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THE EXCHANGE-DRIVEN GROWTH MODEL:

BASIC PROPERTIES AND LONGTIME BEHAVIOR

ANDRÉ SCHLICHTING

ABSTRACT. The exchange-driven growth model describes a process in which pairs
of clusters interact through the exchange of single monomers. The rate of exchange
is given by an interaction kernel K which depends on the size of the two interacting
clusters. Well-posedness of the model is established for kernels growing at most
linearly and arbitrary initial data.

The longtime behavior is established under a detailed balance condition on the
kernel. The total mass density ̺, determined by the initial data, acts as an order
parameter, in which the system shows a phase transition. There is a critical value
̺c ∈ (0,∞] characterized by the rate kernel. For ̺ ≤ ̺c, there exists a unique
equilibrium state ω̺ and the solution converges strongly to ω̺ . If ̺ > ̺c the
solution converges only weakly to ω̺c . In particular, the excess ̺−̺c gets lost due
to the formation of larger and larger clusters. In this regard, the model behaves
similarly to the Becker-Döring equation.

The main ingredient for the longtime behavior is the free energy acting as Lya-
punov function for the evolution. It is also the driving functional for a gradient flow
structure of the system under the detailed balance condition.

1. INTRODUCTION

1.1. Model. The exchange-driven growth model describes a process in which pairs
of clusters consisting of an integer number of monomers can grow or shrink only by
the exchange of single monomers [BNK03]. Although this process is not necessarily
realized by chemical kinematics, it is convenient to be interpreted as a reaction
network of the form

Xk−1+ X l

K(l ,k−1)
−−−−−*)−−−−−
K(k,l−1)

Xk + X l−1 , for k, l ≥ 1 . (1.1)

The clusters of size k ≥ 1 are denoted by Xk. Additionally, the variable X0 represents
empty volume. Here, the kernel K(k, l − 1) encodes the rate of the exchange of
a single monomer from a cluster of size k to a cluster of size l − 1. Here and
in the following the notation k ≥ 1 means k ∈ N = {1,2, . . .} and l ≥ 0 denotes
l ∈N0 =N∪ {0}.
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The concentrations of Xk in (1.1) are denoted by (ck)k≥0 and satisfy for k ≥ 0 the
reaction rate equation formally obtained from (1.1) by mass-action kinetics

ċk =
∑

l≥1

K(l, k − 1)cl ck−1 −
∑

l≥1

K(k, l − 1)ckcl−1

−
∑

l≥1

K(l, k)cl ck +
∑

l≥1

K(k+ 1, l − 1)ck+1cl−1 , for k ≥ 0 ,
(1.2)

with c−1 ≡ 0 set for convenience.
The model (1.2) is applied to social phenomena like migration [LK03], popula-

tion dynamics [LR02] and wealth exchange [IKR98]. Similar driving mechanisms
are found in diverse phenomena at contrasting scales from microscopic level poly-
merization processes [DE88], to cloud [HB72] and galaxy formation mechanisms
at huge scales, as well as in statistical physics [KRBN10].

Moreover, the model (1.2) also arises as the mean-field limit of a class of interact-
ing particle systems that include extensively studied models of nonequilibrium sta-
tistical physics like the zero-range processes [God03, GSS03, GD17, BJL17, GJ18],
and more general misanthrope processes [WE12, CCG14, CCG15].

This work extends and complements the basic mathematical analysis of [Ese18]
in two ways. Firstly, it improves parts of the well-posedness results making them
unconditioned on the initial data. Secondly, the new main result is the qualita-
tive longtime behavior for kernels with sublinear growth. In addition, the aim is
to stress the observation that this model is a natural generalization of the Becker-
Döring model [BD35] (see Example 1.1) and resembles very much of its qualitative
behavior.

The chemical reaction representation (1.1) gives rise to two conservation laws.
Firstly, on each side of the reaction there are two clusters, or a cluster and empty
volume, which leads to the conservation of the total number of clusters and empty
volume. Due to each reaction performing an exchange of a single monomer, no
mass is generated nor destroy, which gives the conservation of the total number of
monomers. On the level of the densities (ck), these two conservation laws take the
form of

M0 =
∑

k≥0

ck and ̺ =
∑

k≥1

k ck . (1.3)

After rigorously establishing both conservation laws (Corollary 2.7), the zeroth mo-
ment can be fixed to be M0 = 1. This allows to interpret (1.2) as the master
equation for a nonlinear continuous-time birth-death chain on N0 with distribu-
tion {ck(t)}k≥0. This chain is nonlinear since the birth and death rates

Ak−1[c] =
∑

l≥1

K(l, k − 1) cl and Bk[c] =
∑

l≥0

K(k, l) cl for k ≥ 1 (1.4)

depend on the distribution c(t), where in the following B0[c] = 0 is set. For the
mathematical analysis this interpretation turns out to be useful.
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It will be convenient to introduce certain fluxes, which allow to rewrite the sys-
tem (1.2) in a compact form. There are the unidirectional fluxes per reaction
in (1.1) given by jl ,k−1[c] = K(l, k − 1) cl ck−1. Their difference jl ,k−1[c] − jk,l−1[c]

is the net flux per reaction (k − 1, l) → (k, l − 1). The summation over all possible
reaction partners l leads to the definition of the net flux from a cluster of size k− 1
to one of size k

Jk−1[c] =
∑

l≥1

�

jl ,k−1[c]− jk,l−1[c]
�

= Ak−1[c]ck−1 − Bk[c]ck for k ≥ 1 , (1.5)

By having introduced the fluxes (1.5), the rate equation (1.2) shortens to

ċk = Jk−1[c]− Jk[c] , k ≥ 0 , (1.6)

with J−1[c] ≡ 0 set for convenience for all c.

Example 1.1 (Becker-Döring type model). As also observed in [Ese18], a particular
case of this model is given by setting

l ≥ 0 : K(1, l) = al , k ≥ 1 : K(k, 0) = bk and for k ≥ 2, l ≥ 1 : K(k, l) = 0 .

This choice simplifies the chemical reaction network (1.1) to

Xk−1+ X1

ak−1
−−*)−−

bk

Xk + X0 , k ≥ 1 ,

which corresponds to a model very close to the Becker-Döring model [BD35]. The
main difference to the Becker-Döring model

Xk−1+ X1

ak−1
−−*)−−

bk

Xk , k ≥ 2 .

is the additional variable X0 corresponding to empty volume. Taking into account X0

gives rise to the first conservation in (1.3). The consequence is the fragmentation
flux bk c0 ck becoming nonlinear taking finite volume effects into account.

1.2. Main results: Well-posedness and convergence to equilibrium. In view of
the two conservation laws (1.3), the equation (1.2) is studied in the normed vector
space

X = {c ∈ ℓ1(N0) : ‖c‖ <∞} with ‖c‖ =
∑

l≥0

(1+ l) |cl | . (1.7)

Moreover, by Theorem 2.4 it is shown that solutions to (1.2) are nonnegative for
nonnegative initial data and remain in the cone of nonnegative densities

X + = {c ∈ X : cl ≥ 0} .

Additionally, by the two conservation laws (1.3) rigorously established in Corol-
lary 2.7, the total number density can be normalized to 1 and hence the state space
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for the evolution is the subspace of probability densities on N0 with the first moment
fixed by the parameter ̺ ≥ 0

P ̺ =

§

c ∈ ℓ1(N0) : cl ≥ 0 ,
∑

l≥0

cl = 1 ,
∑

l≥1

l cl = ̺

ª

⊂X + .

To establish relative compactness and tightness the union of the above spaces is
used

B̺ =

§

c ∈ ℓ1(N0) : cl ≥ 0 ,
∑

l≥0

cl = 1 ,
∑

l≥1

l cl ≤ ̺

ª

⊂X + . (1.8)

Assumption 1.2 (Well-posedness). The kernel K : N×N0→ [0,∞) is supposed to
have at most linear growth by either assuming for some CK ∈ (0,∞)

0≤ K(k, l − 1)≤ CK k l for k, l ≥ 1 . (K1)

or the stronger assumption for all k, l ≥ 1

|K(l, k)− K(l, k − 1)| ≤ CK l and |K(l + 1, k − 1)− K(l, k − 1)| ≤ CK k . (K2)

The analysis of well-posedness is restricted to the case of kernels growing at most
linearly for two reasons. Firstly, the well-posedness theory for arbitrary initial data
in P ̺ is almost complete, except for a small gap between the Assumption (K1) for
existence and the slightly stronger one (K2) for uniqueness. Secondly, the longtime
behavior is still very interesting, since the system can exhibit a phase transition
related to the ergodic behavior of solutions shown in Theorem 1.7 below. Cases
with faster than linear growing kernels are treated in [Ese18] and examples with
gelation are found.

Theorem 1.3 (Well-posedness). Suppose Assumption (K1) holds. Then for any ̺ > 0
and c̄ ∈ P ̺ there exists a solution

�

c(t)
�

t≥0 to (1.2) with initial datum c(0) = c̄ in

the sense of Definition 2.2. If also (K2) holds, this solution is unique. Moreover, in the

latter case, the solutions constitute a semigroup on P ̺ (Definition 2.9).

The convergence to equilibrium is proven under a detailed balance condition.
This case is already interesting, since it shows a phase transition in the order pa-
rameter ̺. The existence of detailed balance states will turn out to be equivalent
to some additional assumption on the rates. This assumption (BDA) below was
already obtained for the stochastic particle system in [RCG18, (5.3)] and used to
show that stationary states are of product form.

Besides the detailed balance condition, more information on the kernel K(k, l−1)
is needed, especially on asymptotic growth and regularity properties for k, l large.
Moreover, the proof of the relative compactness of solutions to (1.2) in P ̺ is re-
stricted to (strictly) sublinear growth rates, since only in this case the nonlinear
birth and death rates (1.4) are controlled by a tightness argument.



THE EXCHANGE-DRIVEN GROWTH MODEL: BASIC PROPERTIES AND LONGTIME BEHAVIOR 5

Assumption 1.4 (Longtime behavior). The rate kernel K : N×N0→ [0,∞) satisfies
the Becker-Döring assumption, that is for all k, l ≥ 1 it holds K(k, l − 1)> 0 and

K(k, l − 1)
K(l, k − 1)

=
K(k, 0)K(1, l − 1)
K(l, 0)K(1, k − 1)

. (BDA)

The kernel K satisfies

lim
k→∞

K(k, 0)
K(1, k − 1)

= φc ∈ (0,∞] . (Kc)

The kernel K satisfies (K2) and the following continuity at infinity

lim
k→∞

K(l, k)

K(l, k − 1)
= 1 and lim

k→∞

K(k, l − 1)
K(k − 1, l − 1)

= 1 uniformly in l ≥ 1 . (K3)

Moreover, for three sublinear increasing sequences (ak)k≥0, (bk)k≥1 and (dk)k≥1

there exists a constant CK ≥ 1 such that for all k, l ≥ 1 it holds

C−1
K al−1 ≤ |K(k, l − 1)| ≤ CK dk al−1 and C−1

K bk ≤ |K(k, l − 1)| ≤ CK bk l , (K4)

Hereby, a sequence (dk)k≥1 is called sublinear, if limk→∞
dk

k = 0.

Remark 1.5. For the majority of the proofs, it seems possible to relax the above strict
positivity assumption. That is K(k, 0) > 0 and K(1, k − 1) > 0 for k ≥ 1 and (BDA)
holds only on the support of K implying that with K(k, l −1)> 0 also K(l, k−1)> 0.

The presentation is restricted to the case of positive rates, but the discussion
below applies with minor obvious changes to Example 1.1 satisfying (BDA) in the
above sense.

The Assumption 1.4 includes (K2), which by Theorem 1.3 provides a unique
global solution to (1.2) for which the longtime behavior is established below.

Example 1.6. A family of kernels satisfying Assumption (BDA) is given by the mod-

ulated separable kernel

K(k, l − 1) = bkal−1S(k, l − 1) , for k, l ≥ 1 , (1.9)

where S(k, l − 1) is positive and symmetric S(k, l − 1) = S(l, k − 1)> 0 for k, l ≥ 1. A
particular family of kernels, called separable kernels, is obtained for S(·, ·) ≡ 1.

Many important mean-field limits of misanthrope-type stochastic particle sys-
tems [CT85] have rate kernels of the following general form

K(k, l − 1) = kα
�

a +
q

kγ

��

lδ + d
�

sk+l , for k, l ≥ 1 ,

where δ ∈ [0,1), α ∈ [δ, 1), a > 0, q > 0, γ ≥ 0, and δ d > 0. Moreover, {sr}r≥1

satisfied 0 < s∗ ≤ sr ≤ s∗ <∞ for all r ≥ 1 and sr → s̄ as s → ∞. These family
of kernels is compatible with the modulated separable kernel (1.9) and satisfies
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Assumption 1.4 for a suitable range of parameters. First, φc in (Kc) is given by

K(k, 0)
K(1, k − 1)

=
kα
�

a+ qk−γ
�

(d + 1)sk+1

(a + q)(kδ + d)sk+1

k→∞
−−−→ φc =



















0, α < δ

+∞, α > δ
a(d+1)

a+q α= δ > 0,γ > 0

d + 1, α= δ > 0,γ = 0
a

a+q , α= δ = 0,γ > 0

1, α= γ= δ = 0

.

Hence, α ≥ δ is necessary for (Kc) with φc > 0. It is easy to check, that also (K2)
and (K3) is satisfied, since K is modeled as a rational function. Moreover, estimates
in (K4) follow by choosing al−1 = lδ+d, bk = kα(a+qk−γ) and dk = kα, where these
sequences are sublinear under the present assumptions.

The Assumption (BDA) is called the Becker-Döring assumption because, instead
of a direct exchange of a single monomer from an l-cluster to a (k − 1)-cluster,
the jump is achieved through a jump to empty volume. This is visualized by the
following network, where two intermediate reactions involving the monomers X1

and empty volume X0 with the other occurring rates in (BDA) are added

Xk−1+ X l−1+ X1

K
(l ,0)

K
(1,l−1)

Xk−1+ X l + X0
K(l ,k−1)

K(k,l−1)
Xk + X l−1+ X0

K
(1

,k
−
1)

K
(k

,0
) (1.10)

From the chemical network representation (1.10), the Assumption (BDA) rewritten
in the form

K(k, l − 1)K(1, k − 1)K(l, 0) = K(l, k − 1)K(1, l − 1)K(k, 0)

can be viewed as a curl-free property of the rate kernel on the reaction graph.
For this reason it is not surprising that under Assumption (BDA), there exists a

chemical potential (Qk)k≥0 defined by

Q0 = 1 and Q l =

l∏

k=1

K(1, k − 1)
K(k, 0)

. (1.11)

Note that Assumption (Kc) implies that

lim
k→∞

Q
1/k
k
= φ−1

c
with the convention φ−1

c
= 0 when φc =∞ .

Thanks to (BDA), the chemical potential (Qk)k≥0 satisfies the detailed balance con-
dition

K(k, l − 1)Qk Q l−1 = K(l, k − 1)Q l Qk−1 for k, l ≥ 1 (DBC)

and it is easily verified that (DBC) is actually equivalent to Assumption (BDA). The
two conversation laws (1.3) are also encoded in (DBC), since (Z−1φkQk)k≥0 satis-
fies (DBC) for any Z ,φ > 0.
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This observation is used to search for equilibrium states in P ̺ with ̺ > 0. The
Assumption (Kc) allows to define the partition sum Z(φ) ∈ [0,∞) for φ ∈ [0,φc) by

Z(φ) =
∑

l≥0

φ lQ l ∈ [0,∞) .

For φ ∈ [0,φc), the normalized equilibrium states ω(φ) are given by

ωl(φ) = Z(φ)−1φ l Q l for l ≥ 0 . (1.12)

The critical equilibrium density ̺c ∈ (0,∞] is defined by

̺c = lim sup
φ↑φc

Z(φ)−1
∑

l≥1

lφ lQ l .

For ̺ <∞ with 0≤ ̺ ≤ ̺c, there exists a unique φ = φ(̺) ∈ [0,φc] such that
∑

l≥1

lωl(φ) = Z(φ)−1
∑

l≥1

lφ lQ l = ̺ . (1.13)

Indeed, the Jensen inequality implies the strict monotonicity property for φ ∈
(0,φc)

φ
d

dφ

∑

l≥1 lφ lQ l
∑

l≥0φ
lQ l

=

∑

l≥1 l2φ lQ l
∑

l≥0φ
lQ l

−

�∑

l≥1 lφ lQ l
∑

l≥0φ
lQ l

�2

=
∑

l≥1

l2ωl(φ)−

�
∑

l≥1

lωl(φ)

�2

> 0 . (1.14)

Moreover, in the case ̺c <∞, it follows also φc <∞. Indeed, suppose φc =∞

for ̺c <∞, then for any L ≥ 1 and any φ ≥ 1 by using also the above established
monotonicity, it follows

̺c ≥

∑

l≥1 lφ lQ l
∑

l≥0φ
lQ l

≥

∑

l≥L lφ lQ l
∑L−1

l=0 φ
lQ l +
∑

l≥Lφ
lQ l

≥
L
∑L−1

l=0 φ
lQl

∑∞
l≥L lφ lQl

+ 1

≥
L

(L−1)φ L−1 sup1≤l≤L Ql

φ LQL
+ 1
≥

L
(L−1) sup1≤l≤L Ql

φQL
+ 1
→ L as φ→∞ .

But this is a contradiction, since L ≥ 1 was arbitrary. So ̺c <∞ implies φc <∞.
The observation that ̺c <∞ in addition implies Z(φc)<∞ is based on the identity

log Z(φ) = log Z(0) +

∫ φ

0

d
dφ

log Z(φ)dφ = log Z(0) +

∫ φ

0

∑

l≥1 lφ lQ l
∑

l≥0φ
lQ l

dφ ,

which implies with ̺c <∞ and Z(0) = 1 the bound Z(φ) ≤ e̺cφ. Togther with
φc <∞ follows that

Z(φc) = lim sup
φ↑φc

Z(φ) ≤ eφc ̺c <∞



8 ANDRÉ SCHLICHTING

and hence ω̺c =ω(φ(̺c)) is well-defined. Hence, the set of all normalized equilib-
ria is given by

�

ω̺ =ω(φ(̺)) : ̺ <∞, 0 ≤ ̺ ≤ ̺c

	

. (1.15)

The main tool of the proof of convergence to equilibrium is the free energy func-
tional of the form

F [c] =
∑

k≥0

ck log
ck

Qk

, (1.16)

which turns out to be a Lyapunov function for the evolution (1.2) and the main tool
in proving the following theorem.

Theorem 1.7 (Convergence to equilibrium). Suppose Assumption 1.4 with φc ∈

(0,∞) in (Kc) holds. Then for any ̺0 ∈ [0,∞) and any c̄ ∈ P ̺0 the unique solution c

of (1.2) with c(0) = c̄ satisfies:

(1) If ̺ ≤ ̺c, it holds c(t)→ω̺ strongly in X as t →∞ and

lim
t→∞
F [c(t)] =F [ω̺] .

(2) If ̺ > ̺c, it holds c(t)
∗
−*ω̺c as t →∞ and

lim
t→∞
F [c(t)] =F [ω̺c ] + (̺ −̺c) logφc .

Remark 1.8. Under the extra condition F [c̄] <∞ on the initial data, the strong
convergence is also proven in the case φc =∞ in Corollary 3.9. Since F is finite
over P ̺ for φc ∈ (0,∞), this condition is not needed in Theorem 1.7.

With the characterization of weak∗ convergence in Proposition 2.1, the statement
in (2) becomes just ck(t)→ ω

̺c

k
for all k ≥ 0. In particular, the excess mass ̺0 −̺c

is lost in the limit t →∞.

1.3. Formal gradient flow structure. The free energy functional F from (1.16)
is not only a Lyapunov functional for the system (1.2), but also the driving func-
tional behind a gradient flow structure of the equation. This observation goes back
to [Mie11] for finite chemical reaction networks under detailed balance condition
and to [Maa11] in the setting of reversible Markov chains on finite state spaces.
The key observation is that Assumption (BDA) or equivalently (DBC) is sufficient
to define a suitable metric under which (1.2) becomes the gradient flow of the free
energy F .

The Assumption (BDA) makes the evolution to some extent symmetric, which
can be seen by using (DBC) to define the symmetric quantity

κ(k, l − 1) = K(k, l − 1)Qk Q l−1 = K(l, k − 1)Q l Qk−1 = κ(l, k − 1) .

Therewith, the equation (1.6) can be rewritten as

ċ = −
1
2

∑

k,l≥1

κ(k, l − 1)
�

ck cl−1

Qk Q l−1
−

ck−1 cl

Qk−1 Q l

�
�

αk,l−1−αl ,k−1
�

, (1.17)
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where αk,l−1 are called stoichiometric coefficients and are given by

αk,l−1
r

= δk,r +δl−1,r with δk,r =

¨

1 , k = r

0 , k 6= r
.

The functional derivative of F [c] is identified with

DF [c] =

�

log
ck

Qk

− 1
�

k≥0
.

Then, the evolution (1.17) can be written as the gradient flow

ċ = −K [c] DF [c]

where the linear operator K [c] is formally given by the infinite matrix

K [c] =
1
2

∑

k,l≥1

κ(k, l−1) ΛB

�
ck cl−1

Qk Q l−1
,

ck−1 cl

Qk−1 Q l

�
�

αk,l−1−αl ,k−1
�

⊗
�

αk,l−1−αl ,k−1
�

.

Hereby, Λ : R≥0 ×R≥0→R≥0 is the logarithmic mean

ΛB(s, t) =

¨
s−t

log s−log t , s 6= t

s , s = t
.

1.4. Open questions. The Assumption 1.2 leaves parameter regimes open. There
is a minimal gap between assumption (K1) for existence and the slightly stronger
one (K2) for uniqueness. Note, that by the results of [Ese18, Theorem 5] follows
uniqueness under assumption (K1) for initial values with finite p-moment for any
p > 1, that is
∑

k≥1 kp c̄k <∞.
The picture for the longtime behavior is a bit less complete due to the various

conditions in Assumption 1.4. First of all (K4) implies in particular sublinear growth
for the kernel, and hence the case of kernels with linear growing rates is open. This
assumption enters the proof at two points. Firstly, to establish that the solutions
to (1.2) constitute a semigroup in the weak∗ topology (Theorem 2.11) the sublinear
growth of {al}l≥0 and {bk}k≥1 is needed. Although, it seems possible to salvage this
by using similar arguments as in [Sle89]. Secondly, the relative compactness of the
orbits for solutions with initial mass density ̺ < ̺c is only established under (K4)
with {al}l≥0 and {bk}k≥1 with at most linear growth.

For kernels not satisfying the detailed balance assumption (BDA), the longtime
behavior is largely open. The recent preprint [EV19] provides a contractivity state-
ment for any two solutions under suitable monotonicity assumptions on the rates,
which in particular gives convergence to equilibrium.

Also, once a qualitative convergence statement as (1) in Theorem 1.7 is proven,
one could ask for an improvement to a quantitative statement, which seems possible
by the tools developed in [CEL17, CS17] under suitable additional assumptions on
the kernel.

The statement (2) of Theorem 1.7 raises the question of how the escape of the
excess mass ̺0−̺c happens and if some evolution equation may be deduced, which
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is asymptotically satisfied by the excess mass. The similarity to the Becker-Döring
model suggests that some transport equation related to the classical theory for coars-
ening by Lifshitz–Slyozov [LS61] and Wagner [Wag61] may be deduced by similar
means as in [Pen97, Vel98, LM02, Nie03, Sch18].

The formal framework in section 1.3 could be made rigorous by following the
approach of [EFLS16]. In addition to that, the mean-field limit of the stochastic
particle systems as obtained by [GJ18] could be proven within the variational frame-
work of (generalized) gradient flows or similarly in the context of large-deviations.
A related question is whether the variational evolutionary Γ -convergence as applied
in [Sch18] to the Becker-Döring system is applicable to obtain a macroscopic limit
of the exchange-driven growth model.

Outline. The section 2 contains the well-posedness results, that is Theorem 1.3.
First, existence via a truncation argument is shown in subsection 2.1. After this, the
fact that solutions constitute a generalized flow is obtained in section 2.2. Finally,
uniqueness with the semigroup property and positivity is proven in section 2.3. The
longtime behavior as stated in Theorem 1.7 is proven in section 3. First, the Lya-
punov property of (1.16) is established in subsection 3.1. Secondly, the relative
compactness of orbits is obtained in subsection 3.2, which allows to apply LaSalle’s
invariance principle later. The proof of Theorem 3.3 concludes in subsection 3.3.
The appendix A provides a version of the Lemma de la Vallée-Poussin, which is
needed for existence.

2. WELL-POSEDNESS

2.1. Existence by truncation. The basic properties of the space X from (1.7) are
summarized below.

Proposition 2.1 ([BCP86]). The space X is a Banach space and it is the dual space

of
∗X =
�

(cl)l≥0 : (1+ l)−1cl → 0 as l →∞
	

.

Moreover, let a sequence (c j) j≥0 ⊂X and some c ∈ X be given. Then

(1) c j converges weakly∗ to c in X if and only if

(a) sup j‖c
j‖ <∞, and

(b) c
j

l
→ cl as j→∞ for all l ≥ 0.

(2) c j converges strongly to c in X if and only if

(a) c j converges weakly∗ to c in X , and

(b) ‖c j‖ → ‖c‖ as j→∞.

For a given sequence {αk}k∈N0
, the functionalA :X →R given by

A [c] =
∑

k≥0

αk ck (2.1)

is weak∗ continuous if and only if αk/k→ 0 as k→∞.
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Any sequence inB̺ from (1.8) is by definition bounded inX + and has by Propo-
sition 2.1 a weak∗ convergent subsequence. The topology of weak∗ convergence
in B̺ can be metrizised by

d(c, d) =
∑

k≥0

|ck − dk| . (2.2)

The space B̺ becomes a compact metric space equipped with d and to avoid any
confusion this space is denoted by B̺d .

Definition 2.2 (Solution). For T ∈ [0,∞] a family of functions {ck(·)}k≥0 is called
a solution to (1.2) on [0, T ) provided that

(1) ck : [0, T )→ [0,∞) is continuous and bounded supt∈[0,T) ck(t) <∞

(2) The nonlinear birth Ak−1[c] and death rates Bk[c] defined in (1.4) are inte-
grable
∫ t

0

Ak−1[c(s)]ds <∞ and

∫ t

0

Bk[c(s)]ds <∞ for k ≥ 1 and t ∈ [0, T ) . (2.3)

(3) The equation (1.6) holds in integrated form for t ∈ [0, T )

ck(t) = ck(0) +

∫ t

0

�

Jk−1[c(s)] − Jk[c(s)]
�

ds for k ≥ 0 , (2.4)

again with the convention that J−1 ≡ 0.

Definition 2.2 is also used in [Ese18], where the conservation laws (1.3), pos-
itivity, existence and uniqueness were deduced under additional assumptions on
initial moments. The result proven in this section extends the well-posedness the-
ory of [Ese18] to arbitrary initial data under the sole Assumption 1.2. The first
step for the existence and stability of solution is done by considering for N ≥ 1 the
following truncated system of ordinary differential equations.

ċN
k
= J N

k−1[c
N ]− J N

k
[cN ] for k = 0, . . . , N , (2.5)

where

J N
k [c

N ] = AN
k [c

N ] cN
k − BN

k+1[c
N ] cN

k+1 for k = 0, . . . N − 1 .

with

AN
k−1[c

N ] =

N∑

l=1

K(l, k − 1) cN
l

and BN
k
[cN ] =

N−1∑

l=0

K(k, l) cN
l

for k = 1, . . . , N .

Any element cN ∈RN+1 is extended to X by setting cN
k
= 0 for k > N .

The well-posedness of the truncated system (2.5) follows from standard theory
of ordinary differential equations. However, to deduce stability properties of the
infinite system (1.2), certain estimates for (2.5), uniform in N , are needed. First
properties of the truncated system are deduced by the following simple Proposition,
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which is also the basis of the analysis in [Ese18]. It is convenient to rewrite (2.5)
as a nonlinear birth-death chain based on the above definitions

ċN
0 = −AN

0 [c
N ] cN

0 + BN
1 [c

N ] cN
1 ;

ċN
k
= AN

k−1[c
N ] cN

k−1 −
�

AN
k
[cN ] + BN

k
[cN ]
�

cN
k
+ BN

k+1[c
N ] cN

k+1 for k = 1, . . . , N − 1 ;

ċN
N = AN

N−1[c
N ] cN

N−1 − BN
N [c

N ] cN
N . (2.6)

The basic properties of the truncated system are already established in [Ese18].

Proposition 2.3 (Properties of truncated system [Ese18, Lemma 1+2, Corollary
1]). For any N let cN be the solution to (2.5). Then it holds for any sequence of real

numbers (gk)k≥0

d
dt

N∑

k=0

gk cN
k
+

N∑

k=1

(gk − gk−1)B
N
k
[cN ] cN

k
=

N−1∑

k=0

(gk+1− gk)A
N
k
[cN ] cN

k
. (2.7)

In addition, the zeroth and first moments of cN are conserved. Moreover, nonnegativity

of the initial data cN
k
(0) ≥ 0 for k ≥ 0 is preserved cN

k
(t) ≥ 0 for all t ∈ [0,∞). In

particular, for cN (0) ∈ P ̺ follows cN (t) ∈ P ̺ for all t ∈ [0,∞).

Based on the above Proposition, the existence of solutions is obtained by a suit-
able limiting procedure with the help of the Arzelà-Ascoli Theorem similar to how
it is done in [BCP86, Theorem 2.2] for the classical Becker-Döring system.

Theorem 2.4 (Existence of solutions). Let the rates satisfy the linear growth assump-

tion for all l, k ≥ 1

K(k, l − 1)≤ ak al , where for some CK > 0: ak ≤ CK k . (2.8)

Let (gk)k≥0 be a positive increasing sequence satisfying for some Cg > 0

ak (gk+1− gk)≤ Cg gk . (2.9)

If ak has linear growth, that is lim infk→∞
ak

k > 0, then gk is additionally assumed to

be of superlinear growth, that is limk→∞
gk

k =∞.

Then for any T > 0, any ̺ > 0 and any c̄ ∈ P ̺ with
∑

k≥0 gk c̄k ≤ C̄g <∞ there

exists a nonnegative solution to (1.2) with c(0) = c̄ satisfying the bound

∑

k≥0

gk ck(T ) +

∫ T

0

∑

k≥1

(gk − gk−1)Bk[c(s)] ck(s)ds ≤ C̄geCK (1+̺)Cg T . (2.10)

Moreover, for any c̄ ∈ P ̺ there exists a superlinear positive increasing sequence (gk)k≥0

satisfying (2.9) with
∑

k≥0 gk c̄k <∞. In particular, there exists a nonnegative solution

to (1.2) with c(0) = c̄ conserving the number density and total mass
∑

k≥0

ck(t) =
∑

k≥0

c̄k = 1 and
∑

k≥1

k ck(t) =
∑

k≥1

k ck(t) = ̺ for all t ∈ [0, T ) .
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Remark 2.5. Theorem 2.4 also contains the stability of solutions on compact time
intervals. For this reason, the quantified growth condition (2.8) is introduced. Es-
pecially, by choosing ak = k + 1 and gk = (k + 1)p for p ≥ 1, for which (2.9) holds
with Cg = 2p − 1, it shows that arbitrary high moments are bounded on compact
time intervals, once the initial data has a p-th moment.

Likewise, Theorem 2.4 contains the existence part of Theorem 1.3, for which
it is applied with gk = k + 1 in the case where ak is of sublinear growth. In this
case, (2.9) is satisfied with Cg = 1 and also the condition on the initial datum is
satisfied, since c̄ ∈ P ̺ and therefore

∑

k≥0(k + 1) c̄k = 1+ ̺ = C̄g <∞. If ak is of
linear growth, then a superlinear sequence gk satisfying (2.9) and

∑

k≥0 gk c̄k <∞

is obtained from c̄ ∈ P ̺ via the Lemma de la Vallée-Poussin A.1.

Proof. Let c̄N
k
= c̄k for k = 0, . . . , N . Then Proposition 2.3 implies the existence

of a unique solution cN to (2.5) with cN (0) = (c̄k)0≤k≤N and cN (t) preserves for
t ∈ [0,∞) the zeroth and first moment, which in particular implies the bounds

N∑

l=0

cN
l (t) =

N∑

l=0

c̄l ≤ 1 and
N∑

l=1

l cN
l (t) =

N∑

l=0

l c̄l ≤ ̺ for all t ∈ [0,∞) .

The last bound translates to the pointwise bounds

0≤ cN
0 (t) ≤ 1 and 0≤ cN

k
(t) ≤

̺

k
for k = 1, . . . , N .

The at most linear growth assumption (2.8) implies for all k ≥ 1

AN
k−1[c

N ] =

N∑

l=1

K(l, k − 1) cN
l ≤ C2

K ̺ k (2.11)

BN
k
[cN ] =

N−1∑

l=1

K(k, l − 1) cN
l−1 ≤ C2

K
(̺ + 1) k . (2.12)

Plugging these bounds into (2.6) yields for all k = 0, . . . , N the estimate

|ċN
k
| ≤ AN

k−1[c
N ]cN

k−1 +
�

AN
k
[cN ] + BN

k
[cN ]
�

cN
k
+ BN

k+1[c
N ]cN

k+1

≤ C2
K

�

̺(k − 1)cN
k−1 + (2̺ + 1)kcN

k
+ (̺ + 1)(k+ 1)cN

k+1

�

≤ 2 C2
K (2̺ + 1)

N∑

k=1

kcN
k
= 2 C2

K (2̺ + 1)̺ <∞ . (2.13)

This shows that, for each k ≥ 0, the family
�

cN
k
(·)
�

N≥k
is equicontinuous on [0,∞)

and the Arzelà-Ascoli theorem implies after extracting a suitable diagonal subse-
quence Nn→∞, the existence of a sequence of continuous function ck : [0,∞)→R

with c
Nn

k
→ ck uniformly on compact subintervals of [0,∞) for all k ≥ 0. In particu-

lar, the limit satisfies
∑

l≥0

cl(t) ≤ 1 and
∑

l≥1

lcl (t) ≤ ̺ for t ∈ [0,∞) . (2.14)
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The uniform bounds (2.11) and (2.12) together with the uniform convergence give
for any M ≥ 1 and k ≥ 1 the bounds

M∑

l=1

K(l, k − 1) cl ≤ C2
K ̺ k and

M−1∑

l=1

K(k, l − 1) cN
l−1 ≤ C2

K (̺ + 1) k .

Integration of these bounds over [0, t) and letting M →∞ gives (2.3).
Before turning to the proof of (2.4), the stability estimate (2.10) based on (2.7)

from Proposition 2.3 is shown. The two assumptions (2.8) and (2.9) allow to bound
the right hand side of (2.7)

N−1∑

k=0

(gk+1− gk)A
N
k [c

N ] cN
k ≤

N−1∑

k=0

(gk+1− gk) ak cN
k

∑

l≥1

al cN
l ≤ CK (1+̺)Cg

N−1∑

k=0

gk cN
k .

Plugging this bound into (2.7) yields

d
dt

N∑

k=0

gk cN
k
+

N∑

k=1

(gk − gk−1)B
N
k
[cN ] cN

k
≤ CK (1+̺)Cg

N∑

k=0

gk cN
k

.

The Gronwall Lemma gives for any T ∈ [0,∞) the uniform in time bound

N∑

k=0

gk cN
k
(T ) +

∫ T

0

N∑

k=1

(gk − gk−1)B
N
k
[cN (t)] cN

k
(t)dt ≤ C̄geCK (1+̺)Cg T .

The map k 7→ gk is increasing, which allows to pass to the limit N →∞ along the
above used subsequence Nn leading to the bound (2.10).

To pass to the limit in the integrated form of (2.5) to obtain (2.4), it is needed to
show

lim
N→∞

∫ T

0

AN
k−1[c

N (s)]ds =

∫ T

0

Ak−1[c(s)]ds . (2.15)

By the uniform convergence of each cN
k
(·)→ ck(·) on compact time intervals follows

M∑

l=1

K(l, k − 1)cN
l
(t)→

M∑

l=1

K(l, k − 1)cl(t) for any t ∈ [0,∞) as N →∞ .

If (ak)k≥0 is of sublinear growth, then the bound (2.14) allows to let M → ∞.
If (ak)k≥0 is of linear growth, then the superlinear growth of (gk)k≥0 in the just
established stability estimate (2.10) gives

∑

k≥0 gk ck(t) <∞ for any t ∈ [0,∞),
which allows again to let M →∞ also in this case. Hence, the limit (2.15) is shown
and a similar argument allows to pass to the limit in BN

k
[c(·)]. Both bounds allow to

pass to the limit in the integrated form of (2.5) to obtain (2.4). Hence, the family
(ck(·))k≥0 is a solution to (1.2) in the sense of Definition 2.2.

Finally, the existence of a superlinear positive increasing sequence (gk)k≥0 satisfy-
ing (2.9) with

∑

k≥0 gk c̄k <∞ is established in the Lemma de la Vallée-Poussin A.1.
The stability bound (2.10) allows then to pass to the limit in the conservation of the
truncated system established in Proposition 2.3.
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2.2. Generalized flow. After having established the existence of solution, the next
basic property, which should be satisfied by all solutions in the sense of Defini-
tion 2.2 are the conservation laws (1.3), such that every solution is actually in P ̺

on compact time intervals. This is a consequence of a theorem from [BCP86], which
carries over with only minor modifications and its proof is omitted.

Theorem 2.6 ([BCP86, Theorem 2.5]). Let (gk)k≥0 be a real sequence. Let c be a

solution to (1.2) on some interval [0, T ) with 0 < T ≤ ∞ in the sense of Defini-

tion 2.2. Suppose that for 0 ≤ t1 < t2 < T ,
∫ t2

t1

∑

k≥0|gk+1 − gk|Ak[c(t)]ck(t)dt <∞

and either that gk = O(k) and
∫ t2

t1

∑

k≥0|gk+1 − gk|Bk+1[c(t)]ck+1(t)dt <∞ or that
∑

k≥0 gkck(t i) <∞ for i = 1,2 and gk+1 ≥ gk ≥ 0 for sufficiently large k. Then, for all

m ≥ 0
∑

k≥m

gk ck(t2)−
∑

k≥m

gk ck(t1) +

∫ t2

t1

∑

k≥m

(gk+1− gk)Bk+1[c(t)] ck+1(t)dt (2.16)

=

∫ t2

t1

∑

k≥m

(gk+1− gk)Ak[c(t)] ck(t)dt +

∫ t2

t1

gm Jm−1[c(t)]dt .

The conservation of mass is a direct consequence of the above statement.

Corollary 2.7 (Conservation laws). Let c be a solution to (1.2) with c(0) = c̄ ∈ P ̺

on some interval [0, T ) for 0< T ≤∞. Then for all t ∈ [0, T ) holds c(t) ∈ P ̺.

Proof. Setting m = 0 and gk = 1 for all k in (2.16) yields
∑

k≥0 ck(t) =
∑

k≥0 ck(0) =
1. Similarly, choosing m = 0 and gk = k gives for any 0≤ t1 ≤ t2 < T the identity

∑

k≥1

k ck(t2)−
∑

k≥0

k ck(t1) +

∫ t2

t1

∑

k≥0

Bk+1[c(t)] ck+1(t)dt =

∫ t2

t1

∑

k≥0

Ak[c(t)] ck(t)dt .

The conservation of the first moment follows from noting that
∑

k≥1

Bk[c] ck =
∑

k≥1

∑

l≥1

K(k, l − 1) ck cl−1 =
∑

k≥1

Ak−1[c] ck−1 .

Another consequence of the mass conservation is the continuity of solutions,
which proof follows along the lines of [BCP86, Proposition 3.1].

Proposition 2.8. Let c be a solution to (1.2) on some interval [0, T ) for 0 < T ≤

∞. Then c : [0, T ) → X is continuous and the series
∑

k≥0(1 + k) ck(t) is uniformly

convergent on compact intervals of [0, T ).

Proof. For l ≥ 0, the functions fl(t) =
∑l

k=0(1 + k) ck(t) are continuous and mono-
tone fl+1 ≥ fl on [0, T ). By the mass conservation from Corollary 2.7, it follows
liml→∞ fl(t) = 1+̺. Hence, the uniform convergence statement is a consequence
of Dini’s theorem and the continuity of c in X is a consequence of the continuity of
the individual ck for all k ≥ 0.
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Definition 2.9 (Semigroup/Generalized flow). A generalized flow G on a metric
space Y is a family of continuous mappings ϕ : [0,∞)→ Y such that

(1) If ϕ(·) ∈ G, so is for any τ > 0 also ϕ(·+τ) ∈ G.
(2) For all y ∈ Y exists ϕ(·) ∈ G with ϕ(0) = y.
(3) If a family (ϕ j) j≥0 ⊂ G satisfies ϕ j(0) → ϕ(0) in Y , then there exists a

subsequence ( jk)k≥0 and ϕ ∈ G such that ϕ jk (t) → ϕ(t) on compact time
intervals.

If G is a generalized flow such that for each y ∈ Y exists a unique ϕ ∈ G with
ϕ(0) = y, then G is called semigroup. In this case, for any t ≥ 0 the mapping
T (t) : Y → Y defined by T (t)y = ϕ(t) satisfies

(1) T (0) = Id ,
(2) T (t + s) = T (s)T (t) for all t, s ≥ 0 ,
(3) (t, y) 7→ T (t)y is continuous from [0,∞)× Y → Y .

The fact that all solutions constitute a generalized flow with respect to the strong
topology is shown along the lines of [BCP86, Theorem 3.4].

Theorem 2.10 (Generalized flow in strong topology). Let G the set of all solutions c

to (1.2) with c(0) ∈ P = {c ∈ X + :
∑

l≥0 cl = 1}. Then G is a generalized flow on the

subspace P of X .

Proof. Any solution c : [0,∞)→ P to (1.2) is continuous by Proposition 2.8. The
existence of a solution to initial data c̄ ∈ P is a consequence of Theorem 2.4. This
shows the first two properties of a generalized flow in Definition 2.9. It is left to
prove the third semicontinuity property. Hence, let c̄ j be a sequence of initial data
converging to c̄ in X . Now, let c j be a sequence of solutions with c j(0) = c̄ j . Since,
c̄ j → c̄ inX , it follows that C = {c̄ j} j≥0∪ c̄ is tight inX and there exists a superlinear

function (gk)k≥0 satisfying (2.9) such that sup j

∑

k≥0 gk c̄
j

k
<∞ based on the Lemma

of de la Vallée-Poussin A.1. Hence, the family (c j(·)) j constructed in Theorem 1.3

is also tight satisfying the bound supt∈[0,T) sup j

∑

k≥0 gkc
j

k
(t) <∞ for any T > 0 by

the stability estimate (2.10). Hence there is c ∈ C([0,∞),X +) such that, after the
possible extraction of a subsequence ( jk)k≥0, c

jk
l
(t) → cl(t) uniformly on [0, T ] for

any T > 0 and all l ≥ 0. Then, by similar argument as in the proof of Theorem 2.4,
c is a solution to (1.2). Moreover, the tightness of the family of solutions implies
the conservation of the zeroth and first moment
∑

l≥0

(l + 1) c jk
l
(t) =
∑

l≥0

(l + 1) c jk
l
(0)→
∑

l≥0

(l + 1) cl(0) =
∑

l≥0

(l + 1) cl(t) for k→∞ .

In particular, convergence in X on compact time intervals holds by Proposition 2.1.

Likewise all solutions constitute a generalized flow with respect to the weak∗

topology under the additional assumption of sublinear growth of the kernel, which
is a result analog to [BCP86, Theorem 3.5].
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Theorem 2.11 (Generalized flow in weak topology). Let the rates satisfy the sublin-

ear growth assumption

K(k, l − 1)≤ ak al , where lim
k→∞

ak

k
= 0 , (K′1)

and let G the set of all solutions c to (1.2) with c(0) ∈ X +. Then for any ̺ > 0 is G a

generalized flow on the compact metric space (B̺ ,d) with d defined in (2.2).

Proof. Thanks to the existence from Theorem 2.4 it is left to prove (3) of Defini-
tion 2.9. Hence, let c̄ j ∗−* c̄ as j →∞ and let (c j)g≥1 be the sequence of solutions
to (1.2) constructed in Theorem 2.4. The solutions are uniformly absolutely contin-
uous satisfying ċ

j

l
(t) ≤ CK(̺ + 1)̺ for all l ≥ 0 by the bound (2.13). Hence, by the

Arzelà-Ascoli theorem, there exists a diagonal sequence ( jk)k≥1 such that c
jk
l
→ c

jk
l

uniformly in l ≥ 0 on compact time intervals, which implies that d
�

c jk (t), c(t)
�

→ 0
on compact time intervals. Also, this convergence implies that

∑

l≥1

lcl(t) ≤ lim inf
k→∞

∑

l≥1

lc
jk
l
(t) = ̺

for all t ≥ 0, so that c(t) ∈B̺ . Finally, it is possible to pass to the limit in the equa-
tion, because the coefficients Ak[·] and Bk[·] are of the form (2.1) and hence weak∗

continuous thanks to the sublinear growth assumption (2.8) by Proposition 2.1.

2.3. Uniqueness, semigroup and positivity. The uniqueness result is based on
ideas from [LM02]. It requires to slightly enforce the Assumption (2.8) by addition-
ally requiring some regularity on the exchange rates.

Theorem 2.12 (Uniqueness). If K satisfies Assumption (K2), then for any c̄ ∈ P ̺

with ̺ > 0 and all T > 0 exists a unique solution c of (1.2) on [0, T ) satisfying

c(0) = c̄.

Proof. Let c be the solution to c̄ constructed in Theorem 2.4 and d another solution
with the same initial datum c̄. The core idea from [LM02] is to consider the tail
distributions

C j(t) =
∑

k≥ j

ck(t) and Dj =
∑

k≥ j

d j(t) .

Proposition 2.8 implies that C ∈ C([0, T );ℓ1(N0)), since

∑

j≥0

C j =
∑

k≥0

ck

k∑

j=0

=
∑

k≥0

(k + 1) ck = 1+̺ .

Furthermore, it holds C0(t) = 1= D0(t) for all t ∈ [0, T ). The differences

Ek(t) = Ck(t)− Dk(t) =
∑

j≥k

e j(t) with e j(t) = c j(t)− d j(t)
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satisfy by Theorem 2.6 applied with gk = 1

dEk(t)

dt
= Jk−1[c]− Jk−1[d]

= Ak−1[e] ck−1 − Bk[e] ck + Ak−1[d] (Ek−1 − Ek)− Bk[d] (Ek − Ek+1) .

For any absolutely continuous function σ : [0, T ) → R holds by the chain rule
d
dt
|σ(t)| = sgnσ(t) σ̇(t) for a.e. t ∈ [0, T ). Hence, carefully tracking the signs

results in the estimate
d|Ek(t)|

dt
≤
�
�Ak−1[e]
�
� ck−1 +
�
�Bk[e]
�
� ck + Ak−1[d]
�

|Ek−1| − |Ek|
�

+ Bk[d]
�

|Ek+1| − |Ek|
�

.

Summation gives the bound
N∑

k=1

d|Ek(t)|

dt
≤

N∑

k=1

��
�Ak−1[e]
�
� ck−1 +
�
�Bk[e]
�
� ck

�

+

N∑

k=1

|Ek|
�

Ak[d]− Ak−1[d]
�

− |EN |AN [d]

+

N∑

k=1

|Ek|(Bk−1[d]− Bk[d]) + |EN+1|BN [d] ,

where E0 = 0 = B0[d] by definition. The Assumption (K2) implies that the kernel
grows at most linearly K(k, l − 1)≤ CK k l, from which the estimate

|EN+1|BN [d] ≤ CK (1+̺)N
∑

j≥N+1

�

|c j |+ |d j|
�

≤ CK(1+̺)
∑

j≥N+1

j
�

|c j |+ |d j|
�

→ 0

as N → ∞ is obtained. The convergence statement is a consequence of the two
conservation laws from Corollary 2.7 on compact time intervals.

The terms Ak−1[e] and Bk[e] are estimated using the identity

Ak[e] =
∑

l≥1

K(l, k) (El−1 − El) =
∑

l≥1

El

�

K(l + 1, k)− K(l, k)
�

,

which by Assumption (K2) implies

N∑

k=1

�
�Ak−1[e]
�
� ck−1 ≤ CK

∑

l≥1

|El |

N∑

k=1

k ck−1 ≤ CK(1+̺)
∑

l≥1

|El | .

A similar bound applies to Bk[e]. Again Assumption (K2) results in the bound

Ak[d]− Ak−1[d] =
∑

l≥1

�

K(l, k)− K(l, k − 1)
�

dl ≤ CK

∑

l≥1

l dl = CK̺

and similarly the difference in Bk[d]. In total, there is some constant C̃ = C̃(CK ,̺)
such that after passing to the limit N →∞, the bound

d
dt

∑

k≥1

|Ek(t)| ≤ C̃
∑

k≥1

|Ek(t)|

is established, which shows Ek(t) = 0 for all t ∈ [0, T ) and k ≥ 1. This implies that
c j(t) = d j(t) for all j ≥ 1 and t ∈ [0, T ). The conservation laws from Corollary 2.7
imply ‖c(t)‖ = ‖d(t)‖ and hence c(t) = d(t) on [0, T ) in X by Proposition 2.1.
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In particular under the refined linear growth Assumption (K2) the constructed
solutions in Theorem 2.4 are unique and generate a semigroup in the sense of
Definition 2.9.

Corollary 2.13 (Semigroup). Let K satisfy (K2), then the solutions to the exchange-

driven growth dynamic (1.2) are a semigroup on P ̺ in the strong topology for any

̺ > 0. If in addition K satisfies (K′1), then it constitutes a semigroup on (B̺ ,d).

The uniqueness theorem states that the solution to the truncated system (2.5)
converges strongly to the solution of (1.2), whose proof follows along the lines
of [BCP86, Theorem 3.9] and is omitted.

Proposition 2.14. Let c̄ ∈ P ̺ for some ̺ > 0 and suppose that K satisfies (K2). Let cN

be the solution of (2.5) with initial data c̄N
k
= c̄k for k = 0,1, . . . , N . Then as N →∞

it holds cN (t) → c(t) in X uniformly on compact time intervals of [0,∞) with c the

unique solution of (1.2) on [0,∞) and c(0) = c̄.

The last property of solutions to (1.2) under Assumption (K2) is their strict pos-
itivity for positive times, provided the kernel is strictly positive, too. This result is
analog to the one in [BCP86, Theorem 4.6].

Proposition 2.15. Suppose K : N×N0→ [0,∞) is strictly positive and satisfies (K1).

Let c be a solution to (1.2) on some interval [0, T ) with 0< T ≤∞ such that cm(0) > 0
for some m≥ 1. Then, it holds ck(t) > 0 for all k ≥ 0 and t ∈ (0, T ). Moreover, for any

0< t0 < t < T , it holds the quantitative lower bound

ck(t) ≥ ck(t0)exp
�

−CK (2̺ + 1) (k + 1) (t − t0)
�

for k ≥ 0 . (2.17)

Remark 2.16. The assumption cm(0) > 0 for some m≥ 1 is crucial due to the vacuum
state cvac

k
= δk,0, which is an element of P 0, i.e. having mass density ̺ = 0. In

particular, the assumption is satisfied for any c ∈ P ̺ with ̺ > 0.

Proof. The proof follows by contradiction. First, the case c0(τ) = 0 for some τ ∈
(0, T ) is considered. Integrating the equation ċ0(t) = −A0[c(t)] c0(t) + B1[c(t)] c1(t)

on (0,τ) gives the identity

0= c0(τ) exp

�∫ τ

0

A0[c(s)]ds

�

= c0(0) +

∫ τ

0

exp

�∫ t

0

A0[c(s)]ds

�

B1[c(t)] c1(t)dt .

Hence, c0(0) = 0 and B1[c(t)]c1(t) = 0 for a.e. t ∈ (0,τ) and by the continuity
property from Proposition 2.8 also for all t ∈ [0,τ]. If B1[c(τ)] = 0, then cl(τ) = 0
for all l ≥ 0 from the positivity of the rates. In the case B1[c(τ)] > 0 follows c1(τ) = 0
and the argument is contained in the case considered below.

Let cl(τ) = 0 for some l ≥ 1 and some τ ∈ (0, T ). The equation

ċl(t) = (Al−1[c(t)] cl−1(t) + Bl+1[c(t)] cl+1(t))− θl(t) cl (t) (2.18)

with θl(t) = Al[c(t)] + Bl[c(t)] ,



20 ANDRÉ SCHLICHTING

integrates to

0= cl(τ)exp

�∫ τ

0

θl(s)ds

�

= cl(0) +

∫ τ

0

exp

�∫ t

0

θl(s)ds

�
�

Al−1[c(t)] cl−1(t) + Bl+1[c(t)] cl+1(t)
�

dt .

(2.19)

Again, it follows that cl(0) = 0 and Al−1[c(t)]cl−1(t) = 0 = Bl+1[c(t)]cl+1(t) for all
t ∈ [0,τ]. Hence, Al−1[c(τ)] = 0 entails ck(τ) = 0 for all k ≥ 1 or cl−1(τ) = 0.
Likewise, Bl+1[c(τ)] = 0 implies ck(τ) = 0 for all k ≥ 0 or cl+1(τ) = 0. Both cases
imply cl−1(τ) = 0 = cl+1(τ). Then, by induction follows that ck(τ) = 0 for all k ≥ 0,
which by (2.19) implies ck(0) = 0 for all k ≥ 0. This is a contradiction to the
assumption that cm(0) > 0 for some m ≥ 1. The lower bound (2.17) follows now
from bounding (2.18) from below. The Assumption (K1) implies

Ak[d]≤ CK ̺ (k + 1) and Bk[d] ≤ CK (̺ + 1) k ,

which in (2.18) leads to the lower bound.

ċl(t) ≥ −θl(t) cl (t) ≥ −Ck (2̺ + 1) (k + 1) cl(t) .

The claim (2.17) is now a consequence of the Gronwall Lemma.

3. CONVERGENCE TO EQUILIBRIUM

3.1. The Lyapunov function and equilibria. The goal of this section is to show
that all equilibria for the evolution (1.2) on P ̺ with 0 < ̺ ≤ ̺c are given by ω̺

in (1.15). The observation that the nonlinear birth death rates (1.4) also satisfy a
detailed balance condition is useful in this context.

Lemma 3.1 (Detailed balance for nonlinear birth and death rates). Suppose K sat-

isfies (K1) and (BDA), then for all ̺ <∞ with 0 < ̺ ≤ ̺c and φ = φ(̺) ∈ (0,φc]

uniquely defined through (1.13) holds

Ak−1[ω
̺]

Bk[ω
̺]
=
φ(̺)K(1, k − 1)

K(k, 0)
=
φ(̺)Qk

Qk−1
=
ω
̺

k

ω
̺

k−1

for all k ≥ 1 . (3.1)

Proof. By the definition (1.11) of (Qk)k≥0 holds K(k, 0)ω̺
k
= φ(̺)K(1, k − 1)ω̺

k−1
and hence (BDA) allows to write

K(k, 0)Ak−1[ω
̺] =
∑

l≥1

K(1, k − 1)K(k, l − 1)
K(1, l − 1)

K(l, 0)ω̺
l

= φ(̺)K(1, k − 1)
∑

l≥1

K(k, l − 1)ω̺
l−1 = φ(̺)K(1, k − 1)Bk[ω

̺] .

The result follows from noting that (1.11) and (1.12) imply

ω
̺

k
/ω

̺

k−1 = φ(̺)K(1, k − 1)/K(k, 0) .
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The main tool for the proof of convergence to equilibrium is the Lyapunov func-
tion from (1.16), which is split for the following discussion into an entropy part and
potential part

F [c] = S [c]−
∑

k≥0

k ck logQ
1/k

k
with S [c] =

∑

k≥0

ck log ck . (3.2)

For ̺ <∞with 0< ̺ ≤ ̺c,F is actually equivalent to the relative entropy between
c ∈ P ̺ and ω̺, since with φ = φ(̺) chosen according to (1.13) it holds

H [c|ω̺] =
∑

k≥0

ck log
ck

Z(φ)−1φkQk

=F [c] + log Z(φ)−̺ logφ . (3.3)

The weak∗ continuity does not hold in general for F , but for the relative entropy
with respect to the maximal density equilibrium ω(φc) by an application of the
criteria from Proposition 2.1. The following result is analog to [BCP86, Proposition
4.5] with the only difference that also the number density is fixed.

Proposition 3.2. The relative entropyH [·|ω(φ)] is weak∗ continuous onB̺ for any

̺ > 0 if and only if

lim
l→∞

Q
1/l

l
= φ−1

c ∈ (0,∞), Z(φc)<∞ and φ = φc . (3.4)

Proof. The relative entropy expands to

H [c|ω(φ)] =
∑

k≥0

ck log ck −
∑

k=0

ck log
�

φkQk

�

+ log Z(φ) .

The first entropy term is weak∗ continuous on X + by [BCP86, Lemma 4.2] and the
second is of the form (2.1) with αk(φ) = − log

�

φkQk

�

. Hence the sufficient and
necessary condition reads

1
k

log
�

φkQk

�

= log
�

φQ
1/k

k

�

→ 0 if and only if φ = φc ,

by (3.4). Finally, the condition Z(φc) < ∞ ensures that the relative entropy is
indeed well-defined in this case.

Lower semicontinuity of the free energy onX + is needed to prove the free energy
dissipation relation. In addition, the following result proves continuity in the case
φc ∈ (0,∞).

Lemma 3.3 (Strong continuity of the free energy). Suppose Assumptions (BDA)
and (Kc) hold.

(1) If φc ∈ (0,∞), then for any ̺ > 0 and c j ∈ P ̺ such that c j → c in X , it

holds

lim
j→∞
F [c j] =F [c] .
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(2) If φc =∞, then for any ̺ > 0 and c j ∈ P ̺ such that c j → c in X with

F [c] <∞, it holds

lim inf
j→∞
F [c j] ≥F [c] .

Additionally, for c ∈ P ̺ ∩ {F <∞} let cN = (c1, . . . , cN , 0, . . . ) its truncation

at N ≥ 1. Then it holds

lim
N→∞
F [cN ] =F [c] .

Proof. The proof uses several times the splitting (3.2) and the result from [BCP86,
Lemma 4.2] that S is finite and weak∗ continuous on B̺ ⊂ X + for any ̺ > 0. In
particular, it holds lim j→∞S [c

j] = S [c] if c j → c in X .
The proof of the (lower semi-)continuity of the second term in the splitting (3.2)

splits into the two cases φc ∈ (0,∞) and φc =∞.

Proof of (1): The Assumption φc ∈ (0,∞) implies that limk→∞ logQ
1/k

k
= − logφc ∈

(−∞,∞) and in particular supl≥1

�
�logQ

1/l

l

�
� <∞. Hence, it holds the estimate

lim
j→∞

�
�
�
�

∑

k≥1

k c
j

k
logQ

1/k

k
−
∑

k≥1

k ck logQ
1/k

k

�
�
�
�
≤ sup

l≥1

�
�logQ

1/l

l

�
�
∑

k≥1

k
�
�c

j

k
− ck

�
�→ 0 as j→∞ .

Proof of (2): The assumption F [c] <∞ and the fact that S is bounded from below
on P ̺ for any ̺ > 0 by [BCP86, Theorem 4.4] imply for any c ∈ P ̺ the estimate

−
∑

k≥0

k ck logQ
1/k

k
≤F [c]− inf

c∈P ̺
S [c] <∞ . (3.5)

The Assumption (Kc) yields the estimate supk≥0 max
�

logQ
1/k

k
, 0
	

= logQ < ∞ for
some Q ≥ 1, implying the bound

−
∑

k≥0

k ck logQ
1/k

k
≥ −̺ logQ > −∞ . (3.6)

Hence, for any ǫ > 0, there exists M1 = M1(ǫ) such that
�
�
∑

k≥M1
k ck logQ

1/k

k

�
� ≤ ǫ

4 .

Since c j → c in X , there exists M2 = M2(ǫ), such that
∑

k≥M2
k c

j

k
≤ ǫ

4 logQ
uniformly

in j. Altogether, for any M ≥max{M1, M2} holds the bound

−
∑

k≥0

k
�

c
j

k
− ck

�

logQ
1/k

k
≥ −

M−1∑

k=0

k
�

c
j

k
− ck

�

logQ
1/k

k
− logQ
∑

k≥M

k c
j

k
−

�
�
�
�

∑

k≥M

k ck logQ
1/k

k

�
�
�
�

≥ − sup
0≤l≤M−1

�
�logQ

1/l

l

�
�

M−1∑

k=0

k
�
�c

j

k
− ck

�
�−
ǫ

2
.

Now, using once more c j → c in X , there exists j large enough such that the first
term becomes bounded from below by −ǫ/2.
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Since cN → c in X , it also holds S [cN ]→ S [c] as before. By the splitting (3.2),
the result follows from (3.5) and (3.6) by noting that
�
�F [cN ]−F [c]
�
� ≤
�
�S [cN ]−S [c]

�
�+

�
�
�
�

∑

k≥N+1

k ck logQ
1/k

k

�
�
�
�
→ 0 as N →∞ .

Proposition 3.4 (Free energy dissipation relation). Suppose the Assumptions (K1),

(BDA) and (Kc) hold. Let c be the solution constructed in Theorem 2.4 to some initial

data c̄ ∈ P ̺ for some ̺ > 0 with F [c̄] <∞. Then, for all t ∈ [0, T ) it holds

F [c(t)] +

∫ t

0

D[c(s)]ds ≤F [c̄] , (3.7)

where the dissipation is given by

D[c] =
1
2

∑

k≥1

∑

l≥1

ψB

�

K(k, l − 1) ck cl−1, K(l, k − 1) cl ck−1

�

(3.8)

with ψB(a, b) = (a − b)(log a− log b).

Proof. For N ≥ 1, the truncated Lyapunov function and dissipation are defined by

F N [c] =

N∑

k=0

ck log
ck

Qk

,

DN [c] =
1
2

N∑

k=1

N∑

l=1

ψB

�

K(k, l − 1) ck cl−1, K(l, k − 1) cl ck−1

�

.

Let cN be the solution of the truncated system (2.5) to the truncated initial data
c̄N

k
= c̄k for k = 0,1, . . . , N . Since c̄ ∈ P ̺ for some ̺ > 0, there exists c̄m > 0 for

some m ≥ 1 and hence also c̄N
m
> 0 for N sufficiently large. By the same argument

as in Proposition 2.15, it holds that cN
k
(t0) > 0 for all k = 0,1, . . . , N and any t0 >

0. From here the free energy dissipation relation for the truncated system can be
calculated by using that the relation (1.5) holds similarly for the truncated system,
a summation by parts noting that J N

−1[c] = 0 = J N
N
[c] and symmetrization of the

sum

d
dt
F N[cN ] =

N∑

k=0

log
cN

k

Qk

ċk =

N∑

k=0

log
cN

k

Qk

�

J N
k−1[c]− J N

k
[c]
�

= −

N∑

k=1

N∑

l=1

�

log
cN

k−1

Qk−1
− log

cN
k

Qk

�
�

jl ,k−1[c
N ]− jk,l−1[c

N ]
�

= −
1
2

N∑

k=1

N∑

l=1

�

log
cN

k−1cN
l

Qk−1Q l

− log
cN

k
cN

l−1

QkQ l−1

�
�

jl ,k−1[c
N ]− jk,l−1[c

N ]
�

= −
1
2

N∑

k=1

N∑

l=1

ψB

�

jl ,k−1[c
N ], jk,l−1[c

N ]
�

= −DN [cN ] .
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Hereby, the last identity is a consequence of (DBC). Now, along the subsequence
(Nn), for which cNn

∗
−* c as in the proof of Theorem 2.4, holds the energy estimate

F [cNn(t)] +

∫ t

0

DNn[cNn(s)]ds =F [c̄Nn] .

Since F [c̄] <∞ and c̄Nn → c̄ in X , Lemma 3.3 implies limn→∞F [c̄
Nn] = F [c̄].

Since DN[cN ] ≥ Dm[cN ] for all m < N is holds

lim inf
n→∞

∫ t

0

DNn[cNn(s)]ds ≥

∫ t

0

D[c(s)]ds .

Finally, by Corollary 2.7 and Proposition 2.3 follows for all t > 0 and all N

‖cN (t)‖ =
∑

k≥0

(k + 1) cN
k
(t) = ̺ + 1=
∑

k≥0

(k+ 1) ck(t) = ‖c(t)‖ .

Hence, cN (t)
∗
−* c(t) and ‖cN (t)‖ = ‖c(t)‖ for all t ≥ 0, which by Proposition 2.1 im-

plies that cN (t)→ c(t) in X . Finally, Lemma 3.3 yields that lim infN→∞F [c
N (t)] ≥

F [c(t)] as N →∞ for all t ∈ (0,∞).

Proposition 3.5 (Stationary states). Suppose the Assumptions (K2), (BDA) and (Kc)
hold. Then, the stationary states are characterized by:

(1) For ̺ <∞ with 0 < ̺ ≤ ̺c, the equilibrium state ω̺ defined in (1.15) are

unique on P ̺ ∩ {F <∞}.

(2) For ̺c < ̺ <∞, there exists no equilibrium state on P ̺ ∩ {F <∞}.

Proof. The Assumption (K2) entails that the system (1.2) has a unique solution by
Theorem 2.12, which additionally satisfies the free energy dissipation relation (3.7)
by Proposition 3.4. Hence c∗ is a stationary state if and only if D[c∗] = 0. The
definition of the dissipation (3.8) shows that c∗ satisfies (DBC), since ψB(a, b) = 0
if and only if a = b. The statement of the proposition follows from the construction
of ω̺ in (1.12).

Theorem 3.6 (Free energy minimizer [BCP86, Theorem 4.4]). Suppose the Assump-

tions (K1), (BDA) and (Kc) hold.

• Let ̺ <∞ and 0 ≤ ̺ ≤ ̺s. Then ω̺ defined in (1.15) is the unique min-

imizer of F [c] and H [c|ω̺] over P ̺ and every minimizing sequence con-

verges strongly to ω̺ in X .

• Let ̺ > ̺c. Then

inf
c∈P ̺
H [c|ω̺c ] = 0

and any minimizing sequence converges weak∗ to ω̺c in X , but not strongly.
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3.2. Relative compactness of trajectories. The starting point is that the solution
to (1.2) is a generalized flow in strong topology (Theorem 2.10 under Assump-
tion (K1)) or a generalized flow in the weak topology (Theorem 2.11 under As-
sumption (K′1)) and constitutes in both cases a semigroup (Corollary 2.13 under
Assumption (K2)). The dissipative nature of the evolution is captured by the free
energy dissipation relation (3.7) providing a Lyapunov function for the evolution.
If relative compactness of the orbits in X for the according topology is proven, then
the longtime limit can be deduced by the following invariance principle.

Proposition 3.7 (Invariance principle [BCP86, Proposition 5.3]). Let G be a gener-

alized flow (Definition 2.9) on some metric space (Y , d). Let ϕ(·) ∈ G and suppose

that its positive orbit O +(ϕ) =
⋃

t≥0ϕ(t) is relatively compact. Then

Ω(ϕ) =
�

Φ ∈ Y : ϕ(t j)→ Φ for some sequence t j →∞ as j→∞
	

is nonempty and satisfies

d(ϕ(t),Ω(ϕ))→ 0 as t →∞ .

Moreover Ω(ϕ) is quasi-invariant, that is for any Φ ∈ Ω(ϕ) there exists ϕ(·) ∈ G with

ϕ(0) = Φ and O +(ϕ) ⊂ Ω(ϕ).

The relative compactness in the strong topology can be easily deduced in the
case, where the radius of convergence in (Kc) is infinite.

Lemma 3.8 (Relative compactness for φc =∞). Suppose Assumptions (BDA) and

(Kc) with φc =∞ hold. Let ̺ > 0 and c ∈ P ̺ be any solution of (1.2) on [0,∞)
satisfying c(0) 6= 0, F [c(0)] <∞ and the free energy dissipation relation (3.7). Then

(c(t)) t≥0 is relatively compact in P ̺, that is for any ǫ > 0 exists M = M(ǫ) such that

sup
t≥0

∑

k≥M(ǫ)

k ck(t) ≤ ǫ . (3.9)

Proof. The free energy dissipation relation (3.7) implies F [c(t)] ≤ F [c(0)] <∞
for all t ≥ 0. The entropy S is bounded from below onB̺ by [BCP86, Lemma 4.2]
entailing

−
∑

k≥1

kck(t) logQ
1/k

k
≤F [c(0)]− inf

c∈B̺
S [c] = C <∞ for all t ≥ 0 .

Sinceφc =∞, it holds limk→∞Q
1/k

k
= 0. Hence, for any ǫ > 0, there exists M = M(ǫ)

such that

− logQ
1/k

k
≥

C +̺ logQ

ǫ
for all k ≥ M with Q = sup

k≥0
Q

1/k

k
≥ 1 .

This estimate implies the bound

∑

k≥M

k ck(t) ≤
ǫ

C +̺ logQ

�

−
∑

k≥1

k ck(t) log Q
1/k

k
+

M−1∑

k=1

k ck(t)max
¦

logQ
1/k

k
, 0
©
�

.

The first sum is bounded by C and the second by logQ concluding (3.9).
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Lemma 3.8 together with Corollary 2.13 and Proposition 3.7 establish the proof
of Theorem 1.7 in the case φc =∞.

Corollary 3.9 (Longtime behavior for φc =∞). If Assumptions (BDA), (K2) and

(Kc) with φc =∞ hold, then for any ̺0 ∈ [0,∞) and any c̄ ∈ P ̺0 with F [c̄] <∞

the unique solution c of (1.2) with c(0) = c̄ satisfies c(t) → ω̺ strongly in X as

t →∞.

Proof. The case ̺c =∞ follows immediately by the relative compactness statement
of Lemma 3.8 in combination with the invariance principle from Proposition 3.7.
The strong convergence implies also the continuity statement for the free energy in
the limit by Lemma 3.3.

Before turning to the more involved proof of relative compactness in the strong
topology of solutions to (1.2) in P ̺ for 0 < φc <∞, a weak∗ convergence result
is stated. Since the result relies on the semigroup in weak∗ topology, the sublinear
growth assumption (K′1) is needed. This result is an immediate consequence of the
generalized flow in the weak∗ topology from Theorem 2.11 and the free energy
dissipation relation (3.7). It is the analog to [BCP86, Theorem 5.5] and [Sle89,
Theorem 5.10] for the Becker-Döring system.

Theorem 3.10. Suppose Assumptions (K′1) and (Kc) hold with 0 < φc < ∞. For

̺0 > 0 and c̄ ∈ P ̺0 and let (ct)t≥0 ⊂ P
̺0 be a solution of (1.2) to c̄ satisfying the

free energy dissipation relation (3.7). Then c(t)
∗
−* ω̺ as t →∞ for some 0 ≤ ̺ ≤

min{̺0,̺c}.

Proof. For ̺0 = 0, the only possible state is the vacuum state from Remark 2.16.
Let ̺0 > 0, then Theorem 2.11 yields that the solutions generate a generalized
flow on (B̺ , d). The relative entropy H [·|ω(φc)] is weak∗ continuous on B̺ by
Proposition 3.2. The conservation laws from Corollary 2.7 give uniform bounds
‖c(t)‖ ≤ 1+̺0 for all t ≥ 0 implying that O +(c) is relatively compact in (B̺0 ,d). In
addition any weak∗ limit point will always satisfy the conservation law

∑

k≥0 ck =

1, since the bounded first moment provides the necessary relative compactness in
ℓ1(N0).

By Proposition 3.7 follows that Ω(c) is nonempty and consists of solutions c(·)

along which H [c(t)|ω(φc )] has the constant value h∞. Applying the free energy
dissipation (3.7) to such solutions gives the identity

h∞ +

∫ t

0

D[c(s)]ds ≤ h∞ .

Hence, D[c(s)] = 0 for a.e. s ∈ (0, t) by the nonnegativity (3.8) of D. The form of D
implies that for any fixed s ∈ (0, t) it holds c(s) =ω̺ for some 0 ≤ ̺ ≤ min{̺0,̺c}.
Hence, Ω(c) consists of the states ω̺ with 0 ≤ ̺ ≤min{̺0,̺c}. The unique state is
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identified by considering

H [ω̺ |ω̺c] =
∑

l≥0

ω
̺

l
log
φ(̺)l Z(φ(̺c))

φ(̺c)
l Z(φ(̺))

= ̺ log
φ(̺)

φ(̺c)
+ log

Z(φ(̺c))

Z(φ(̺))
.

The identity d
dφ log Z(φ) =

̺(φ)
φ gives

d
d̺
H [ω̺|ω̺c] =

φ(̺)

φ(̺c)
+̺

φ′(̺)

φ(̺)
−̺

φ′(̺)

φ(̺)
=
φ(̺)

φ(̺c)
.

The mapping ̺ 7→ H [ω̺ |ω̺c] is one-to-one on [0,̺c), since ̺ 7→ φ(̺) is one-
to-one on [0,̺c) by (1.14). Hence, the equation H [ω̺ |ω̺c] = h∞ has a unique
solution for some ̺ with 0≤ ̺ ≤min{̺0,̺c}.

The proof of relative compactness for orbits in the case 0 < φc <∞ is based
on the same strategy as in [BC88], which was also successfully applied to gener-
alized [Cañ05] and modified Becker-Döring systems [HNN06], and macroscopic
limits of the Becker-Döring system [LM02]. The crucial idea is to consider the new
variable

x l(t) =
∑

k≥l

k ck(t)

for which the uniform in time bound xl (t)

λl
® C is established, with λl → 0 as l →∞.

This estimate yields the relative compactness of trajectories in X . The following
proposition provides a tightness result conditioned on certain estimates satisfied by
the nonlinear birth-death rates (1.4). In a second step, it will be ensured that these
estimates actually hold thanks to the weak∗ convergence from Theorem 3.10.

Proposition 3.11 (Relative compactness (0 < φc <∞)). Suppose Assumption (K2)
and (Kc) hold with 0< φc <∞. Let c̄ ∈ P ̺ for some ̺ > 0 and c : [0,∞)→P ̺ be

the unique solution of (1.2) with c(0) = c̄. Suppose that for some φ < φc there exists

l0 such that

sup
t≥0

Al[c(t)]

Bl[c(t)]
< 1 and sup

t≥0

Al[c(t)]

Bl+1[c(t)]
<
φK(1, l)

K(l + 1,0)
uniformly in l ≥ l0. (3.10)

Let (λl) be a positive nonincreasing sequence satisfying

λl −λl+1 ≥ νl (λl−1 −λl) with νl =
l2

(l − 1)2
φK(1, l − 1)

K(l, 0)
. (3.11)

Then it holds that

H(t) =max

�

sup
l≥l0+1

x l(t)

λl

,
̺

λl0

�

is nonincreasing on [0,∞).

Proof. By the uniqueness of the trajectory for the initial datum c̄, it suffices to prove
that if H(0) < ∞ and given T > 0, then for any ǫ > 0 holds H(t) ≤ H(0) + ǫ
for t ∈ [0, T ]. It is again more convenient to prove the result with the help of
the truncated system (2.5). Likewise, let c̄N denote the truncated initial data to c̄

and let ̺N =
∑N

k=1 kc̄k. The strong convergence c̄N → c̄ in X implies the strong
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convergence cN → c in C([0, T ];X ) for any T ∈ (0,∞) by the uniqueness assump-
tion and Theorem 2.10. Likewise, the truncated birth and death rates (2.6) satisfy
AN

l
[cN ]→ Al[c] and BN

l+1[c
N ]→ Bl+1[c] on C([0, T ]) as N →∞ for all l ≥ 0 by the

Assumption (K1). In particular, by Assumption (3.10) there is N0 ≥ 1 such that for
all N ≥N0, l0 ≤ l ≤ N and t ∈ [0, T ] it holds

AN
l
[cN (t)]

BN
l
[cN (t)]

< 1 and
AN

l
[cN (t)]

BN
l+1[c

N (t)]
<
φK(1, l)

K(l + 1,0)
. (3.12)

Let for N ≥N0

yl(t) =
∑

k≥l

k cN
k
(t) , g(t) = sup

l≥l0+1

yl(t)

λl

and HN (t) =max

�

g(t),
̺N

λl0

�

.

The main step consists in proving that

HN (t) ≤ HN (0) + ǫ for all t ∈ [0, T ] . (3.13)

Suppose the contrary holds. Since HN is absolutely-continuous, there exists s ∈

[0, T ] such that HN (s) = Kǫ = HN (0) + ǫ. Since HN (0) ≥ ̺N/λl0
, it holds g(s) = Kǫ,

which implies that yl(s)/λl = Kǫ for some minimal l with l0 + 1≤ l ≤ N such that

yl−1(s)

λl−1
< Kǫ,

yl+1(s)

λl+1
≤ Kǫ and ẏl(s) ≥ 0 . (3.14)

From the definition of yl and (2.5) it holds

ẏl =

N∑

k=l

J N
k
[cN ] + l J N

l−1[c
N ]

=

N∑

k=l+1

�

AN
k
[cN ]− BN

k
[cN ]
�

cN
k
+ AN

l
[cN ] cN

l
+ l
�

AN
l−1[c

N ] cN
l−1 − BN

l
[cN ] cN

l

�

.

Since AN
k
[cN ]− BN

k
[cN ]≤ 0 by (3.12) for k ≥ l0, the above identity is bounded by

ẏl ≤ AN
l
[cN ] cN

l
+ l
�

AN
l−1[c

N ] cN
l−1 − BN

l
[cN ] cN

l

�

= l AN
l−1[c

N ]
yl−1 − yl

l − 1
−
�

l BN
l [c

N ]− AN
l [c

N ]
�

︸ ︷︷ ︸

≥(l−1)BN
l
[cN ]

yl − yl+1

l

≤
l − 1

l
BN

l [c
N ]

�

l2

(l − 1)2
AN

l−1[c
N ]

BN
l
[cN ]

(yl−1 − yl)− (yl − yl+1)

�

< Kǫ
l − 1

l
BN

l
[cN ]

�

l2

(l − 1)2
AN

l−1[c
N ]

BN
l
[cN ]

(λl−1−λl)− (λl −λl+1)

�

≤ Kǫ
l − 1

l
BN

l
[cN ]

�

l2

(l − 1)2
φK(1, l − 1)

K(l, 0)
(λl−1−λl)− (λl −λl+1)

�

≤ Kǫ
l − 1

l
BN

l
[cN ]
�

νl (λl−1−λl)− (λl −λl+1)
�

≤ 0 .
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In the last estimates, the estimate (3.12) was applied, the choice (3.14) of yl was
used and also that (λk)k≥0 satisfies (3.11) and is moreover monotone. Hence, ẏl < 0,
which is contradiction and proves (3.13). The result follows from letting N →∞

using the strong convergence of the truncation cN → c in C([0, T ];X ) of Proposi-
tion 2.14.

The invariance principle from Theorem 3.10 implies that c(t)
∗
−* c̺ . This infor-

mation combined with the following proposition yields the strong convergence in
the case ̺ < ̺c.

Proposition 3.12. Suppose that Assumption 1.4 holds. Then any solution (c(t))t≥0

to (1.2) with c(t)
∗
−* c̺ as t →∞ for some ̺ < ̺c satisfies c(t)→ c̺ strongly in X .

Proof. The proof concludes in two steps. In the first step, the weak convergence
c(t)

∗
−* c̺ for some ̺ < ̺c implies that there exists t0 large enough such that (3.10)

hold for all t ≥ t0. This ensures that Proposition 3.11 can be applied in a second
step.

Now, suppose c(t)
∗
−*ω̺ as→∞ with ̺ < ̺c.

Step 1. Let ǫ > 0. It readily follows from the identity (3.1), (Kc), and (K3) that
there exists l1 = l1(ǫ) such that

Al−1[ω
̺]

Bl[ω
̺]
=
φ(̺)K(1, l − 1)

K(l, 1)
=
φ(̺)K(1, l − 1)

K(l, 0)
K(l, 0)
K(l, 1)

≤ (1+ ǫ)
φ(̺)K(1, l − 1)

K(l, 0)
for all l ≥ l1(ǫ) (3.15)

and
K(1, l − 1)

K(l, 0)
≤

1+ ǫ
φc

for all l ≥ l1(ǫ) . (3.16)

Another consequence of (K3) is that there is l2 = l2(ǫ) such that, for all t ≥ 0,

Al[c(t)]

Al−1[c(t)]
=

∑

k≥1
K(k,l)

K(k,l−1)K(k, l − 1)ck(t)
∑

k≥1 K(k, l − 1)ck(t)
≤ sup

k≥1

K(k, l)

K(k, l − 1)

≤ 1+ ǫ for all l ≥ l2(ǫ) , t ≥ 0. (3.17)

Now, assume that the following bound is already established:

max
§

Al−1[c(t)]

Al−1[ω
̺]

,
Bl[ω

̺]

Bl[c(t)]

ª

≤ 1+ ǫ , l ≥ 1 , t ≥ t0(ǫ) . (3.18)

From (3.18), the claim (3.10) is deduced. Indeed, by a combination of the esti-
mates (3.15) and (3.18) for any t ≥ t0(ǫ) and l ≥ l0(ǫ) =max{l1(ǫ), l2(ǫ)} follows

Al−1[c(t)]

Bl[c(t)]
=

Al−1[c(t)]

Al−1[ω
̺]

Bl[ω
̺]

Bl[c(t)]

Al−1[ω
̺]

Bl[ω
̺]

≤ (1+ ǫ)3
φ(̺)K(1, l − 1)

K(l, 0)
=
φ̃K(1, l − 1)

(1+ ǫ)2K(l, 0)
, (3.19)
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with φ̃ = (1+ ǫ)5φ(̺). By choosingǫ > 0 small enough so that φ̃ < φc , the second
condition in (3.10) holds, from which the first follows as

Al[c(t)]

Bl[c(t)]
=

Al[c(t)]

Al−1[c(t)]

Al−1[c(t)]

Bl[c(t)]
≤

φ̃

(1+ ǫ)K(l, 0)
≤
φ̃

φc

< 1

by (3.16), (3.17) and (3.19).
Hence, (ck(t))k≥0,t≥0 satisfies (3.10) for some φ̃ < φc, all t ≥ t0 and l ≥ l0, which

finishes step 1, once (3.18) is proven.
Proof of (3.18): To do so, by the weak∗ convergence and strict positivity of ω̺ ,

there exists for any ǫ > 0 and any M ≥ 1 a t1 = t1(ǫ, M) such that cl(t) ≤
�

1+ ǫ
2

�

ω
̺

l

for all l = 0, . . . , M − 1 and all t ≥ t1. Then, the Assumption (K4) implies

Al−1[c(t)]

Al−1[ω
̺]
=

∑M−1
k=1 K(k, l − 1) ck(t) +

∑

k≥M K(k, l − 1) ck(t)
∑

k≥1 K(k, l − 1)ω̺
k

≤ 1+
ǫ

2
+

CK al−1

∑

k≥M dk ck(t)

C−1
K al−1

∑

k≥0ω
̺

k

≤ 1+
ǫ

2
+ C2

K

dM

M
̺ .

Since (dk)k≥0 is sublinear, there exists for any ǫ > 0 a constant M large enough
such that C2

K̺
dM

M ≤ ǫ/2 concluding the first estimate of (3.18). The second one is
very similar. Again, there exists for any ǫ > 0 and N ≥ 1 a t2 = t2(ǫ, N ) such that
ω
̺

l
≤
�

1+ ǫ
2

�

cl(t) for all l = 0, . . . , N − 1 and all t ≥ t2. Then, the second part of
Assumption (K4) implies

Bl[ω
̺]

Bl[c(t)]
=

∑N−1
k=0 K(l, k)ω

̺

k
+
∑

k≥N K(l, k)ω
̺

k
∑

k≥0 K(l, k) ck(t)

≤ 1+
ǫ

2
+

Ck bl

∑

k≥N(k + 1)ω̺
k

C−1
K bl

∑

k≥0 ck(t)
≤ 1+

ǫ

2
+ C2

K

∑

k≥N

(k + 1)ω̺
k
≤ 1+ ǫ

for N sufficiently large, such that
∑

k≥N(k + 1)ω̺
k
≤ ǫ

2 . This proves estimate (3.18)
completely once t0 is set to max{t1(ǫ, M), t2(ǫ, N )}.

Step 2: The second step of the proof consists in applying the tightness estimate
of Proposition 3.11. Let γl = 1 for 0≤ l < l0 and

γl = νl γl−1 for l ≥ l0 ,

where (νl)l≥0 is defined in (3.11). The sequence (γl)l≥0 satisfies the iteration

γl

γl−1
≤
ωl(φ)

ωl−1(φ)

l2

(l − 1)2
, and hence l γl ≤ l3ωl(φ) .

Since ω(φ̃) ∈ X for all φ̃ < φc, ω(φ) has arbitrary high moments for any φ < φc

and hence γ ∈ X . Therefore, the sequence ηl =
∑

k≥l kγk satisfies ηl → 0 as l →∞.
So, η is an element of the set

Sν =
�

λ= (λl) : λl ≥ λl+1 ≥ 0 for all l ≥ 0 and λl −λl+1 ≥ νl(λl−1−λl)
	

.



THE EXCHANGE-DRIVEN GROWTH MODEL: BASIC PROPERTIES AND LONGTIME BEHAVIOR 31

The cumulative distribution of the initial data σl =
∑

k≥l l c l satisfies σl → 0 as
l →∞. Then, according to [BC88, Lemma 4] there exists λ̂l such that λ̂l ≥ σl for
all l and λ̂l → 0 as l →∞. Hence, thanks to the first step, Proposition 3.11 can be
applied to (c(t))t≥t0

to conclude for any l ≥ l0 and all t ≥ t0 that

∑

k≥l

kck(t) ≤ λ̂l max

�

1,
̺0

λl0

�

.

This shows that (c(t)) t≥0 is relatively compact in X and c(t)→ c̺ strongly in X as
t →∞.

3.3. Proof of Theorem 1.7. The assertion for the case ̺0 > ̺c is exactly Theo-
rem 3.10. The statement on the convergence of the free energy is a consequence of
Proposition 3.2 and the relation (3.3) implying

F [c(t)] =H [c(t)|ω̺c ]− log Z(φc) +̺0 logφc

→− log Z(φc) +̺c logφc + (̺0 −̺c) logφc =F [ω
̺c ] + (̺0 −̺c) logφc .

The case ̺0 < ̺s follows by combining Theorem 3.10 with Proposition 3.12, where
the statement of the free energy is now an immediate consequence of Proposi-
tion 3.2. Finally, the case ̺0 = ̺s is again a consequence of Theorem 3.10 com-
bined with Proposition 3.12 implying that ̺ = ̺0 = ̺c, which by density conser-
vation gives the strong convergence. Again the statement on the free energy is an
immediate consequence of Proposition 3.2.

APPENDIX A. LEMMA OF DE LA VALLÉE-POUSSIN IN P ̺

Lemma A.1. For ̺ > 0 and C = {c̄ i}i∈I ⊂ P
̺ the following are equivalent:

(1) The family C is uniform integrable, that is

lim
l→∞

sup
c̄∈C

∑

k≥l

(1+ k) c̄k→ 0 .

(2) There exists a positive increasing superlinear sequence (gk)k≥0 such that

sup
c̄∈C

∑

k≥0

gk c̄k <∞ . (A.1)

Moreover, (gk)k≥0 can be chosen to satisfy the bound

0< (k + 1) (gk+1− gk) ≤ 2 gk for k ≥ 0 (A.2)

Proof. The implication (2)⇒(1) is a straightforward consequence of the superlinear
growth of (gk)k≥0 implying for any c̄ ∈ C

∑

k≥l

(1+ k) c̄k ≤
1+ l

gl

∑

k≥l

gk c̄k ≤
1+ l

gl

∑

k≥0

gk c̄k .

Taking the sup over C and letting l →∞ proves the implication.
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For the proof of (1)⇒(2) the construction from [Cañ06] based on [DM78, Theo-
rem 22] is modified to satisfy the condition (A.2). The tail distribution of c̄ i for i ∈ I

is defined by

C i
k
=
∑

l≥k

(l + 1) c̄ i
l

for k ≥ 0 .

Two auxiliary increasing sequences (an)n≥1 and (ℓn)n≥0 are defined by

an = inf
§

k ≥ 0

�
�
�
�
sup
i∈I

C i
k
≤

1
n2

ª

for n≥ 1 ,

and inductively ℓn+1 =max{ℓn + 1, an+1 + 1} starting with ℓ0 = 0. Then by construc-
tion, it holds supi∈I C i

ℓn
≤ 1

n2 for n≥ 1 and C0 = 1+̺. One more auxiliary sequence
(ϕk)k≥0 is given by

ϕk = n+ 1 for k ∈ [ℓn,ℓn+1) .

By construction ϕk→∞ as k→∞, since ϕk ≥ n+1 for k ≥ ℓn. Then, the candidate
for gk is the sequence ϕk (k + 1). Indeed, it holds for any i ∈ I

∑

k≥0

ϕk (k + 1) c̄ i
k
=
∑

n≥0

(n+ 1)
ℓn+1−1∑

k=ℓn

(k + 1) c̄ i
k
=
∑

n≥0

∑

k≥ℓn

(k+ 1) c̄ i
k

=
∑

n≥0

C i
ℓn
≤ 1+̺ +
∑

n≥1

1
n2
<∞ .

To verify the condition (A.2), it is necessary to regularize the sequence (ϕk)k≥1 by
defining the following interpolation: d0 = 1 and Φ0 = 0 and inductively for n≥ 0

dn+1 =min

�

dn,
n+ 1−Φℓn

ℓn+1 − ℓn

,
1
ℓn+1

�

;

Φk = Φℓn
+ dn(k − ℓn) for k ∈ [ℓn,ℓn+1) .

The construction ensures that Φk is an increasing sequence with Φk ≤ ϕk. Hence,
gk = Φk (k+ 1) + 1 still satisfies (A.1) with an additional constant 1+̺ on the right
hand side. Finally to show (A.2), note that for k ∈ [ℓn,ℓn+1) it holds

Φk+1 −Φk ≤ dn+1 ≤
1
ℓn+1
≤

1
k+ 1

.

Hence, the estimate (A.1) follows from

(k + 1) (gk+1− gk) = (k + 1)
�

(k+ 1)Φk+1− kΦk

�

≤ (k + 1) (1+Φk)≤ 2 gk ,

where the lower bound Φk ≥ 1 was used in the last step.
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