|
2θℓ,j|〉 ≤ 〈|θℓ,j|〉

∫

R

d

|∆ζℓ,j + |ξj|
2ζℓ,j| dx. (14)

We claim that
∫

R

d

|∆ζℓ,j + |ξj|
2ζℓ,j| dx . 22ℓσ. (15)

Indeed, by a direct computation we find that

(

∆ζℓ,j + |ξj|
2ζℓ,j

)

(x) =
(

(2ℓσ)d+2(∆ζ)(2ℓσx) + 2(2ℓσ)d+1iξj · (∇ζ)(2
ℓσx)

)

eiξj ·x,

and thus, integration and the change of variables y = 2ℓσx yield

∫

R

d

|∆ζℓ,j + |ξj|
2ζℓ,j| dx . 22ℓ(σ2 + σ)

∫

R

d

|∆ζ |+ |∇ζ | dy.
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Because ζ is a Schwartz function and σ small (say, smaller than 1), we deduce (15).
It remains to plug (15) into (14) and conclude that

−〈sign (θℓ,j)∆θℓ,j〉 = 〈sign (θℓ,j)|ξj|
2θℓ,j〉 − 〈sign (θℓ,j)

(

∆θℓ,j + |ξj|
2θℓ,j

)

〉

≥

(

|ξj|
2 −

22ℓσ

C

)

〈|θℓ,j|〉,

for some universal constant C > 0. Using |ξj| ≥ 2ℓ−1 and choosing σ sufficiently
small implies (13) as desired. �

The left-hand side in the energy estimate (12) is further bounded with the help
of the following auxiliary convolution estimate.

Lemma 2. Suppose that v = v(x) and q = q(x) are [0, L]d periodic functions with
〈|∇sv|2〉, 〈q2〉 <∞ and φ = φ(y) is a Schwartz function on Rd, then

〈|[v, φ∗]q|〉 .

(
∫

R

d

|φ(y)| dy

)1−s (∫

R

d

|φ(y)||y| dy

)s

〈|∇sv|2〉1/2〈q2〉1/2.

Proof. Notice first that it is enough to consider the pivotal cases s = 0 and s = 1.
The general case can be obtained via interpolation. Indeed, for v ∈ Hs and an
arbitrary M > 0, we consider the decomposition v = vM0 + vM1 with

(FvM0 )(m) =

{

(Fv)(m) if |m| > M,

0 otherwise.

Then vM0 ∈ L2 and vM1 ∈ H1. If the statement is proved for s = 0 and s = 1, then

〈|[v, φ∗]q|〉 ≤ 〈|[vM0 , φ∗]q|〉+ 〈|[vM1 , φ∗]q|〉

≤

(
∫

R

d

|φ(y)| dy〈|vM0 |2〉1/2 +

∫

R

d

|φ(y)||y| dy〈|∇vM1 |2〉1/2
)

〈q2〉1/2.

From the definition of vM0 and vM1 it immediately follows that 〈|vM0 |2〉1/2 ≤M−s〈|∇sv|2〉1/2

and 〈|∇vM1 |2〉1/2 ≤M1−s〈|∇sv|2〉1/2 , and thus

〈|[v, φ∗]q|〉 ≤

(

M−s

∫

R

d

|φ(y)| dy +M1−s

∫

R

d

|φ(y)||y| dy

)

〈|∇sv|2〉1/2〈q2〉1/2.

Minimizing in M yields the desired result.
We now turn to the estimate for s = 1. The statement for the remaining case

s = 0 is actually simpler and shall be omitted here. We start with a pointwise
statement. For any x, it holds that

[v, φ∗]q(x) =

∫

R

d

φ(y)(v(x)− v(x− y))q(x− y) dy

=

∫ 1

0

∫

R

d

φ(y)y · (∇v)(x− sy)q(x− y) dyds.
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Averaging in x and successively applying Fubini’s theorem and Hölder’s inequality
yield

〈|[v, φ∗]q|〉 ≤

∫ 1

0

∫

R

d

−

∫

[0,L]d
|φ(y)||∇v(x− sy)|y||q(x− y)| dxdyds

=

∫ 1

0

∫

R

d

|φ(y)||y|

(

−

∫

[0,L]d
|∇u(x− sy)|2 dx

)1/2(

−

∫

[0,L]d
q(x− y)2 dx

)1/2

dyds.

It only remains to invoke the periodicity in x to conclude the statement of the
lemma. �

Proposition 1. There exists a universal constant C > 0 such that

d

dt
〈|θℓ,j|〉+

22ℓκ

C
〈|θℓ,j|〉 ≤ C2−sℓ〈|∇su|2〉1/2〈|∇θ|2〉1/2. (16)

Proof. The statement is an immediate consequence of the previous two lemmas
together with the observation that

∫

R

d

|φℓ,j(y)||y|
r dy . 2−rℓ (17)

for any real r. Our argument for (17) relies on the scaling assumptions in (6) and
(11). Indeed, the latter imply that (Fφℓ,j)(ξ) = (Fφ0)(2

−ℓξ)(Fψ0,j)(2
−ℓξ), so that

via a change of variables,

φℓ,j(y) =
1

(2π)d/2

∫

R

d

eiξ·y(Fφ0)(2
−ℓξ)(Fψ0,j)(2

−ℓξ) dξ

=
2dℓ

(2π)d/2

∫

R

d

eiη·2
ℓy(Fφ0)(η)(Fψ0,j)(η) dη

= 2dℓ(φ0 ∗ ψ0,j)(2
ℓy).

Therefore, applying a change of variables in real coordinates, we find that
∫

R

d

|φℓ,j(y)||y|
r dy = 2dℓ

∫

R

d

|(φ0 ∗ ψ0,j)(2
ℓy)||y|r dy

= 2−rℓ

∫

R

d

|(φ0 ∗ ψ0,j)(z)||z|
r dz.

The integral is independent of ℓ and bounded by the virtue of the decay properties
of Schwartz functions. This concludes the proof. �

We are now in the position to prove Theorem 1.

Proof of Theorem 1. Our starting point is the differential inequality derived in Propo-
sition 1 above. We smuggle the factor eϕ into (16),

d

dt
(eϕ〈|θℓ,j|〉) +

22ℓκeϕ

C
〈|θℓ,j|〉 ≤ C2−sℓeϕ〈|∇su|2〉1/2〈|∇θ|2〉1/2 +

dϕ

dt
eϕ〈|θℓ,j|〉,
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and integrate in time over the interval [0, T ],

eϕ(T )〈|θℓ,j(T )|〉+
22ℓκ

C

∫ T

0

eϕ〈|θℓ,j|〉 dt

≤ C2−sℓ〈|∇su|2〉1/2
∫ T

0

eϕ〈|∇θ|2〉1/2 dt+

∫ T

0

dϕ

dt
eϕ〈|θℓ,j|〉 dt+ eϕ(0)〈|θℓ,j(0)|〉.

Recall that we have chosen u with a fixed budget, so that 〈|∇su|2〉 is independent
of time. Dropping the nonnegative first term on the left-hand side, passing to the
long-time average and dividing by 22ℓ, we furthermore obtain

κ〈〈|θℓ,j|〉〉ϕ . 2−(s+2)ℓ〈|∇su|2〉1/2〈〈|∇θ|2〉1/2〉ϕ + 2−2ℓ‖
dϕ

dt
‖∞〈〈|θℓ,j|〉〉ϕ. (18)

Observe now that
〈|θℓ,j|〉 . 2−ℓ〈|∇θℓ,j|〉, (19)

and
〈|∇θℓ,j|〉 . 〈|∇θ|2〉1/2. (20)

The second estimate simply follows from Young’s convolution estimate and Jensen’s
inequality,

〈|∇θℓ,j|〉 ≤

(
∫

R

d

|φℓ,j| dy

)

〈|∇θ|〉 . 〈|∇θ|〉 ≤ 〈|∇θ|2〉1/2,

where, as in the proof of Proposition 1,
∫

R

d

|φℓ,j| dy =

∫

R

d

|φ0,j| dz ∼ 1

by (6) and because φ0,j is a Schwartz function.
For the first estimate, (19), we notice that in view of the scaling property (6), it

is enough to establish the statement of ℓ = 0. Due to the dyadic partition of unity of
the frequency space in (5)–(7), it holds that Fφ−1 +Fφ0 +Fφ1 = 1 in the support
of Fφ0. As a consequence, φ−1 + φ0 + φ1 leaves φ0,j invariant under convolution.
Therefore, for any k ∈ {1, . . . .d},

iξk(Fφ0,j)(ξ) = (F∂xk
φ0,j)(ξ) =

∑

ℓ=−1,0,1

(Fφℓ)(ξ)(F∂xk
φ0,j)(ξ),

and thus

(Fφ0,j)(ξ) =
∑

ℓ=−1,0,1

ξk
i|ξk|2

(Fφℓ)(ξ)(F∂xk
φ0,j)(ξ).

Recall that (Fφℓ)(0) = 0 by the virtue of (5), (6). We now invoke Jensen’s convo-
lution estimate and find

〈|φ0,j|〉 ≤ 〈|∂kφ0,j|〉
∑

ℓ=−1,0,1

∫

R

d

|F−1

(

ξ 7→
ξk

i|ξk|2
(Fφℓ)(ξ)

)

| dx

. 〈|∂kφ0,j|〉,

where, in the second inequality, we have again used the fact that φℓ is a Schwartz
function. �
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