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Abstract
We present a method for both cross-estimation and iterated time series prediction of
spatio-temporal dynamics based on local modelling and dimension reduction tech-
niques. Assuming homogeneity of the underlying dynamics, we construct delay
coordinates of local states and then further reduce their dimensionality through Princi-
ple Component Analysis. The prediction uses nearest neighbour methods in the space
of dimension reduced states to either cross-estimate or iteratively predict the future
of a given frame. The effectiveness of this approach is shown for (noisy) data from a
(cubic) Barkley model, the Bueno-Orovio–Cherry–Fenton model, and the Kuramoto–
Sivashinsky model.

Keywords Data driven modelling · Nearest neighbours prediction · Spatio-temporal
chaos

Mathematics Subject Classification 37N99

1 Introduction

In many experiments, some variables of the system are more easily observable than
others. If the underlyingdynamics is deterministic, in general, the observable of interest
is nonlinearly related to other variables of the system which might be more accessible.
In such cases, one may try to estimate any observable which is difficult to measure
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from time series of those variables which are at one’s disposal. Another task frequently
encountered with observed time series is forecasting the dynamical evolution of the
system and the time series. For both tasks, time series prediction methods have been
devised using delay coordinates (Packard et al. 1980; Takens 1981; Sauer et al. 1991;
Kantz and Schreiber 2004; Abarbanel 1996; Abarbanel et al. 1994; Bradley and Kantz
2015) and approximations of the flow in delay coordinate space, for example, using
nearest neighbours methods (also called local modelling) (Farmer and Sidorowich
1987; Casdagli et al. 1992; Atkeson et al. 1997; Kugiumtzis et al. 1998; Mc Names
et al. 1999; Engster and Parlitz 2006).

Here,wepresent an approach for cross-estimation and iterated time series prediction
for multivariate time series from extended spatio-temporal systems which is based on
(spatially) local delay coordinatemaps, linear (PCA) dimension reduction, and nearest
neighbour methods for local modelling.

Local delay coordinate maps (Parlitz 1998; Parlitz and Merkwirth 2000; Mandelj
et al. 2001; Coca and Billings 2001; Mandelj et al. 2004; Guo and Billings 2007) are
motivated by the fact that it often is impractical to predict the behaviour of systems
with a large spatial extent all at once. If instead one combines a spatial and temporal
neighbourhood around each measurement to find a description of the local system
state, it becomes possible to make predictions for each point in space independently.
For performing cross-estimation or prediction based on local states, one can either
use nearest neighbours methods (Parlitz and Merkwirth 2000) or employ some other
black-box modelling approach like, for example, echo state machines (Pathak et al.
2018; Zimmermann and Parlitz 2018). In the following, we shall use local modelling
by selecting for each local delay coordinate vector similar vectors from a training data
set whose relations to other observables and/or future temporal evolutions are known
and can be exploited for cross-estimation or time series prediction.

Successfulmodelling of high-dimensional dynamics in extended systems, however,
requires very large embedding dimensions which is a major challenge in particular
for nearest neighbour methods. Therefore, a crucial point in making the conceptually
simple nearest neighbours algorithmperformant is dimension reduction. As ameans of
dimension reduction to find lower a dimensional representation of the local states, we
employ Principle ComponentAnalysis (PCA)which turns out to improve performance
in particular for noisy data.

2 Predicting Spatio-temporal Time Series

In this section, we shall introduce the main concepts for predicting spatio-temporal
time series, including local delay coordinate maps, linear dimension reduction, and
nearest neighbours methods for local modelling of the dynamical evolution or any
other relation between observed time series.

2.1 Local Modelling

Let xt be a state of some dynamical system evolving in time t and let us assume that
the dynamical equations generating the flow in state space are unknown, but only a set
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S of M states xtm is available, for which also future values xtm+T are known (due to
previous measurements, for example). This data set S can be used to predict the future
value xt+T of a given state xt by selecting the k nearest neighbours xti (i ∈ {1, ..., M})
of xt in S and using their future values xti+T for approximating xt+T , for example,
by (distance weighted) averaging. In the following numerical examples, we use the
average with weights

ωi =
(
1.1 −

(
di

dmax

)2
)4

and ωi = 1 if dmax = 0

where di are the euclidean distances of the k neighbours xti to the query xt and dmax

is their maximum. The prediction is then given by

x̂t+T =
∑k

i=1 ωi xti+T∑k
i=1 ωi

. (1)

In most practical applications of this kind of local nearest neighbour modelling, the
required states are reconstructed fromameasured time series using the concept of delay
coordinates (to be introduced in the next section). Local modelling in delay coordinate
space is a powerful tool for purely data-driven time series prediction (Farmer and
Sidorowich 1987; Casdagli et al. 1992; Atkeson et al. 1997; Kugiumtzis et al. 1998;
Mc Names et al. 1999; Engster and Parlitz 2006). Its main ingredients are a proper
state-space representation of themeasured time series, fast nearest neighbour searches,
and local models such as low order polynomials which can accurately interpolate and
predict the (nonlinear) relation between (reconstructed) states and target values.

2.2 Delay Coordinates

The most important part of time series-based local modelling is the representation
of data, i.e. proper reconstruction of states from data. Typically this representation is
found utilizing delay coordinates and Takens’ Embedding Theorem (Packard et al.
1980; Takens 1981; Sauer et al. 1991; Kantz and Schreiber 2004; Abarbanel 1996;
Bradley and Kantz 2015) such that a scalar time series {st }with t ∈ N is reconstructed
to state vectors

xt = (st−γ τ , . . . , st−τ , st ) ∈ R
γ+1

by includingγ pastmeasurements each separatedby τ time steps.1 These reconstructed
state vectors xt can then, for example, be used for predicting the (future) time series
value st+1 using the nearest neighbours method discussed in the previous Sect. 2.1.
To do so, a training set of reconstructed states is generated whose (short term) future
evolution one time step ahead is known. Then k nearest neighbours of the current
(reference) state xt are selected from this training set and the corresponding time
series values one step ahead are used to estimate st+1.

1 Here and in the following, we assume that the time series is sampled with some sampling time tsample
and integers t are used as time index.
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For multivariate time series {st }, one can do the same for each of the components
si,t resulting in d(γ + 1) dimensional state vectors

xt = (s1,t−γ τ , . . . , s1,t , . . . , sd,t−γ τ , . . . , sd,t ).

where d is the number of observables.

2.3 Spatial Embedding

In principle, delay embedding could also be employed to reconstruct (global) states of
high-dimensional spatially extended systems using multivariate time series sampled
at many spatial locations. Such global state vectors are (and have to be) very high
dimensional, in particular, for systems exhibiting extensive chaos where the attractor
dimension increaseswith size of the domain of the system [see for example Lilienkamp
et al. (2017) and references therein]. The runtime of nearest neighbour searches, how-
ever, and particularly thememory usage of such reconstructions grows rapidlywith the
dimension of the reconstructed global states. Furthermore, and even more important
is the fact that (with a finite number of data) the density of points becomes very low
and (Euclidean) distances between points tend to be all the same. These issues are also
called “curse of dimensionality” and to avoid them it has been proposed (Parlitz 1998;
Parlitz and Merkwirth 2000; Mandelj et al. 2001; Coca and Billings 2001; Mandelj
et al. 2004; Guo and Billings 2007) to reconstruct (relatively) low-dimensional spa-
tially local states and to use them to predict spatially extended systems point by point
instead of the whole global state at once. This approach is motivated by the fact that
most spatially extended physical systems posses a finite speed at which information
travels. Therefore, the future value of any of the variables depends solely on its past
and its spatial neighbours.2 Instead of trying to describe the state of the whole system
in one vector, we limit ourselves to include small neighbourhoods of all points that
carry enough information to predict one point one time step into the future. As an
additional benefit, the unfeasibly large embedding dimension that would result from
embedding the entire space into a single state is greatly reduced. The idea of local
delay coordinate spaces was first applied to spatially one-dimensional systems (Parlitz
1998; Parlitz and Merkwirth 2000; Mandelj et al. 2001) and was used, for example,
to anticipate extreme events in extended excitable systems (Bialonski et al. 2015).

In the following, we will present the embedding procedure for spatio-temporal time
series represented by ut,α , where t denotes time and α a point in space. For 2D space,
α takes the values α = (i, j) ∀1 ≤ i ≤ Nx , 1 ≤ j ≤ Ny .

In the most general case, such a local delay coordinate vector could consist of
arbitrary combinations of neighbours in all directions of space and time. For practical
purposes, we will limit ourselves to a certain set of parameters to describe which
neighbours will be included into a local delay coordinate map. We parameterize the
map with the number γ of past time steps and their respective temporal delay (or time
lag) τ . All neighbouring grid points in space that are within the radius r , referring
to the Euclidean distances in a unit grid, will be included as well. For each included

2 The situation is different, if additional long-range connections exist linking remote locations.
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(a) (b) (c)

r=1 r=1.5

Fig. 1 Visualization of spatial regions included in a local delay coordinate vector. a, b illustrate the size of
neighbourhood for radii r = 1 and r = 1.5, respectively, where all points within the circle spanned by r are
included in the vector. c illustrates how data from spatial neighbours at different time steps are combined
to predict a future value of the data array (indicated by the pixel framed in red) (Color figure online)

time step, this amounts to dr = |{α ∈ Z
2 : ||α||2 ≤ r}| points. The resulting shape of

the map is comparable to a cylinder in 2+1 dimensional space–time with dimension
DE = (γ + 1)dr . To make this clearer, a visualization of the spatially local delay
coordinate vector in a two-dimensional system is displayed in Fig. 1 for different
radii r .

In the following, we shall assume that the dynamics underlying the observed spatio-
temporal time series is invariant with respect to translations, i.e. that the system is
homogeneous. In this case, local delay coordinate vectors fromdifferent points in space
can be combined to a single training set providing the database for cross-estimation
or time series prediction as will be discussed in more detail in Sect. 2.4. However,
even if the dynamical rules are the same for all locations, special care needs to be
taken at the boundaries. This becomes obvious when trying to include non-existent
neighbours from outside the grid. For periodic boundary conditions, the canonical
solution is to wrap around at the edges, but for constant boundaries, the solution is
not so obvious. In many cases, the effective dynamics near the boundary may also
differ from dynamics far from it. It is therefore desirable to treat boundaries separately
during nearest neighbour predictions. A solution proposed in Parlitz and Merkwirth
(2000) is to artificially enlarge the domain of the system by a boundary region with
chosen constant value. The missing spatial neighbours outside the original domain are
thus replaced by the constant when generating the local delay coordinate vectors. If the
chosen constant is significantly larger than typical values of the internal dynamics, the
state vectors from the boundary fill regions in delay coordinate space isolated from
state vectors of internal dynamics. This has the desired effect as nearest neighbour
searches will always find boundary states when given a boundary state as query and
similarly for internal states.

2.4 Dimension Reduction

The feasibility of any nearest neighbour search depends heavily on the memory con-
sumption because N points of dimension DE = (γ +1)dr need to be stored inmemory.
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A crucial part of our algorithm is therefore about creating a proper low-dimensional
representation. Limiting the range of parameters γ and r to produce low-dimensional
states is a severe restriction and gives poor predictions for the systems that are used
in the following. Therefore, instead of choosing a small dimension for the local delay
coordinatemap from the start, we propose to perform somemeans of dimension reduc-
tion on the resulting local delay coordinate vectors. For this task, we use Principal
Component Analysis (PCA) as it is a straight-forward standard technique for (linear)
dimension reduction, where the vectors xt are projected onto the eigenvectors of the
covariance matrix corresponding to the largest eigenvalues (Gareth et al. 2015). In the
field of nonlinear time series analysis, PCA has first been used by Broomhead and
King (1986) who suggested to use dimension reduction applied to high-dimensional
delay reconstructions with time series densely sampled in time.

Let {xn} be the set of all N local delay coordinate vectors xn = (xn1 , . . . , xnDE
) ∈

R
DE (at different times t and locations α, assuming stationary and spatially homo-

geneous dynamical rules). To perform PCA first mean values, x̄ = 1
N

∑N
n=1 xn =

(x̄1, . . . , x̄DE) with x̄i = 1
N

∑N
n=1 x

n
i are subtracted resulting in shifted states

x̃n = xn − x̄ = (x̃n1 , . . . , x̃nDE
). The covariance matrix

CX = 1

N

N∑
n=1

(x̃n)tr · x̃n

= 1

N

⎡
⎢⎢⎢⎢⎣

∑N
n=1 x̃

n
1 x̃

n
1

∑N
n=1 x̃

n
1 x̃

n
2 . . .

∑N
n=1 x̃

n
1 x̃

n
DE∑N

n=1 x̃
n
2 x̃

n
1

∑N
n=1 x̃

n
2 x̃

n
2 . . .

∑N
n=1 x̃

n
2 x̃

n
DE

...
...

. . .
...∑N

n=1 x̃
n
DE

x̃n1
∑N

n=1 x̃
n
DE

x̃n2 . . .
∑N

n=1 x̃
n
DE

x̃nDE

⎤
⎥⎥⎥⎥⎦

is computed by iteratively producing individual local delay coordinate vectors x̃n

from the dataset and summing the terms (x̃n)tr · x̃n into the preallocated matrix CX

(here x tr stands for the transpose operation).
Local states yn of lower dimension DR ≤ DE are obtained by projecting the shifted

states x̃
yn = P x̃n

using a (globally valid) DR × DE projection matrix P whose rows are given by the
DR eigenvectors of the matrix CX corresponding to the largest DR eigenvalues. The
dimensionality DR of the subspace spanned by eigenvectors to be taken into account
can either be set explicitly or determined such that some percentage such as 99% of
the original variance of the local delay coordinate vectors is preserved.

The whole data set can thus be mapped into the space with reduced dimension
DR by mapping each point of the data set into the high-dimensional space RDE and
projecting it into the lower dimensional space RDR using the PCA projection matrix
P computed beforehand. For the subsequent prediction process, the projected local
delay coordinate vectors yn are then fed into a tree structure such as a k–d tree (Bentley
1975; Carlsson 2018) for fast nearest neighbour searching.
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Fig. 2 Overview of the prediction algorithm. After sampling the input data in step 1 local delay coordinate
vectors are created in step 2 for each pixel at location α and time t . Then, in step 3, using PCA the local delay
coordinate vectors are projected into a lower dimensional reduced state space where in step 4 neighbours
of (projections of) given query points provide target values that are used to approximate the target of the
query point [here using weighted averaging over target values, like in Eq. (1)]. Targets can be future pixels
of the same field or pixels of some other fields related to the input data. The projection matrix of the PCA
and the k–d tree for searching nearest neighbours in the reduced state space are computed before based on
a training data set

One issue arises with points near boundaries. Since the dynamics close to the
boundaries may differ from the rest of the system, they were separated from other local
delay coordinate vectors in phase space. This was achieved by setting the non-existent
neighbours of boundary points to a large constant value (Parlitz andMerkwirth 2000).
The power of PCAhowever relies on its assumption of a single cloud of points in (state)
space within or close to a low-dimensional linear subspace. This is no longer the case
when constant boundaries come into play. To sidestep this issue, we suggest changing
the second step of the procedure described above. Simply exclude all boundary states
from the computation of the projection matrix P but project them with the resulting
matrix P nonetheless. In principle, this could eliminate the offset meant to separate
internal and boundary dynamics but in practice the projection matrices rarely posses
zero-valued entries. Therefore, it is highly unlikely that this would become a problem
as long as boundary offset values are chosen large enough.

2.5 Prediction Algorithm

An overview of the prediction algorithm is provided in Fig. 2. While the dimension
of the local delay coordinate space has changed in the dimension reduction process,
the ordering of the vectors (t, α) ↔ n within the data set of dimension R

DR and the
search tree remained unaffected and is thus known. It is therefore sufficient to find the
indices of nearest neighbours for a given query. To make predictions, we assign each
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local delay coordinate vector xt,α a target value from the original training data and the
only difference between temporal prediction and cross-estimation lies in the choice of
these target values.

For time series prediction, we choose xt,α → ut+1,α where xt,α are the local delay
coordinate vectors from the spatio-temporal time series {ut,α} and ut+1,α target values.
The prediction process then consists of producing vectors xT ,α from the end of the
time series by applying the same local delay coordinate map, subsequent dimension
reductionusing the projectionmatrix P thatwas computed for the training set, and local
nearest neighbour modelling providing the target values uT+1,α . Once a prediction for
each point (denoted by α) has been made, all future values uT+1,α of the (input) field
u are known and the procedure can be repeated for predicting uT+2,α . Using this kind
of iterated prediction, spatio-temporal time series can, in principle, be forecasted for
any period of time (with the well known limits of predictability of chaotic dynamics).

The case of cross-estimation is even simpler than time series prediction. Here, we
are given a training set of two fields: an input variable ut,α and a target variable vt,α .
The values of the input field ut,α are mapped into local delay coordinate vectors xt,α .
Using PCA and nearest neighbours search, we find similar instances in the training
set for which the corresponding values of the target variables are known and can be
used for estimating the current target vt,α .

2.6 Error Measures

InSect. 4,wewill test the presentedpredictionmethods on themodel systemsdescribed
in Sect. 3. For evaluation, we compare any predicted field v̂ with the corresponding
correct values (i.e. test values) v̌ by considering spatial averages of the quadratic error
over all sites α. This so-called Mean Squared Error (MSE) is then normalized by the
MSE obtained when using the (spatial) mean value v̄ for prediction. The resulting
Normalized Mean Squared Error (NRMSE) is defined as

NRMSE(v̌, v̂) =
√
MSE(v̌, v̂)

MSE(v̌, v̄)
, where MSE(v̌, v̂) = 1

A

∑
α

(
v̌α − v̂α

)2 (2)

where A is the number of spatial sites α taken into account. Any good estimate or
forecast should be (much) better than the trivial prediction using mean values and
result in NRMSE values (much) smaller than one.

2.7 Software

All software used in this paper has been published in the form of an open source
software library under the name of TimeseriesPrediction.jl (https://github.com/
JuliaDynamics/TimeseriesPrediction.jl) along with extensive documentation and var-
ious examples. It is written using the programming language Julia (Bezanson et al.
2017)with extensibility inmind, such that it is compatiblewith different spatial dimen-
sions as well as arbitrary spatio-temporal delay coordinatemaps. This is made possible
through a modular design and Julia’s multiple dispatch.
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Fig. 3 Temporal evolution of the
KS model (3) for two different
system sizes. Pane a has
parameters L = 22 and Q = 64,
while the larger system b has
L = 200 and Q = 512

3 Model Systems

The Kuramoto–Sivashinsky (KS) model (Kuramoto 1978; Sivashinsky 1980, 1988)
has been devised formodelling flame fronts andwill in our case be used as a benchmark
system for iterated time series prediction. TheBarkleymodel (Barkley 1991) describes
an excitable medium that shows chaotic interplay of travelling waves. The third and
most complex model is the Bueno-Orovio–Cherry–Fenton (BOCF) model (Bueno-
Orovio et al. 2008), which is composed of four coupled fields describing electrical
excitation waves in the heart muscle.

3.1 Kuramoto–Sivashinsky System

The Kuramoto–Sivashinsky (KS) system (Kuramoto 1978; Sivashinsky 1980, 1988)
is defined by the following partial differential equation:

∂u

∂t
+ ∂2u

∂x2
+ ∂4u

∂x4
+

∣∣∣∣∂u∂x

∣∣∣∣
2

= 0 (3)

typically integrated with periodic boundary conditions. It is widely used in litera-
ture (Parlitz and Merkwirth 2000; Pathak et al. 2018) because it is a simple system
consisting of just one field while still showing high-dimensional chaotic dynamics.

The dynamics were simulated with an EDTRK4 algorithm (Rackauckas and Nie
2017) and the parameters for integration are the time step �t = 0.25 and the system
size L with spatial sampling Q. Two example evolutions with L = 22, Q = 64 and
L = 200, Q = 512 are shown in Fig. 3.

3.2 Barkley Model

TheBarkleymodel (Barkley 1991) is a simple system that exhibits excitable dynamics.
We will use a modification with a cubic term u3 in the differential equation of the v
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Fig. 4 Snapshot of the chaotic Barkley model (4) on a grid of size 150 × 150 with constant boundary
conditions and after transients decayed. The u variable is displayed in (a) and v in (b)

variable that can be used to generate spatio-temporal chaos such that:

∂u

∂t
= 1

ε
u(1 − u)

(
u − v + b

a

)
+ D∇2u

∂v

∂t
= u3 − v,

(4)

where the parameter set a = 0.75, b = 0.06, ε = 0.08 and D = 0.02 leads to chaotic
behaviour. For integration we used �t = 0.01 and �x = 0.1 in combination with an
optimized FTCS scheme like the one described in Barkley (1991) (Fig. 4).

3.3 Bueno-Orovio–Cherry–FentonModel

The Bueno-Orovio–Cherry–Fenton (BOCF) model (Bueno-Orovio et al. 2008) is a
more advanced set of equations that serves as a realistic but relatively simple model of
(chaotic) cardiac dynamics. It consists of four coupled fields that can be integrated as
PDEs on various geometries. For the sake of simplicity, we consider a two-dimensional
square. The four variables u, v, w, s are given by the following equations:

∂u

∂t
=D · ∇2u − (Jsi + Jfi + Jso)

∂v

∂t
= 1

τ−
v

(1 − H(u − θv))(v∞ − v) − 1

τ+
v
H(u − θv)v

∂w

∂t
= 1

τ−
w

(1 − H(u − θw))(w∞ − w) − 1

τ+
w
H(u − θw)w

∂s

∂t
= 1

2τs
((1 + tanh(ks(u − us))) − 2s)

(5)

where the currents Jsi, Jfi and Jso and all parameters are defined in the appendix. Vari-
able u represents the voltage across the cell membrane and provides spatial coupling
due the diffusion term, whereas v, w, and s are governed by local ODEs without any
spatial coupling. Figure 5 shows a snapshot of all four fields. To make it easier to
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Fig. 5 Snapshot of the four variables of the BOCF model simulated on a 500×500 grid and coarse grained
to a 150 × 150 grid using the software by Zimmermann and Parlitz (2018)

tell the different fields apart each one has been assigned its own colour map that will
be used consistently. For simulation we used an implementation by Zimmermann and
Parlitz (2018), that simulates the dynamics of the BOCFmodel using an FTCS scheme
on a 500×500 grid with integration parameters�x = 1,�t = 0.1, diffusion constant
D = 0.2, no-flux boundary conditions and a temporal sampling of tsample = 2.0. The
dense spatial sampling is needed for integration but impractical for our use. Therefore
the software by Zimmermann coarse-grains the data to a grid of size 150 × 150.

4 Cross-Estimation

For cross-estimation, we analyze the Barkley model and the BOCF model. In the
beginning, both systems are simulated for more than 10,000 time steps so that different
subsets can be chosen for model training and testing. All training sets consisted of
5000 consecutive time steps. Due to the dense temporal sampling, the first few frames
after the end of the training set are potentially predicted much better than the following
ones, because data very similar to the desired estimation output are already included
in the training set. To avoid this issue, predictions were offset by 1000 frames after
the end of the training sequence and averaged over 20 predicted frames, where each
frame was again offset by 100 time steps from the next, to reduce fluctuations and
compute a standard deviation for the error measures.

To simulate uncertainty in measurements, normally distributed random numbers
were added to the observed variable in the test set. Adding such noise with mean
μ = 0 and standard deviation σN = 0.075 resulted in signal-to-noise ratios

SNRdb = 10 log10

〈
u2t,α

〉
σ 2
N

of 18.5 dB and 14.6 dB for u and v in the Barkley model, respectively. For the fields,
u, v, w, s of the BOCF model SNRs were 20.1 dB, 13.2 dB, 18.1 dB, and 15.4 dB,
respectively. For an intuition of the noisyness Fig. 6 shows the variable u and v of the
Barkley model and the variables u and w of the BOCF model with added noise.

To optimize the choice of the various algorithm parameters we employ the approach
described in “Appendix B”.
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Fig. 6 Snapshots of the variables u and v of the Barkley model and the variable u and w of the BOCF
model after addition of normally distributed noise

Table 1 Identified optimal parameters and average cross-estimation errors for noisy data from the Barkley
model (4) with temporal sampling tsample = 0.01. DE = (γ + 1)dr is the initial local delay coordinate
space dimension and DR is the reduced dimension used to make the prediction. For both predictions, we
used the constant value of 200 for the beyond the boundary pixels

u → v v → u

γ 500 30

τ 1 5

r 0 3

dr 1 29

DE 501 899

DR 15 15

NRMSE 0.0354 ± 0.0013 0.096 ± 0.006

4.1 Barkley Model

For the Barkley model (4), only the u variable has a diffusion term. Therefore, the
dynamics of v solely depends on u and its past. This significantly reduces the parameter
space as spatial neighbourhoods may only be needed for noise reduction during PCA
and can likely be small. For the prediction direction, u → v the local delay coordinate
map with least prediction error was γ = 500, τ = 1 and r = 0. These parameters
produce a highly redundant map which allows PCA to efficiently filter out noise. The
other direction v → u needs spatial neighbourhoods for effective cross-estimation
and the parameters were γ = 30, τ = 5 and r = 3.

The results evaluated according to the error measure (2) are listed in Table 1. A
visualization of the predictions is shown in Fig. 7 along with additional predictions
performed with identical parameters but for noiseless input.

4.2 BOCFModel

Similar to the Barkley model, only the u variable of the BOCF model (5) has a
diffusion term which simplifies the predictions of u → {v,w, s}. All local delay
coordinate map parameters are listed along with the prediction errors in Table 2.
In most of these cases, we observed that local delay coordinate maps covering a
large time window γ τ along with a small spatial neighbourhood performed best.
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Fig. 7 Cross-estimation of data generated by the Barkley model (4) from a noisy v field to u (first row)
and vice versa (second row). a–d show estimates of the u field where a is the actual u field, b the predicted
field û (from noisy input), c the absolute difference between the two, and d a reference estimation error
for noiseless input with identical parameters and training set. Panes e–h show the same for the field v. The
parameters are listed in Table 1

Table 2 Parameters and average
cross-estimation errors for noisy
data from the BOCF model (5)
with temporal sampling of
tsample = 2.0. A value of 200
was used for the pixels beyond
the boundary. DE = (γ + 1)dr
is the initial dimension of local
delay coordinate space and DR
is reduced dimension used for
nearest neighbour searches

γ τ r DE DR dr NRMSE

u → v 100 1 1 505 15 5 0.041 ± 0.006

u → w 100 1 1 505 15 5 0.048 ± 0.007

u → s 100 1 1 505 15 5 0.037 ± 0.004

v → u 100 2 2 1313 15 13 0.12 ± 0.02

v → w 200 1 1 1005 15 5 0.054 ± 0.011

v → s 100 2 2 1313 15 13 0.093 ± 0.014

w → u 10 2 4 539 9 49 0.26 ± 0.03

w → v 10 2 4 539 9 49 0.26 ± 0.04

w → s 10 2 4 539 9 49 0.22 ± 0.03

s → u 100 1 1.5 909 15 9 0.071 ± 0.005

s → v 100 1 1.5 909 15 9 0.057 ± 0.008

s → w 100 1 1.5 505 15 9 0.059 ± 0.008

This is likely due to the dense temporal sampling relative to the propagation speed
of wavefronts within the simulated medium. In this way, the highly redundant map
and PCA for dimension reduction provide an effective method of noise reduction.
The w field however presents itself as a somewhat smeared out version of the other
variables thus requiring a larger spatial neighbourhood to recover the positions of
wavefronts.

To visualize a few results, we chose the best and worst performing estimations.
Figure 8 contains results for wnoisy → {u, v, s} and Fig. 9 shows estimations from
a noisy u field to all other variables. The NRMSE values in Table 2 indicate that
the estimations from field w perform about one order of magnitude worse than the
estimations from field u. Figures 8 and 9 on the other hand reveal that, even in the
latter estimations, the erroneous pixels are concentrated around the wavefronts. Thus,
the overall prediction for most of the area is very accurate in both cases.
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Fig. 8 Cross-estimation of data generated by the BOCF model (5) from wnoisy to all three other variables.
a–d show estimates of the u field where a is the actual u field, b the predicted field û (from noisy input), c
the absolute difference between the two, and d a reference estimation error for noiseless input with identical
parameters and training set. Panes e–h and i–l show the same for their fields v and s, respectively. The
parameters are listed in Table 2

Fig. 9 Cross-estimation of data generated by the BOCF model (5) from unoisy to all three other variables.
a–d show estimations for the v field where a is the actual v field, b the predicted field (from noisy input), c
the absolute difference between the two, and d a reference estimation error for noiseless input with identical
parameters and training set. Panes e–h and i–l show the same for their fields w and s, respectively. The
parameters are listed in Table 2
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5 Iterated Time Series Prediction

In the following, we will analyze the performance of local modelling for spatially
extended systems in the context of iterated time series prediction. For this, we use the
Kuramoto–Sivashinsky model (3) and the Barkley model (4).

The obvious performance measure in this case is the time it takes before the pre-
diction errors exceed a certain threshold. Time however is not an absolute concept in
dimensionless systems. Therefore we will also define characteristic timescales of each
system which will give a context to the prediction times.

5.1 Predicting Barkley Dynamics

The data sets used during cross-estimation were sampled with tsample = 0.01 which
could be considered nearly continuous relative to the timescale of the dynamics. To
provide a useful example for temporal predictionwith a reasonable amount of predicted
frames, we use a larger time step tsample = 0.2, while the simulation time step was
kept constant at �t = 0.01 for accurate numerical integration.

Figure 10 shows one such prediction of the u variable in the Barkley model. The
figure consists of seven subplots where the top two rows show the system state at the
prediction time steps n = 25, 50 as well as the corresponding iterated predictions. The
very right column displays the absolute errors of the prediction defined by |ut,α−ût,α|.
At the bottom is the time evolution of theNRMSE for the prediction. Looking closely at
the snapshots in the figure reveals that indeed the maximum prediction error increases
quickly, as can be seen by the dark spots of the error plots (c) and (f). The overall error
however increases much more slowly which is confirmed by comparing the original
state with the prediction.

To set the above results into perspective, we calculate a characteristic timescale
for the Barkley model. Here, we will use the average time between two consecutive
local maxima for each pixel, which in good approximation gives the average period of
the rotating spiral waves. Averaging over 100 × 100 pixels and 4000 time steps gave
this time as tc ≈ 5. This means that the error of the u field prediction increased to
NRMSE(u, 2tc) ≈ 0.5 within two characteristic times.

5.2 Predicting Kuramoto–Sivashinsky Dynamics

The Kuramoto–Sivashinsky (KS) model (3) is a one-dimensional system that has just
a single field. As in the iterated time series prediction of the Barkley model we will
need a characteristic timescale for the dynamics of the KS model to assess the quality
of the forecast. Here, we choose the Lyapunov time which was defined and calculated
for the KS model by Pathak et al. (2018). The following figures are scaled according
to the Lyapunov time �t with � ≈ 0.1.

It is possible to integrate the KS model with different sizes L and spatial samplings
Q. We will attempt to predict the time evolution for L = 22, Q = 64 and a larger
system with L = 200 and Q = 512. The smaller one of the two has just 64 points and
thereby could be predicted by using either local or global states, where the latter are
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Fig. 10 Predicting field u of the Barkley model with system size 150 × 150 and training of 5000 states.
The parameters are γ = 12, τ = 2, r = 4, and boundary constant 200. PCA reduced the dimension from
DE = 637 to DR = 15. Panes a and d show the true evolution at time t = 5 and t = 10. Panes b and
e contain the iterated prediction at that time and c and f the corresponding absolute error. g shows the
accumulation of the NRMSE in the prediction. The dashed lines note tc , the bullets note the times 5 and 10

given by combining samples from all Q sites in a state vector. The global states have a
higher dimension and may require larger training sets to densely fill the reconstructed
space but in return each vector represents the state of the whole system. Sample
predictions for both approaches are shown in Fig. 11 using the same training set of
105 states.

A notable observation with the (L = 22, Q = 64) KS model is its variable pre-
dictability as it strongly depends on the initial conditions, i.e. the current position on
the chaotic attractor.

Figure 12 supports this claim by showing box-plots of the predictability for 500
different initial conditions for three different training sets of length 105, 106, and 107.
The prediction horizon is computed as the time it takes for the NRMSE error to grow
to a value of 0.1. For an intuition, these time steps are highlighted in red in Fig. 11.
For L = 22, both the length of the predictions and its variability increase for larger
training sets. In some rare cases, the errors exceeded 0.1 only after 17�t (not shown
in Fig. 12).

Figure 11 also shows a prediction of the KS system on a larger domain of
L = 200, Q = 512 with corresponding predictability box-plots in Fig. 12. Here,
the prediction horizons are shorter and the variability in predictability is much smaller
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Fig. 11 Predictions of the KS dynamics with L = 22, Q = 64 a–e and L = 200, Q = 512 f–h using PCA
and 1 nearest neighbour. Shown are: in a and f actual evolutions, below it in b and g predictions from local
states with parameters γ = 7, τ = 1, r = 10, and in d a prediction using global states (γ = 0, r = 32),
each along with its errors (c, e, h). All predictions used 105 time steps for training. The timestep at which
the NRMSE error first hit a value > 0.1 is marked with a red line (Color figure online)

compared to the smaller KS system. Figure 11 (h) shows regions in space that quickly
accumulate error thereby limiting the overall predictability as well as regions that are
(still) predicted accurately until ≈ 2�t .

The KS model has previously been used by Pathak et al. (2018) for evaluating the
prediction performance of some reservoir computing methods. These authors reported
for L = 22 and L = 200 prediction horizons of ≈ 3�t (Fig.2 in Pathak et al. (2018))
when using a reservoir network and ≈ 4�t (Fig.6a in Pathak et al. (2018) for RMSE
threshold values between0.08 and0.09,which corresponds to our criteriumofNRMSE
= 0.1) for 64 reservoirs running in parallel.

The issue of variations in predictability of the KSmodel hinders direct comparisons
to the work of Pathak et al. (2018) who did not address this problem. In the small
system, we saw initial conditions where predictions outperformed the ones by Pathak
et al. but also others that were much worse. The larger system however has so far been
harder to predict and we did not match the prediction accuracy of the approach of
Pathak et al.

6 Benchmark of PCA

In this paper, we use principal component analysis for two reasons. The obvious
purpose is to find a low-dimensional representation of the high-dimensional local
delay coordinate space. One very much wanted side effect is noise reduction. All of
the above presented examples used highly redundant local delay coordinate maps to
allow for noise tolerance.
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Fig. 12 Variations in predictability of the KS model where the prediction horizon for an initial condition is
defined as the time predicted until the NRMSE first exceeds 0.1. Shown are results for L = 22, Q = 64 and
L = 200, Q = 512 obtained with different lengths {105, 106, 107} of the training set. Predictions were
done on 500 different initial conditions (each offset by 100 time steps) using parameters γ = 7, τ = 1,
r = 10 and 1 nearest neighbour for modelling. The reduced dimension was automatically determined
to DR = 7 for L = 22 and DR = 8 for L = 200. The numbers in the box-plots give the median of
the underlying distribution and the (coloured) boxed indicate the first and the third quantile (Color figure
online)

To evaluate how well PCA is suited for this purpose, we test two things: We firstly
test whether a low-dimensional representation is found via PCA. The result is shown
in Fig. 13. We see the dependence of the prediction error on the output dimension DR
of PCA in a cross-estimation of u → v in the Barkley model. It is evident that in this
case no more than about 5–7 dimensions are needed to encode all information relevant
to the prediction as both the prediction error as well as the ratio of retained variance
saturate for larger DR.

To test whether PCA also successfully eliminated the noise in the test set, we
compare the two panes in Fig. 13 where the results in (b) were computed using a 20
times less redundant local delay coordinate map than in (a). The parameters in (a)
were chosen identically to the identified optimal parameters listed in Table 1, whereas
the less redundant parameter set for (b) was chosen to keep the covered time window
of each local delay coordinate vector constant at γ τ�t ≈ 500�t ≈ 5. The noiseless
predictions perform similarly well in both cases, indicating that the additional values
are indeed redundant and do not add much information to the local delay coordinate
vectors. Comparing the noisy predictions highlights the effectiveness of PCA in this
case as predictions from the redundant map (Fig. 13a) are consistently better by one
order of magnitude (comp. Fig. 13b).

7 Conclusions

The combination of local modelling and principal component analysis for dimension
reduction provides a conceptually simple yet effective approach to both cross-

123



Journal of Nonlinear Science (2020) 30:713–735 731

Fig. 13 NRMS Errors of cross-estimation u → v of Barkley variables vs. reduced dimension DR for
clean and noisy (test) input signals u with parameters (a γ = 25, τ = 20; b γ = 500, τ = 1) such that
the covered time window γ τ remains constant. The estimation error is large for very small values of the
reduced dimension DR, but becomes almost constant for DR > 5. The ratio of preserved variance is shown
in black. PCA-based dimension reduction starting from a higher dimensional local delay coordinate map
with DE = γ + 1 = 501 in (b) proves to be more resilient to noise than the map with DE = γ + 1 = 26
in (a)

estimation and temporal prediction of complex spatially extended dynamics. The
equations for all three model systems (Barkley model, BOCF model, KS model) were
only needed for data generation and as such the approach could well be applied to
real world data where the underlying dynamics are not known. Adding noise to the
input data naturally reduces prediction quality but in Sect. 6 it is shown that PCA can
restore accuracy from a more redundant local delay coordinate map.

The currently presented method has its limitations, however. A core assumption of
the process is that the dynamics of the system-to-be-predicted is homogeneous. This
becomes evident from the fact that the reduced states of all pixels compose a single
k–d tree. This limitation could potentially be resolved. It has been proposed in Parlitz
and Merkwirth (2000) that simply extending the local states with an additional space-
dependent entry on the vector could resolve the issue. Another alternative would
include creating several parallel k–d trees instead of a single one for clearly separated
domains with different yet locally homogeneous dynamics. Furthermore, nonlinear
dimension reduction methods could be an improvement over PCA (which is a linear
process).

In its present form, the presented prediction method is not yet fully competitive
with recent machine learning approaches, like those presented in Pathak et al. (2018),
Lu et al. (2017) and Vlachas et al. (2018). One attempt to improve the prediction
performance could be to use amore sophisticated local function approximation scheme
instead of the distance weighted averaging.

An advantage on the presented algorithm is that nearest neighboursmodelling based
on local delay coordinate vectors is conceptually simple and computationally efficient.
In addition, as long as the homogeneity assumption holds, the method is scalable to
systems with larger spatial extend (as not all pixels of the system need to be sampled
for the creation of the k–d tree).
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Appendix A: Bueno-Orovio–Cherry–FentonModel

H(·)denotes theHeaviside function and the currents Jfi, Jso, Jsi of theBuono-Orovio-
Cherry-Fenton (BOCF) model (5) (Bueno-Orovio et al. 2008) are defined as:

Jfi =−v

τfi
H(u − θv)(u − θv)(uu − u)

Jso = 1

τo
(u − uo)(1 − H(u − θw)) + 1

τso
H(u − θw)

Jsi =−1

τsi
H(u − θw)ws.

The τ parameters used above are not constant but rather a function of the cellmembrane
voltage variable u:

τ−
v =(1 − H(u − θ−

v ))τ−
v1 + H(u − θ−

v )τ−
v2

τ−
w =τ−

w1 + 1

2
(τ−

w2 − τ−
w1)(1 + tanh(k−

w (u − u−
w)))

τ−
so =τso1 + 1

2
(τso2 − τso1)(1 + tanh(kso(u − uso)))

τs =(1 − H(u − θw))τs1 + H(u − θw)τs2

τo =(1 − H(u − θo))τo1 + H(u − θo)τo2

Table 3 Parameter set for the
BOCF model (Bueno-Orovio
et al. 2008) that imitates the Ten
Tusscher–Noble–Noble–
Panfilov model (ten Tusscher
et al. 2004)

uo 0 τ−
v2 1150 τfi 0.11 τs1 2.7342

uu 1.58 τ+
v 1.4506 τo1 6 τs2 3

θv 0.3 τ−
w1 70 τo2 6 ks 2.0994

θw 0.015 τ−
w2 20 τso1 43 us 0.9087

θ−
v 0.015 k−

w 65 τso2 0.2 τsi 2.8723

θo 0.006 u−
w 0.03 kso 2 τw∞ 0.07

τ−
v1 60 τ+

w 280 uso 0.65 w∗∞ 0.94
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and

v∞ =
{
1, u < θ−

v

0, u ≥ θ−
v

w∞ =(1 − H(u − θo))

(
1 − u

τw∞

)
+ H(u − θo)w

∗∞.

All other parameters are listed in Table 3.

Appendix B: Optimizing Parameters

In this section we discuss a few approaches on how to find local delay coordinate
map parameters that produce decent prediction results. The parameters that can be
optimized in the algorithmwe presented are γ , τ , r , DR, and the number of neighbours
k for modelling. In principle one can also attempt to optimize the constant value used
for the missing spatial neighbours at the domain boundary but we have observed
that any value significantly larger than the system dynamics such as 100 times larger
works fine. The obvious measure to minimise during the optimization procedure is
the prediction error on some test set that is not contained in the training data.

Going back to the structure of the algorithm we note that number k of nearest
neighbours used formodelling is only needed for prediction and does not operate on the
local delay coordinatesmapdirectly.We therefore propose to optimize k independently
from the remaining parameters and keep it constant at k = 1 during optimization of
γ , τ , and r .

The choice of the dimension DR of the dimension reduced local delay coordinate
vectors also influences the predictiveness of the approach. However in Sect. 6 we
showed that this can be a simple function of the retained variance in the local delay
coordinate space. We therefore chose to automatically determine DR such that it is
the smallest number of dimensions that still retain 99% of the original variance but
capped at a maximum of 15. The maximal DR needs to be set as the memory usage
grows linearly with DR and runtime depends heavily on it.

Estimating γ , τ , and r is more difficult. The parameters are discrete and their
effects on the prediction error are nonlinear. The most general approach would be
an exhaustive grid search that may be computationally unfeasible depending on the
system. Instead one can constrain the parameters significantly by estimating charac-
teristic scales in the system of choice. In the case of the Barkley we computed the
average time between two excitation waves in each pixel which is an estimate for the
refractory phase of the hidden variables. This time window of around 500 timesteps
was then used as an estimate for γ τ .

The concept of a relevant time window also allows for consecutive grid searches
that sample the parameter space in a coarse grained way.
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