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ON THE STRIATED REGULARITY FOR THE 2D ANISOTROPIC
BOUSSINESQ SYSTEM

MARIUS PAICU! AND NING ZHU?

ABSTRACT. In this paper, we investigate the global existence and uniqueness of strong
solutions to 2D Boussinesq system with anisotropic thermal diffusion or anisotropic
viscosity and with striated initial data. Using the key idea of Chemin to solve 2-
D vortex patch of ideal fluid, namely the striated regularity can help to bound the
gradient of the velocity, we can prove the global well-posedness of the Boussinesq system
with anisotropic thermal diffusion with initial vorticity being discontinuous across some
smooth interface. In the case of an anisotropic horizontal viscosity, we can study the
propagation of the striated regularity for the smooth temperature patches problem.

1. INTRODUCTION

The Boussinesq system is a classical model in geophysical fluid dynamics which de-
scribes the large-scale atmospheric and oceanic flows and also play an important role in
the study of Rayleigh-Bénard convection (see [46] for example). In the present paper,
we investigate the 2D anisotropic Boussinesq equations with horizontal temperature dif-
fusion or horizontal velocity dissipation. These are derivative models from the classical
Boussinesq system where the vertical dimension of the domain is very small compared
with the horizontal dimension of the domain. In this case, after rescaling the domain,
the dissipation is not isotropic and we have to deal with the anisotropic problem. More
precisely, we study the following system which is the Euler equations coupling with a
transport-diffusion temperature equation with diffusion only in horizontal direction,

ou+u-Vu=—-Vp+0e, x€R* t>0
0,0 +u -V — rkdi0 =0,

V-u=0,

u(0,z) = uo(x),0(0, z) = bo(x),

and a system where the Navier-Stokes equations with no vertical viscosity coupling with

(1.1)

a transport temperature equation,
O+ u-Vu—vdu=—Vp+0ley, v €R? t>0
00 +u-VO =0,
V.-u=0,
u(0,z) = up(x),0(0,x) = Oy(z).

(1.2)
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Here u = (u'(x,t),u*(z,t)) denotes the velocity field, p = p(x,t) is a scalar function
denotes the pressure. § = 0(x,t) is a scalar representing the temperature in the content
of thermal convection and the density in the modeling of geophysical fluids. e; = (0, 1)
is the vertical unit vector field, and the forcing term 6ey on behalf of the buoyancy force
due to the gravity field. The parameters x and v denote the molecular diffusion and
the viscosity respectively. These anisotropic system are important modeling dynamics
of geophysical flows (see e.g. [11,12]33,44]).
The general 2D anisotropic Boussinesq equations can be read as,

O+ u - Vu — 102U — vy02u = —Vp + ey,
010 +u - VO — k1070 — k2050 = 0,
V-u=0,

u(0,x) = ug(x),0(0, ) = Oy(z).

(1.3)

where 11, 115, k1 and k9 are real parameters. Systems (L)) and (L.2)) are two special cases
for (L3). When v; = 15 > 0, K1 = Ky > 0, the global well-posedness theory for (L3)
has been established in [7,27]. On the contrary, when these four parameters are zero,
whether (L3]) has an unique global solution is a challenging problem and still unsolved.
This system has many similarities with the classical 3D incompressible Euler equations
such as the vortex stretching mechanism (which will be explained later). So it has both
physical motivation and mathematical significant to investigate the intermediate cases
(only partial dissipation) and some improvements has been made in the past few years.

The global regularity for the case when v; = v» > 0 and k; = ko = 0 was proven
by Chae in [§] and by Hou and Li in [32] with smooth initial data. Later, Abidi and
Hmidi studied this system in the Besov space in [4]. The global weak solution with finite
energy has been construct in [30] and has been proved to be unique later in [19]. For
the case 11 = 15 = 0 and k; = kg > 0, Chae in [§] also studied the global regularity for
smooth data. This result was improved by Hmidi and Keraani in [31], Danchin and the
first author in [21I] for rough initial data. The global well-posedness for (L1I) and (L.2))
was considered by Danchin and the first author in [20], and they established the global
existence and uniqueness theory. Then the global well-posedness for the anisotropic
Boussinesq equations with vertical dissipation, namely (L3]) with only 15, ko > 0, was
studied by Cao and Wu in [I3]. Later, Adhikaria et. al. investigated other mixed
dissipation cases [I]. Other interesting recent results on the 2D anisotropic Boussinesq
equations and other related systems can be found in [2,3]34]3840,141,[47].

Next we would like to introduce a quantity which is widely utilized in the literature
we mention above. The quantity w £ Jyuy — Oyuq which called vorticity measures how
fast the fluid rotates. Taking curl operator to the first equation of (ILI]) we obtain the
corresponding vorticity equation,

&gw +u-Vw = 619 (14)
Similarly, the vorticity form of system (L2]),

Ow +u - Vw — 0w = 040. (1.5)
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The forcing term 0,6 is the so called ”vortex-stretching” term which making this system
become more complex than the 2D Euler system.

Another part of our paper is devoted to study the vortex (temperature) patches
problem. Before we describe this problem, we need first to introduce some notations.
Let us denote by v (+,t) the flow associated with the vector field u, that is

d
(1) = u(b(t,2), 1),

The classical vortex patch problem is associated to the 2D Euler equations. If the
initial vorticity taking the characteristic function supported in some connected bounded

(1.6)

domain, whether the regularity of the boundary can be preserved through the evolution
of the flow ¥? It has been proved by Chemin that the regularity of the boundary can
be persisted for all the time in some Holder class (see [9,10] for details). Other results
about the vortex (temperature) patch problems corresponding to the Euler equations,
homogeneous (inhomogeneous) Navier-Stokes equations and other fluid models can be
found in [6,[14H18]22H26]28,29,142/[43|45] and the references therein.

In order to understand the striated regularity clearly, we need first to introduce some
notations and definitions which will be used to describe the boundary regularity. Let
Xy be a vector field defined on Dy (a connected bounded domain), X is the evolution of
X along the flow 1 defining as follows,

X(:L‘,t) £ 8Xow(¢_1(xvt)7t)v (17)

where dx, f = X, - Vf denoting the standard directional derivative.
Taking time derivative of (L), one can obtain X satisfies the following transport equa-
tion,
0 X +u-VX = 0xu,
(1.8)
It is not hard to check that Ox satisfies,

[8)(, Dt] - O, (19)

where [A, B] & AB — BA represents the standard commutator, and Dy £ 0, +u -V
denotes the material derivative.
We need also the following two definitions, which can be found in [5,10].

Definition 1.1. Let s > 0 and Q be a bounded domain in RY. We say that Q is of class
C* if there exists a compactly support function f € C*(R?) and a neighborhood V of 05
such that

N =fr{oHNV and Vf(lx)£A0VacV.

Definition 1.2. A family (Xy)aea of vector fields over R? is said to be non-degenerate
whenever
I(X) £ inf sup |X,(x)| > 0.
z€RT \eA
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Let v € (0,1) and (X))ea be a non-degenerate family of C vector fields over R?. A
bounded function f is said to be in the function space C if it satisfies

1£ller 2 su <||f||L°°||XA||CT + |V (XAf)HCg()
%~ Ae%\) I(X) :

Next we present the main results for our paper. Since the concrete values of the
constants  in system ([LI]) and v in (I2)) play no role in our discussion, for this reason,
we shall assume x = v = 1 throughout this paper.

The main result pertaining to system (LT)) can be stated as follows.

Theorem 1.1. Assume ug € L? be a divergence-free vector field, the corresponding
vorticity wy = O1ul — dpul € L. Let (wy,09) € H* x H'* with 0 < s < 1. Then system
(LI exists a unique global solution (u, ) satisfies

= Lw([O,T];HHS), we L>([0,T]; L>), 6 € Lw([O,T];HHS), 0,0 € LOO([O,T];HHS).

Furthermore, for any non-degenerate vector field Xo € C*® such that Ox,wy € LP (2 <
p < 00), there exists a unique global solution X € L*°([0,T];C*) to equation (L8) and
we have

Oxw € L>=([0,T); LP), Vu € L*([0,T]; L™).

As a direct application, this theorem can be used to deal with the so called ”vortex

patch” problem as follows.

For
1 xe€ Do,

A
wo(z) = x) =
0(x) = Xpo(7) {0 z ¢ Dy,
where Dy is a connected bounded domain, y p, is the standard characteristic function of
Dy. Let w(z,t) = w!(x,t) + w?(z,t) where w! is the solution of the system

(1.10)

Ow! +u- V! =0,
. (1.11)
w (2,0) = wo(2),
and w? is the solution of the system
0tw2 +u- Vw2 = 819,
) (1.12)
w(z,0) = 0.

Then the main result can be stated as follows.

Corollary 1.1. Assume wy defined as in (LI0) and Dy be a connected bounded domain
with its boundary Dy in Holder class C'™ (0 < s < 1). Then system (L)) ezists
a unique global solution satisfies the properties shows in Theorem [I1. Moreover, the

solution of systems (LI)) and (LI2)) satisfying
w'=xp,  w?eLX([0,T];C3(X)),

with D; 2 9)(Dy,t) and the boundary of the domain remains in the class C1+2.

Then we present our main result pertaining to system (L2).
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Theorem 1.2. Assume ug € L? be a divergence-free vector field, the corresponding
vorticity wy = d1uf — auy € L* N L>®. Let (wp,00) € H* x H® with + < s < . Then
system (L2) exists a unique global solution (u,0) satisfies

ue L®([0,T); H™*), dyu e L*([0,T); H'**), Vu e L'([0,T]; L), § € L>([0,T]; H®).
Furthermore, for any vector field Xg € H?®, there exists a unique global solution X €

L>([0,T); H®) to equation (L8). Moreover, X € L>([0,T); H*) for s’ > 1 if provided
wo € WYY N HY 0y € WY NHY with2 <p < oo and X, € H.

Remark 1. Here we obtain the velocity w is Lipschitz, which is more reqular compared
with the result of the paper of Danchin and the first author [20], where the velocity was
only Log-Lipschitz.

Remark 2. In the critical case s = 1/2, we can prove the global well-posedness and
1

Lipschitz information for velocity with wy € Bg’l and 0y € H?, 1/2 < B. The method is
much similar to our proof of Theorem[L.2 but the process is more complicated. In order
to make our paper easy to read, we only discuss the result in Sobolev space here.

Remark 3. We can even obtain the Lipschitz information of the velocity with initial
vorticity wy in anisotropic Besov space Bz through a similar idea. Here B%z is the
space given by the norm
2 v v - £
1flloy =D 28100 fllre and Ay = FH(p(&/27)/(€))
qeZ

is the dyadic bloc in the vertical Fourier variable and the definition of p(&) will be given
in the next section.

The above result can be used to solve the smooth "temperature patch” problem.

Defining
1 zeD_,

05(x) = xp, * ne(x) = {O z € R?\ DF

where xp, is the characteristic function of the domain Dy. 7. is the standard mollified

(1.13)

function. D= and DI are two domains defined by

D; £ {x € D :dist(z,0D,) > ¢},

DY & {x € R? : dist(x,0Dy) > €}.
Along the evolution of the fluid, the distance of ¢(D_,t) and (D7, t) denoted by d(t)
with d(0) = 2e. Then the following result hold true.

Corollary 1.2. Let 5 < s < 1, assume 0y = 05 defined as in (LI3) with 0Dy € H'*,
wo € L>® N H*. Then there exists a unique solution (u,0) to system ([L2) satisfying the
properties listed in Theorem[L.A. Furthermore, 0(x,t) satisfies the same form as 6y that

; B 1 zey(D_,t),
(@,8) = 0 zeR*\ (D50,
5



and the distance d(t) satisfies,
|d(t)| < 2eeo IVullzsodr, (1.14)
Moreover, the flow (-,t) € H'™* and the boundary OD-, 0D € H'™* for all t > 0.

Remark: We can propagate higher regularity of the boundary for the temperature
patch if we improve the regularity condition of the initial data.

The rest of this paper is divided into three sections and an appendix. In section 2,
we provide some definitions and lemmas which will be used in the next sections. Section
3 is devoted to the study of system (LI]) which divided into three subsections. The
first one gives some regularity estimates, the second subsection shows the estimate for
striated regularity and the last subsection gives the proof of Corollary [LIl Section 4
deals with system ([L2)) which is divided into five subsections unfolding similar as section
3. Finally, Appendix A provides the technical proof for some lemmas presented in the
second section.

2. PREPARATIONS

In this section, we will give some definitions and lemmas which will be used in the
next several sections. First we give some notations. Throughout this paper, C' stands
for some real positive constant which may vary from line to line. {b,} stands for the
* sequence which may also different in each occurrence. |D| £ (—=A)z denotes the
Zygmund operator which is defined through the Fourier transform that

[DIf = €], (2.1)
where

FEF() = g | @) o

Similarly, we can define

Dlsf =1[EPf, [0 f =&l S (2.2)
Next we present the classical Littlewood-Paley theory in R? which plays an important
role in the proof of our result. Let y be a smooth function support on the ball B = {¢ €
R?: [¢] < 3} and ¢ be a smooth function support on the ring C £ { e R?: 2 < ¢ < 8}
such that
O+ @9 =1, forall ¢ €R?, Y p(27%) =1, for all £ € R\ {0}.
q>0 q€EZ
Then for every u € &’ (tempered distributions), we define the non-homogeneous Littlewood-

Paley operators as follows,

Agu=0for g <=2, A ju=x(D)u=F'(x(&)u()),

Aju= (277 Dju=F  p(27)u(¢)), V420, Su= ) Aju.
j=—1
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Next we state the definition of non-homogeneous Besov spaces through the dyadic de-
composition.

Definition 2.1. For s € R and 1 < p,r < oo, the non-homogeneous Besov space B,
1s defined by
By, ={f €S:|fllp;, < oo},
where
> @ A lI5)F for v < oo,

1llss, = § =
sup 2%||Ayfllzr  for r = oo.

q>—1

We point out that when p =r = 2, for all s € R, we have B ,(R?) = H*(R?).

Lemma 2.1. (Bernstein inequality [3,[10]) Let k € NU{0}, 1 < a <b < co. Assume
that

suppf C {€ e R%: [¢] < 29C},
for some integer q, then there exists a constant C such that

1V fls < G220 G0 £ a k= al

If f satisfies
suppf C {& € R™: [¢| = 21C},
for some integer q, then
o2l < IV Fll < Cs2tCH G2 e, b = Jal,

where Cy and C'3 are constants depending on o, a and b only.

Noticing that if u is a divergence-free vector field in R?, then it can be recovered from
the corresponding vorticity w by means of the following Biot-Savart law

u=V+A~lw. (2.3)
Combining the classical Calderén-Zygmund estimate and (2.3)), it can lead to the fol-
lowing lemma [10].
Lemma 2.2. For any smooth divergence-free vector field u with its vorticity w € LP and

p € (1,00), there ezists a constant C such that

2
p
w1 (2.4)

|Vul|» <C
p

The next lemma shows the Holder estimate for transport equation, which is useful in
the estimate of the striated regularity. The proof can be found in [10].

Lemma 2.3. Let v be a smooth divergence-free vector field, r € (—1,1). Consider two
functions f € L°.(R; C") and g € L, .(R; C") satisfy the transport equation

loc loc

Of+u-Vf=g.
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Then we have
t
1f®)ller < CILF(0)[|ereC o IFulze dr 4 / 1g(7) | greC 7 9@ nse ds g
0

and the constant C depends only on r.

The following logarithmic inequality plays an important role in the proof of the Lip-
schitz information for velocity of system (ILIl). The proof of this lemma can be found
in 5,10,

Lemma 2.4. Let r € (0,1) and (X))xea be a non-degenerate family of C" vector fields
over R2. Let u be a divergence-free vector field over R* with vorticity w € C%. Assume,
in addition that u € L% for some q € [1,+00] or that Vu € LP for some finite p. Then
there exists a constant C' depending on p and r such that

. |wler,
| Vul|pe < C’(mm(HuHLq, lw||rr) + l|w|| L~ log <e + ¢ )) (2.5)

o] o

Then we give the definition of the space v/L and LL:z.

Definition 2.2. The space /L stands for the space of functions f in ﬂ2§p<oo LP such

that
Il

N
= Su
||f||\/f pZIQ) \/pTl

And the space LL3 denotes by

1 SfHLoo
L2 2{fecS . |f 1 2gu 7”] < 0.
{ ” HLL2 jzl(:)) \/j—]- }

Remark: It is not hard to check that v/L — LLz.
The following lemma play a significant role in the estimate of the convection term.
The proof of this lemma shall be shown in the Appendix.

Lemma 2.5. Assume u is a smooth divergence free vector field with uw € L?, Vu € L,
f € H® with s € (0,1), then we have

- /2 Ag(u- VA dr <Cb27* ||Vl oo f 17 (2.6)
R
with b, € (*. Moreover, if w,dw € L?, O,f € H®, then we have

—/ Ag(u-V)Ayf du <Cb27*(Jullz2 + |wlz2 + 01wl 12) 27
R2 .

1
i1s);

O f|

3
2
HS

1
e+ /]

O f|

1
2
HS

< (1Al + 11

where w is the corresponding vorticity of u.

Then we give a lemma which alerts the classical losing regularity estimate for the
transport equation, and result can be found in [5,20]. For the sake of completeness, we

will give the proof in the Appendix.
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Lemma 2.6 (Losing regularity estimate for transport equation). Let p satisfies the
transport equation

Op+u-Vp=f,

tP p=1r (2.8)
p(O,.ﬁC’) = p0<x>7

where py € Bs,, f € L'([0,T]; Bs,) with r € [1,00]. Here v € L* is a divergence free

vector field and for some V(t) € L'([0,T)), v satisfies

o VS0 (01~

N> V1+N

Then for all s >0, € € (0,s) and t € [0,T], we have the following estimate,

< V().

! Q T T T
I < O (ol + [ 170, )50,

The following Lemma gives the classical Kato-Ponce type inequality, which can be
found in [35H37].

Lemma 2.7. Assume s > 0 and p € (1,+00). Let f satisfies f € LP*, Vf € L™,
|D|f € LP3, g satisfies |D|*"1g € LP?, |D|*g € LP?, g € LP*, then we have

IIDE, Agllize < CUNV f ol DFgllzee + DI fllzes gllzr), (2.9)

DP9l < CUS e 1D glles + 1D fllLes [lgl 2oa), (2.10)
where pa, p3 € (1, 400) satisfy

3. THE CASE OF HORIZONTAL DIFFUSIVITY

This section is devoted to deal with the first model (LI]). At the beginning, we will
give some regularity estimates for (w, 6) in the first subsection. Then we will exam the
Holder estimate of X and prove Corollary [T

3.1. A priori estimates for w and 6.
Before we give the regularity estimate for (w,#), we need first recall the following exis-
tence and uniqueness result in [20] about system (L.I).

Theorem 3.1. Let 1 < s < 3 and 0y € H' such that |0|*6y € L*. Let uo € H' be a
divergence-free vector field and the corresponding vorticity wo in L. Then system (L))
with initial data (0o, uo) admits a global unique solution (0,u) in Cy,(Ry; H') such that
e L°R;HY, 0,0 € *(Ry; H' N L™), we L2 (Ry; L™),
01]°0 € L®(Ry; L?), |00 € Lf, (Ry; L?).

loc

Then we give the proposition which showing the regularity estimate of (w, 6).
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Proposition 3.1. Let 0 < s < 1, assume the initial data wy € L> N L>® N H® and
0y € H'5. Then the following estimate holds true,

t
(@) 1Zrs + 10 [+ +/ 100(T) 514 dr < C(t)elo Vel a0 (3.1)
0

Proof. We first estimate w. Applying A, to (L4), we get

OAqw + Ay(u - Vw) = 01 A0. (3.2)
Taking L? inner product with A,w, one can deduce
%%HA(Iw(t)H%Q _ /R A1 Veo) Ay do + /R A BA W da s
£ Ny + Na.
For Ny, making use of Lemma [2.5]
Ny < Cb27||Vul| oo | w]| s (3.4)

Then we estimate Ny, by Holder inequality and Young’s inequality,
Nz <Cl01AWD| 2| Aqllzz < Cb 27010 s || rr= < Cb27* ([10]]7p1+ + lwlFre).
(3.5)

Inserting the estimate (3.4]) and (3.3]) into ([3.3)), then multiplying both side by 22¢* and
summing up over g > —1, we obtain

1d
S lw®E < CO+ [ Vullz=) x (lwllFs + 10]74)- (3.6)
2dt
Then we estimate 6. Applying A, to the second equation of (LI]), we obtain
A0 + Ay(u-VO) —07A0 = 0. (3.7)

Multiplying (B.17) by A,0 and integrating over R? with respect to x, after integration by
part, one can deduce

1d

SOOI + 108005 == [ A 90)A8 da

=— Y / Ay(Sp_1u - VARO)AH dx
R2

- ) / Ag(Agu - VA0) A0 da
R2

k>q—1 |k—I|<1
£ 0,4+ 6, + Os.

For ©,, along the same method as in the proof of Lemma which showed in the
Appendix, we can obtain

01 < Cb,2704 [V 1o 0] 2. (3.9)
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For ©,, we can write it explicitly,

O =— ) / Ag(Agu - VSi_10)A.0 da
R2

|k—q|<2

=— Y / A (ARu'01S, 10)A0 d
Jh—gl<2/®* (3.10)

- > / Ag(Au205S,_10) A0 da
R2

|k—q|<2

£ Qg1 + On.
Making use of Holder inequality, ©5; can be bounded by

O <O Y (1A% 2l|0n0]] | A, 2

|k—q|<2

<C Y 1A A w5210 oo | AgH | 12
|k—q|<2

<C Y 27| Agw|| 12|01 0]| e 2 HIRRTE A B 2
|k—q|<2

< C272, 10,0 o ]

Hs 0||Hl+s,

where we have used the Biot-Savart law (2.3]).
Also making use of (Z3]), combining with integration by part, we can write Oy as

= Z /Aq(AkA1w82Sk10)81Aq0 dx
R2

|k—q|<2
+ > / Ay (ARAT w0y, _10) A0 da
k—ql<2/®

A
= Og91 + Oa99.
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For ©491, by Holder inequality and Bernstein inequality in Lemma 2.1]
O <C > [ AAT W[ o002 Sk—10] 22|01 A0 2

|k—q|<2

<C Y 27 Al e |0]] a2 T2 A G| 2
|k—q|<2

<C Y 2R Agwl| 0] 29209, A6 2
|k—q|<2

< C27 299D N0 o || | 21 |01 0| 1+

Next we bound ©s99, by Holder inequality and Bernstein inequality,

O < C Z | ARAT W[ £2]|0102Sk—10]| o< || A8 12

|k—q|<2

<C Y 2%”Akw|yL2( > H&lagAk/HHLoo)HAqHHLz
|k—q|<2 k'<k—2

<C Y 27| Awl|220) ( > akmis s>2s’f’|yalaQAk/e|yL2)|yAq9HL2
|k—q|<2 k'<k—2

< 272050, ||| 2216 7+ 010 | 1+

where we have used the discrete Young’s inequality in the last step.
Then inserting the estimates of Og;, G991 and Og9 into ([BI0), one can obtain

0, < (2™ 1+8)‘1b ||816'||Loo||w| Hs 9||H1+s (3 11)
+ 02720499p, ([|wl| s + [10]] o) [|O16]] 1. '
Finally we estimate ©3, by Holder inequality and Bernstein inequality,

-> > / ANV - (AguNB)A0 dx

k>q—1 |k—1|<1
<C Y 27| Agull e[| Ak 2] A0 12

k>g-1 (3.12)
<C Y AT ulle Al A8l + CIA sl 1A 163

k>q—1, k>0

< C2720%, (1 + ||Vl 00) |0 Fp1--

Inserting the estimates (3.9), (B11) and BI2) into (B8], and making use of Young’s
inequality, we obtain

2dtIIA ()72 + 10:840]17: < C2720F(1 4 || Vul| e + (1018 ) X (Jwl[Fps + 10]17)

A 0,6)] v

12
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Multiplying both sides by 20+ and summing up from —1 to oo with respect to ¢,
choosing ¢ = %, one can deduce

d
SN0 e + 191030 < OO+ [Vl + 18161) x (ol + 10)3ec). (8:13)

Combining ([3.6) with (3I3) and by Gronwall’s Lemma, because 0,60 € L?(L) (see
Theorem [3.1]), we obtain

lw(®)]

which complete the proof of this proposition. O
3.2. A priori estimates for the striated regularity.
In this subsection, we will give the estimates of tangential derivatives of w and the

t
s+ 10 [0+ +/ [0160(7) |10 dr < C(t)elo IVeilee i
0

regularity estimates of X. The first lemma gives LP (p € [1,00]) estimate of X.

Lemma 3.1. Let r € [1,00], Xo € L" and (wo, 0y) satisfies the assumption in Lemma
[4.1 Then the solution X of equation (L8]) satisfies

| Xollre o IVt < X (1)) < [ X el T laees (3.14)

Proof. Multiplying both side of equation (L8) by |X|" 72X (1 < r < oo) and integrating
over R? with respect to z, we can obtain

1d i, .

X < CIVule X (3.15)

which implies the right hand side inequality of (BI4]). Using the time reversibility of
this equation and the same L" estimate, we can obtain the first inequality of (3.14]).
Then taking » — oo, we can deduct the result for the case r = oo, which complete the
proof of this lemma.

U

Applying Ox to the vorticity equation, according to (L9), we get dxw satisfies the
following equation

8taxw +u- V@Xw = 6X(810) =X- V810 (316)
The next lemma deals with the L? estimate of Oxw.

Lemma 3.2. Let Ox,wo € LP (2 < p < o0), and (w, ) satisfies the assumptions in
Proposition (3], then we have

10xw(®)]|r < |Oxowoll e + C(t)e o Ve lree dr

Proof. Multiplying the equation (B.I6) by [Oxw/[P20xw (2 < p < 00), and integrating
over R? with respect to x, because u satisfies the divergence-free condition, by Holder
inequality,
]—9—!\8XW(t)|!’£p <1 X =101Vl o[ Ox 0l "

13



Because of the embedding H® — LP with % = 1 — s, we obtain

d
S 10xw)llze < [|X] L= ]|01 VO]

HS.

Then integrating in time and combining with the result of Proposition B.1],

Hs d'T

t
1Oxw()]le < 10xowoll e +/0 [X(T) | ze< (|01 VE(7)]

t
< [|9xowol [ zr + HXHL;;f;/ 101V O(T) |5 d
0

< [|Oxowoll» + C’(t)leot IVu()loe dr
which complete the proof of this lemma. 0

Then we give the Holder estimate for X. The next proposition obtain the Lipschitz
information of the velocity u and the C'* norm of X simultaneously.

Proposition 3.2. Let 0 < s < 1, assume Xy € C*, Ox,wo € LP and (wo, by) satisfies
the assumptions in Proposition [31), the we have the velocity u satisfies
Vu € L'([0,t]; L™). (3.17)
Moreover,
X € L*™([0,t]; C®), w e L*>([0,t];H?), dxw € L>([0,t]; LP).
0 € L>([0,t]; H*), 0,0 € L*([0,t]; H). (3.18)

Proof. Firstly, we compute the Holder estimate of X. Applying Lemma to (L), we
obtain

X @)

- t ;
s < CHXOHCseCfOtHvu(T)HLOO dr +C/ ||8Xu(7_)||0860f: IVu(s)lpee ds g
. (3.19)
- .
< CeC Jo IVu(m)llee dT(”XOHCS +/ H@Xu(T)Hcse’CfO Vu(s)llLo ds dr),
0

where we can choose C' > 2. In order to estimate Holder norm of dyu, we need the
following estimate which proof can be found in [5,10],

10xulles < C([Vull <[ X]les + [[0xwlcs-1). (3.20)
By Sobolev embedding L? < C*7! (1 —s = %) and Lemma [3.2] we obtain
|oxewlles < Cloxwllis < Clloxwollis + C(e)e?Jo 7M. (3.21)
Inserting (3.20) and (B.21)) into (3.19)), one can deduce that

- t
X (D)l < Ce o IFTuli dT(I!XoHcs +/0 (C(7)

| V() | oo [| X (7) [ o™ C o IV ooy dT)-

14



Denoting
F(t) 2 ||X(t)||cse(7f5 IVa(r)llzee dr
Then according to the above estimates, we obtain
F(t) < CF(0 / O (IVu(n)l| +1)(F(7) +1) dr.
By Gronwall’s Lemma,
F(t) < C(F(0) + 1)eh CONUITu@) oo +1) dr

According to the definition of F'(t), we obtain the Holder estimate of X that,

IX(1)]|cx < Ct)el Jo IVumlloc dr. (3.22)
Recalling the logarithmic inequality in Lemma 2.4] that
w s
190l < O(fllie + ol 1o (e + |'|’w|’|‘CX)), (323)
LOO

where ||w||cy is defined in Definition L2
Because ||w||r2nr~ is bounded, inserting the estimates (B.2I), ([3.22) into (3.23), we

obtain

IV L < C(l + log (e Ol IIVu(r)uLoo))

t
< 0(1 +/ Ct)(1+ ||[Vu(r)| =) dT).
0
Then by Gronwall’s Lemma,
|IVu(t)||L~ < C(t), YVt > 0. (3.24)

Combining the estimates ([8.22]) and (3.24]), we can obtain the desired Hélder norm of X,
Then inserting the estimate (3.22)) into Proposition B.Jland Lemma[3.2] we can complete
the proof of this proposition. O

3.3. The vortex patch problem. In this subsection, we devote to prove Corollary [,
which solving the vortex patch problem. Because

1 SUED(),

where D, is a connected bounded domain with 0D, € C'** for 0 < s < 1. Then
according to Definition [T}, there exist a real function f; € C'** and a neighborhood
Vo such that 0Dy = Vo N f~10) and Vfy # 0 on V,. Noticing that at time ¢, the
boundary dD; = (Dy,t) is the level set of the function f(-,t) = fo(v»71(-,1)) with f
being transported by the flow ):

f(x,0) = fo(x).

15



Setting the vector field X £ V' f with initial data Xy £ V1 f;, it is not hard to verifies
that X satisfying (L7) and the corresponding system (). Then we can parametrize
0D, as

Yo : St = 0Dy, via o > (o),
with
(3.26)
’Yo(O) =9 € 0D0

In order to conclude the proof of Corollary [Tl we observe that a parametrization for
0D is given by v,(c) £ 1(v(c),t) and by differentiating with respect to the parameter
o, we get

{ 8070 = XO(VO(O-)% Voe 817

{ 057e(0) = X(1:(0)), ¥ o € S, (3.27)

Y(0) = ¥(wo,t) € OD;.

According to Theorem [T, X € L>([0,T]; C*), thus v, € C'*5(S!) for all ¢ > 0. This
completes the proof of Corollary [Tl

4. THE CASE OF HORIZONTAL VISCOSITY

In this section, we focus on system (LZ). Before we begin to prove the result in

Theorem [[L2] we need to review the following existence and uniqueness result for system
(T2) which can be found in [20].

Theorem 4.1. Let s € (%, 1]. For all function 0y € H* N L* and divergence-free vector
field ug € H* with vorticity wy € VL. System (L2) with data (ug,0) admits a unique
global solution (u,0) such that € C,(Ry; L>®) N C(Ry; H*™¢) for alle > 0 and

ue Cy(Ry; HY), we L (R VL) and Vu € L (R VL). (4.1)

loc

In the rest of this section, we will first show that the solution u of system (L2]) actually
can be in L([0,t]; L>) in the first subsection. Then we estimate the straited regularity
in the second subsection. In subsections 4.3-4.4, we exam the higher regularity estimate
of (w, @) and the vector field X. The proof of Corollary will be given in the last
subsection.

4.1. A priori estimates for the Lipschitz norm of the velocity field. In this
subsection, we will give the estimates for the Lipschitz norm of the velocity field and
H* (1 < s < 1) norm of (w,f). Those estimate will be based on the following global
existence theorem [20].

Then we give the estimate for ||Vu|| L, which plays and important role in the estimate

for striated regularity in the next subsections. The main results can be stated as follows.

Lemma 4.1. Assume wy € H® and 0y € H? with f > s > %, then the solution (w,0)
satisfies

Hw”%t‘x’(HS) + ”alva%f(Hs) <C, HHH%go(Hs) <C,
16



moreover,
[Vl g2y < C.

Proof. Because of Theorem EI] we have already know Vu € v/L. Then according to
the definition of space /L and Lemma 2.6l we know

10]] o< (0,4125) < C(2). (4.2)

Then we give the estimate of w. Applying A, to the vorticity equation (5] and taking
L? inner product with A,w, one can obtain

1d

§%||Aqw(t)||%g + [|01Aw]3e = /R? 01 APAw dx — /R2 Ay(u-Vw)Aw dz.  (4.3)

After integration by part, according to Holder inequality and Young’s inequality,

1d 1

IO+ 310 AR < CIABIE — [ Ay Vw)bo dz (49
R2

By Lemma and Young’s inequality,

_/ Ag(u- Vw)Agw dz <Cb27 " ([lull 2 + |22 + [01w] r2)
R2

1 1 3 1
x (lwllzrs + llwll 7 llowwl s + lwllz: Ol F)  (4:5)
1
<O 2 2 ol + 2 Dy
A1bg[ e
According to the bound (£.2]),
1AGBII7 < 0272617 (4.6)

Inserting (L), (£0) into ([@4]) and taking summation of ¢, after calculation we obtain

d
@@z + 10wl < CO+ [lw@®)][72)-

Then by Gronwall’s Lemma, we get

t
O+ [ 10wl dr < C.
0
According to trace theory, we know
s, 2)] < Olf(era)lue, fora> -
Ty, x T, % o or a > —.
1,42 L%(H;xl_%)_ 1, L2)||H® 5

17



Thus by Sobolev embedding,

t t
[l ar< [o@l_ Ly dr
0 0 Lgy (Hzy #)
t
< [How@P_ .y dr
0 LS (Hey ?)

]

t

< / |0 dr
0

< (C

Noticing that 0w = Au? and O,u' + du? = 0, we have

[ oo

Then by Sobolev embedding,

G dT <O, fori,j=1,2, (i,7) # (2,1).

t
/ |00 (7) [ d7 < C, fori,j =12, (ir5) # (2,1).
0
As for (i,7) = (2,1), according to the definition of vorticity w,
Ohu! = 01u® — w,

SO
t t t
/ 10t (7)o dr < / 1002 (7| dr + / Jo(r) | dr < C.
0 0 0

Thus we obtain ||Vl 2(z is bounded, which completes the proof of this lemma. [
4.2. A priori estimates for striated regularity.
In this section, we will give some estimates about the vector field X. Along the same
method of Lemma [B.14] and combining with Lemma [l one can deduce for any r €
[1, 0],

IX ()| < C||Xol[zreh 1Vl gr < (). (4.7)

The next lemma shows the H* (3 < s < 1) estimate for X.

Lemma 4.2. Let s > %, Xo € H® and (wy, by) € H® X HP with B > s. Then the solution

X of (L)) satisfies
X € L>™([0,t]; H?),

for any t > 0.

Proof. Applying operator A, to (LS),

DX + Ay(u-VX) =A0xu. (4.8)
Taking the L? inner product of the above equality with A, X, we get
1d
§£”AqX<t>Hi2 = —/ Ay(u-VX)-AX dr —|—/ AOxu - AX dr. (4.9)
R2 R2

18



For the first term of the right hand side in (£.9]). By Lemma 2.5 we have

. (4.10)

— /R A (u- VX)AX dr <Cb2 || Vu| || X |
Then we estimate the last term of (£9), by Hélder inequality,
/R2 Ayt AX dr <[ Adxulli | Ay X |12 < Cbo2 2| Al e | X L
For H® norm of Oxu, we can bound it by
1Oxullrs = 1X - Vullgs < CUIX || o[Vl s + | X a5 |Vl o).

By Lemma [£1] and Lemma [3.1], we have known

Thus we obtain

t
/ AOxu - AX dr < Ob 2725 (|| X || s + || V|| oo | X ||576)- (4.11)
0

Inserting the estimates (LI0) and (EII) into (4£3) then multiplying both sides by 2%
and taking summation over ¢ > —1, we obtain

1d
2dt

Then by Gronwall’s Lemma and combining with Lemma [£.1], we obtain

X7 < CUX s + [Vl oo | X |1 Fe ) (4.12)

X1

Hs S C(t),

which completes the proof of this lemma.

O
4.3. A priori estimates for w and 6.
In this subsection, we will give some regularity estimates for (w, #) based on the Lipschitz
information ||Vul| 1 (1) The following lemma gives the H' estimate of (w, ).

Lemma 4.3. Assume wy € H' and 6y € H', then the solution (w, ) satisfies
IVwlZeo(z2) + VO 2y + 101 VWl 7212y < C. (4.13)

Proof. Applying 0y (k = 1,2) to the vorticity equation (L3]), we can obtain Oyw satisfies
0,0pw + 1 - VO + Ot - Vw — 020kw = 010,0. (4.14)

Multiplying dyw to (£I4)) and integrating over R? with respect to x, we have
1d

th”akw(t)”%2 + H@lﬁkwﬂig = / 818k98kw dx —/ 8ku . Vw@kw dx
R2 R2

(4.15)

£ N, + N,.
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After integration by part and using Holder inequality and Young’s inequality, one can
deduce

1 1
Ny < oVl + 5 IVoR. (116)
For N5, by Holder inequality,
Nz < ||Vl ]| Vw| 7. (4.17)

Applying 0y (k = 1,2) to the temperature equation of (I.2]), we can obtain 0,6 satisfies

8t8k9 +u- V@ke + 8ku -Vo =0. (418)
Similarly, we can prove
1d
5 7 100172 < ClIVull o [ VO 22 (4.19)

Inserting (£.16) and (£I7) into (4.15) and combining with (£.19), we can deduce
%(HVW(t)Hia +HIIVO®)72) + 101 Vw(t)l[7: < ClIVull = ([VwlZ2 + VO] L2)-
Then by virtue of the Gronwall’s Lemma and Lemma [A.T]
HVWH%;w(B) + ”VHH%;XJ(B) + ”alvaig(m) <C,
which complete the proof of this lemma. 0
The follow lemma shows the L? estimate of (Vw, V).

Lemma 4.4. Assume Vwy € LP and VO, € LP (2 < p < 00), then the solution (w,0)
satisfies

”vw”%go(m) + HV9|’%§°(LP) <C. (4.20)

Proof. Multiplying |Oyw|P~20rw to ([EI4) and integrating over R? with respect to z, by
Holder inequality and Young’s inequality,

1d
Lol + o= 1) [ | lloel? do
pdt R2
= 818k9|8kw|p_28kw dr — O - Vw|8kw|p_26kw dx
R2 R2
=—(p— 1)/ 00| 0w |P 201 0pw d — / O - Vw|Opw|P 20w dx
R2 R2
—1
S pT/ \018kw\2\8kw|p’2 dx + C/ |8k9|2\0kw|p*2 dzx
R2 R2
+ [Vl [V v

-1 _ _
< pT/ 1010k |0kl" ™ da + CIIVOIL I VWll” + [ Vullp< [ Ve
R
20



Thus we obtain
d
OOz, < CIVOIL, + [ Vull e [ Ve [Z- (4.21)
Similarly, we can prove
d
£||5’k9(t)||%p < C|[Vull = [ V[ (4.22)
Combining (4.21]) with (£.22), we can deduce
d
—(IVw@[Z: + [IVO@)IZ0) < COL+ [ Vaull ) (IVllZe + [VOIIZ)-
Then by virtue of the Gronwall’s Lemma and Lemma 1]
IVwlZe + IVOlI7, < C (1),
which completes the proof of this lemma. O

Next we discuss the higher order regularity estimate for (w, 8). Applying |DI|* (s > 0)
to the vorticity equation (L)) and temperature equation of (IL2]), we can get (| D|*w, |D|*0)

satisfies the following system,
| DPw +u - V|D*'w — &|D|*w = 0,|D|*0 — [|D|*,u - V]w, (4.23)
D10 +u - V|DI’0 = —[|D]*, u - V]6. '

The follow lemma gives the H* (s > 1) estimate of (w,#).

Lemma 4.5. Assume wy € W' N H* and 6y € WP N H* (2 < p < 00,5 > 1), then the
solution (w, 0) satisfies

DI wllZge 2y + D10l 7ge 12y + 101 DI*wll 7212y < C- (4.24)

Proof. Taking L? inner product with (|D|*w,|D|*0) and adding them up, we have

ld
2dt

:/ o1 D0 D" d:c—/ DI, u - V]w| Dfw da:—/ (DI, u-V]8| D6 da (4:25)
R2 R2 R2

(NDPw @72 + I1DFOE)L2) + 01 DI wll7:

£ K+ Ky + K.
For K, after integration by part and Young’s inequality,
Ky < SIDP6lls + 5101 DIl (4.26)
For K,, by virtue of the Holder inequality and (29) in Lemma 27,
Ky < |[[IDP; u- Viwl| 2l D w]l 2
< C(IVulle= [l D' Vw2 + [[| DI ull 1o [ Vel o) | D] w2,

with % + z% = 1, p € (2,00). By interpolation

2 1—-2
[fllze < CUFIZIV Il
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then we can obtain

1—

11DFullss < ClIDFullfl9 Dl < Clllullze + |1DFw]2).
Thus we have
Ky < OVl + IVoll) x (ID[w]2: +1). (4.27)
Similarly,
Ky < C(|Vullp~ + IV0l) x (IDFwl2e + [IDFOI2: +1).  (4.28)

Inserting (4.20), (£.27) and (4.28)) into (£.25]), making use of Lemma [£.4] and Gronwall’s

Lemma, we can deduce
IIDFwlZee 2y + NIDION[750 2y + 101 DI w7212y < C,

which complete the proof of this lemma. O
4.4. A priori estimates for the higher order striated regularity.

In this subsection, we will give the higher order estimates of the vector field X. The
first lemma asserts the H! estimate of X.

Lemma 4.6. Let wyg € H', 0y € H' and X, € H', then we have
VX7 (r2) < C (4.29)
Proof. Applying 0y (k = 1,2) to the first equation of (L), we can obtain 0y X satisfies
OOk X +u-VOorX + Oku - VX = 0 0xu (4.30)

Multiplying 9y X to (£30) and integrating over R? with respect to x, we have

1d
510X O = [ a0 0x do— [ o vX-0x ds
R2 R2

R2 R2

(4.31)
RQ
£ By + By + Bs.
By Holder inequality, By can be bounded by
R2
Similarly,
By =— | Owu-VX -0 X dv < ||[Vul/1=||VX]3.. (4.33)

R2
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Then by virtue of anisotropic Hélder inequality,

BQ = X - V@ku : 8kX dx

RQ
< Ol X N 1gg (22106 Vull 2, (259) |06 X || L2(R2) (4.34)
1 1 1 1
< O X7 10:X | 72 [ Vwl|E2 101 VW[ 72| 0c X | 2

< C(IVwlzz + 101 Vel z2) x (1XI1Z2 + [V XIZ2).
After substituting (£32)), (£34) and ([£33) into (£31]), we find that
d
ZIVX @72 < CUIVulle= + Vw2 + 10:Vwll12) x (1X[72 + [VX(72). - (4:35)

Combining the estimates (8.14) and ([£35]), using Gronwall’s Lemma and by Lemma [T
and Lemma [4.15] we can deduce

HaXUH%;E(L?) + ”alaxu”%f(LQ) + HVXH%;XJ(L?) <C,
which complete the proof of this lemma. O
The next lemma shows the H® (s > 1) estimate for X.

Lemma 4.7. Assume wy € W' N H* 6y € W' N H*, Xo € H* (2 <p < 00,5 > 1),
then we have

DX [ Zpo 1) < C- (4.36)

Proof. Applying |D|* to the first equation of (L)), making use of the definition of com-
mutator, we can obtain |D|*X satisfies the follow equation

O DX +u-V|DFX = —[|D*,u- V]X + [D]*(X - Vu). (4.37)

Taking L? inner product with |D|*X,
1d

5 NIDPX @I = = [ (DFu-VIX - |DIX da+ [ 1DF(X-u)-|DFX do

£ M + Ms.
(4.38)
For My, by Holder inequality and (2.9) in Lemma 2.7]
My < |[[[DPP, - VIX |2 [[[ DI X | 2
< C(IVull = [[IDFV X [ g2 + | [DFull 1o | VX o) DI X | 22,
with % + ]% = %, p € (2,00). Choosing p such that
VXl < CllIDPX]| e,

and noticing that by interpolation

2 1—2
IIDFullze < CINIDFullZ DI ull " < Clllullzz + 1D wllr2),
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then we have
My < C(|Vull + [[|DPw] 2 + DI DPX||Z-- (4.39)

Next we estimate Ms, making use of the Holder inequality and inequality (2.10) in
Lemma 2.7,

My < [[DP(X - V)| [[| DI X[ 2
< C(I X< PP Vull L2 + [ DPX | 2Vl o) [ DI X[ 2.
By Sobolev embedding,
|X[l= < CIIDIX 2, for s > 1.

Thus we have

M, < O([[|1DFwllz2 + IVl o) [ | D" X |72 (4.40)
Inserting (£39) and (£40) into (£38), using Gronwall’s Lemma, we can deduce

1D X2 ) < C.

which complete the proof of this lemma. O

4.5. The temperature patch problem. This subsection is devoted to the proof of
Corollary [L2l Because most of the proof is the same to Corollary [T, here we just need
to verify the inequality (ILI4]). Choosing arbitrary two points that x; € D, xy € D7,
consider the difference

() — s, )] < [V pls — 2], for amy ¢ > 0. (1.41)
Noticing that from (L)), we have
V| < elo IVullzoe dr. (4.42)

Then inserting the estimate (£42]) into (A41) and taking infimum of x,z,, we can
obtain

|d(t)] < 2eelo IVullzeodr
which is the desired bounded (LT4).

A. APPENDIX
The goal of this appendix is to give the proof of Lemma and Lemma 2.8

Proof of Lemma[23. The proof of (Z0]) can be found in [20] which used the standard
Bony’s decomposition (see [5,[10]). Here we focus on proving (2.7) using the anisotropic
idea. Firstly, we divide the first term of (2.7)) into two terms,

—/ Ay(u- VA do = —/ A (u'0 A, f da:—/ A, (W0 f)A,f dx

R2
£ P+Q.
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For P, by Bony’s decomposition, we can divide it into the following three terms,

—/ A, (o)A, f dx

RQ

= — A (S, 1ut AL A, f d
Z/R2 g(Sk—1w Ao [) A f da

|k—q|<2

- Z /Aq(AkU15k181f)Aqf dx (A1)

|k—q|<2

N Z Z /2 Aq(AkulAla1f)Aqf dx

kE>q—1|k—1|<1

2P + P, + P;.

For P;, we can rewrite it as

Pl = — Z / Aq(Sk,lulﬁlAkf)Aqf dx
R2

lg—Fk|<2

- Z /[Aqasklulal]Akaqf dx
R2

lg—Fk|<2

> / Sp_ 1t AN fALf da
R2

q—k[<2

= — Z /[Aq,sk_ﬂblal]Akaqf dx
RQ

lg—Fk|<2

- > / (Sk_1ut — S;u ) AALA,f d
RQ

lg—k[<2
— / Sl A fFA,f du
R2

é1311—1-]312-1-]3137

where we have used the fact E‘ —k|<2 O AALf = A, f. For Py, by Holder inequality,

|P1| < Z

lg—Fk|<2

<C Y Ay Skt ALl Ag f 22

lg—Fk|<2

[ 180 S wto)anf A do
RQ
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According to the definition of A,
B Secat S = [ onlo = (S OB ) dy
R2
— Sklul(l’)/ ¢q(5€ - y>8IAkf<y) dy
R
=/, bz = y)(Sp—ru' (y) — Sp—ru' ()1 Ar f(y) dy
1
— [ i =) [ (w2 Vsl (sy + (1= s)a) dsth e () dy
R2 0

1
= / / bq(2)z - VSp_1u' (v — 52)01 A f(x — 2) dsdz,
r2 Jo

where ¢;(z) £ 2/9F1(¢)(2/z). Thus we have by Holder inequality and Bernstein in-
equality,

1
I[A,, Sk,lulﬁl]AkaLz = ’ / / Gg(2)z - VSk,lul(:c — 82)01 A f(x — 2) dsdz
r2 Jo

L2

< C/R2 |94(2)||2] dz||V Sk_ru! (z — $2)|| 1o |01 Ak f (z — 2)|| 12

<c / (6a(2)]12] d2l|VShorti 1= 112 A f
RQ

< CquQkHVSqul”LQHalAkf”LQ
< 25| wl| 2|0y A f ) 2.
Then we obtain

1Pul <C Y [Ag Sert' ] Ak fll 2| Ay fll 22

lg—k|<2

<O N 2wl O A f |zl Ay f 22

lg—Fk[<2
< Cb 2% ||| 2| fll 72+ [0 /]
For P5, by Hoélder inequality and Bernstein inequality,

| Pra| = Z / ((Sk-ru' — Squ' )1 AGALf) A f da
R2

Hs Hs-

lg—k|<2
<C Y (Skort! = SO AGALF || Agf [l
lg—k[<2
<C YAk 2| A AR fI| 227 A £ 2.
lg—k|<2

For the case k = —1, by Bernstein inequality,
|Prof < CllA_u | 1227 [ AGAL fll 2227 M| A f 12

< Cbe2 [ | 2]l f]
26
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For the case k > 0, by Bernstein inequality,
[Pio| <C Y 275 VA 12| A k01 1] 227 Ay f | 2

lg—k[<2
<C Y 2 H|wl|229| Agdh £l 2 1A £ 2
lg—k[<2
< Cb 2% ||l g2 || £l 25 |00 f || s -
Thus,
|P1| < Cb2% (||l 2 + [[wll 2 ) L F s + 1 F Wl s 10 f Nl s (A.2)

For P, we can bound it by Holder inequality that
Pl <C Y Ak |2 l10n Skt fll o [ Ag £l 2.
lg—k|<2

Applying Bernstein inequality, similar as Pjs,

Bl <C Y Ak lle D 212w 2| g f 12

lg—k|<2 m<k—2
<O Y Akl Y 21 Anf el A e
lg—k|<2 m<q—2
<0 Y 2aatle 3D 2 Al A e (A3)
lg—k|<2 m<qg—2
<02 Y 2N A e Y 20U A f | A f 2
lg—k[<2 m<q—2

< Cb27* " (u |22 + Nwllz2) 101 f 1 e,

where we have used discrete Young’s inequality in the last step.
Next we estimate P3. By Holder inequality and Bernstein inequality,

Z Z / Ag(Apu' A A S da

kE>q—1|k—1|<1

SO > 1A Ak DD | A fll

k>q—1|k—1|<1
<020 3" 2R A |12 Ak f 2| A £ 12 (A4)
k>q—1
<0279 3 20 PR A | (12 + ]l 2) [ A f 12
k>q—1

< Ch27* ([l [l 2 + wllz2)f 12+ 101 f]

where discrete Young’s inequality have been used in the last two line.

| P3| <

Hs Hs,

For (), we can also divide it into three parts,

— [ A0S dr = Qi+ Quk Qs (A.5)
R2
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with
Q, = — Z / A (Sk_ 1t ApOs f)A,f da,
]R2

|k—q|<2

Q== /R DA S18af)D, f da

|k—q|<2

and

Qs — Z Z /RQ A (AP N Os f)A,f da.

k>q—1 |k—1|<1
Similar as P, we can rewrite (), as

Q== > /R (A, Sk O] A A f da

lg—k|<2

-y / (Sk_out — Suu) A AN, f da
RQ

lg—k|<2
— / S0 N fA,f da
RQ
£ Q1 + Qo + Qus.

Here we should notice that Pj3 + Q13 = 0 because of the divergence free condition of w,
so we do not need to estimate these two terms.
For ()11, by Holder inequality,

Q1] < Z

lg—k|<2

<C Y Ay Skt HAL 1A f 22

lg—k|<2

[ A N
R2

According to the definition of A, and similar as P,

1
(A, Sk u' O ALf = / / bq(2)2 - VS 1u* (7 — 82)0 AL f(z — 2) dsdz.
r2 Jo

Making use of the anisotropic Holder inequality and Bernstein inequality,

I[Ag, Sk—1u?) Ay f1| 2
1
= ’ / / 0q(2)2 - VSp_1u?(z — 52) 00 Ap f (7 — 2) dsdz
2 Jo

< 0/2 |0q(2)| |2 2|V Simru®(@ — 52) gy 22 10280 f (@ = 2) |2, 25
R

L2

< C27|V 81?17 102V Sh1w?|| 72 102k f 1172 0102 A f I -
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Noticing that by Biot-Savart law u? = 9;A~'w, and combining with the boundedness of
Riesz transform in L2,

1[Ag, Sk-1u*B] Aif 12 < C2 w1 221102V OA™ wl |7 | Ak 117 0L Ak £
< C2 1wl 7| 0wl 7| Ak 11721101 A f 11 2

Then ()17 is bounded by

Qul < C D Ay S0 Arfllz2 | Ay fll 22

lg—Fk|<2

. 1 1 1 1
<C Y 2w 0wl I AKFIIZ 01 Ak F 112 | Ay f ] 2

lg—Fk|<2
ous 1 1 3 1
< Cb 27 ||wl| Fal|Oww || 22 L Nl Fre 1O f 1l s

For ()12, by the anisotropic Holder inequality and interpolation inequality,

Q12| = Z

lg—Fk|<2

<O Y N Sherw® = St AN f |2l Ay f 22

lg—Fk|<2

<O Y A g 22, [Ag Ak f |l 2, () 180 £ 2

2
lg—Fk|<2

SO Y 1AM || A Ardef (17| A Axdi s f 117211 Ay f 22

lg—Fk|<2

/ ((Sp_1u® — Su?) e AALf)A,f dx
]R2

For the case k = —1, by Bernstein inequality,

Q12| < Cl| A1 12| AgA 1 f | 22| Ay f1I 2
< Cb27%% ||W?|| 2] f |15

For the case k > 0, by Bernstein inequality and the relation u? = 9; A~ w,
1 1 1 3
Qual <C Y 27 VAWS 2 [ VAGA w2 2001 FII7: 1 A0 f [ 72

lg—k|<2

1 1 1 3
<C Y 27 Mwlilowli A0 1518 12

lg—k|<2

1 1
< Cb27*" |wl 720wl 7. 1f]

v f]

Hs Hs-

Thus,

HS

Q1] < Cb27 ([lull 2 + [l 101w 22) (11 /]
29

Ho)- (A.6)

L f]

e+ 1]




Similar as ()12, applying anisotropic Holder inequality and Bernstein inequality, ()2 can
be bounded by

Qo <C Y 1Ak |y 2 102Sk1 fll 1, (1) | Ao f |2

lg—k|<2
- - 1 1
<C Z | Apu®|| 72 || AkOau?|| 75| 02Sk—1f || 72 110102Sk—1 f || 72 | Ag £l 22
lg—k|<2
ngqQ2quuHLz|]fH§{s+C|]wH22H81wH22( > QWQHAmeLz) (A7)
m<q—2
%
x ( > 2"quAnalfuLz) 180 F e
n<q—2
) 1 1 ) 3 1
< Cb2 " ([Ju|| 2 + [|wl 72101 | 72) UL f s + LI s 1O F [ Frs)-

Finally we estimate (J3. By Holder inequality and Bernstein inequality,
CEESD DI Sl (N ST
RQ

k>q—1 |k—1|<1

SO > AN Agf e

k>q—1|k—1|<1

<020 3 Ak 2| Ak 112 A Sl (A-8)
k>q—1

<20 3" (fullse + 191wll2)2 28| A 1211 A f 2
k>q—1

< Cb27** ([Jull g2 + 0wl z2)[Lf [ 7+-

Taking all these estimates into account, we can obtain

_/ Ag(u- VA do <Cb27**([Jullz2 + [wllz2 + [01w]|L2)
R2

1
Be)s

O f|

3
2
HS

1
i+ f

O f|

1
2
HS

X (£l + 11 f]

which complete the proof of this lemma.

g

Lemma A.1 (Losing regularity estimate for transport equation). Let p satisfies the
transport equation

op+u-Vp=f,

1P p=1r (A.9)
p(0,z) = po(x),

where po € Bs,, f € L'([0,T]; Bs,) with r € [1,00]. Here v € L* is a divergence free

vector field and for some V (t) € L'([0,T)), v satisfies

IV Syou(t)o
< V(?).
]SVUZI?J vV1+N (t)
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Then for all s >0, € € (0,s) and t € [0,T], we have the following estimate,
T 2
Q T T T
Pl < 0<T>(||po| B, + / 1£()llss, d) (v ar)
’ 0

Proof. The case r = 0o has been shown in [20], here we just discuss 1 < r < oco. Applying
A, to (2.8), we obtain

OAgp+ Ay(v-Vp) = Af. (A.10)
Taking L? inner product with A,p,
1d
——[|[Apll7: = —/ A (v-Vp)A,p dx +/ A fApde & T+11 (A.11)
2 dt R2 R2
For 11, by Holder inequality,
1= [ 808800 < 180f 121301 (A12)
RQ

For I, along a similar argument as Lemma [2.5], we can divide it as

I=— / A (u-Vp)Ayp dx

]R2
.S / Ag(Sirtt- ApVp)Agp d
R2

|k—q|<2

- > / A (Agu - VSi_1p)Ayp da
RQ

lk—q|<2
— Z Z / A (Agu-VAP)Ap dx
k>q—1 |k—1<1 /B
21, + Ly+ Ls.
For Ly, we can rewrite it as

Li== 3 [ [BuSiau: Vidupd,p ds
R2

lg—Fk|<2

— Z / (Sk—1u — Squ) - VAARpAyp dx
R2

lg—k[<2
- / Squ - VA A, f dz
R2

£ Lit + L1 + Ly,
According to divergence-free condition of u, it is not difficult to find that L3 = 0. For
Ly1, by Holder inequality,
|L1| < Z
lg—k|<2

<C Y Ay Skru- VA 2| Agpl 2.

lg—Fk|<2

/ [Aq, Sk_lu : V]AkpAkp dx
R2
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According to the definition of A,
By Secu- Vaup = | dyle = 1) Seoruly) - Vi) dy
= Siru(e) [ ol —0)Vuply) dy
Rd
= /. Gg(z — ) (Sk—1uly) — Sk—ru(z)) - VArp(y) dy
1
= [ oo =) [ =) VSiruloy+ (1= 5)0) ds - Vreply) dy
R2 0

1
= / / ¢q(2)z - VSp_1u(x — sz) - VAp(x — z) dsdz.
r2 Jo

Thus we have

1
I[Ag; Sk—1u - V]Agpl2 = ’ / / bq(2)z - VSp_ru(x — sz) - VAgp(x — 2) dsdz
r2 Jo

L2

< C/R? |pq(2)||2] dz||V Sp—ru(z — 52)|| || VArp(z — 2)|| 2

<21 [ [oal2| a2 VSecruli= Tl
RQ

< CQ_q||v5k;_1u||L002k||Akp||L2.
Then we obtain

L] <C Y A, Skort - V] Agpl|z2 || Agpll 2

lg—k|<2

<O Y 2VSkul| ]| Agpl 72

lg—k|<2
< CVaV (1)1 Agpl1 22
< Cdg277/qV (1)l pllBg . |1 Agpll 2

where d, € (".
For L5, by Holder inequality,

Lol = )
lg—Fk|<2

<C Y 2 VAl [ Agpl2e + ull 2l gl

lg—k|<2

< C(Va+2V (1) + [l )| Agpll72
< Cdg277%( q+ 2V (t) + [[ullz2)lIpllBg, | Agpll 2
For Ly, we can bound it by Hélder inequality that

Lol < C ) 18wl =V Siorpll 2l Agpl| 12

lg—Fk|<2

/ ((Sg—1u — Squ) - VA App)Ayp dx
RQ
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According to Bernstein inequality,

Lol <C Y N Akullze Y 27 [ Azl Agpll e

lg—k|<2 m<g—2
<C Y 2Dl Y 2" Al 2| g 2
lg—k|<2 m<q—2
<C Y 2dlie 3 27 Al Aol
lq—k|<2 m<g-2
<CWa+2V () + llullz) Y 27 Ampll 2l Agpll 2
m<q—2

< Cdg277(\/q + 2V () + |lullz2)llpll g, | Agpl| -
Then we bound Ls. By Holder inequality and Bernstein inequality,

% [ b VAl da

k>q—1|k—1|<1

<O Y D 1AV (Awudip)llz| Agplle

kE>q—1|k—1|<1

<027 Y (1Al =l Awpll 2| Agpll 2

k>q—1

C(Va+2V(t) +llullz) Y 27 | Awpll 2] Agpll e

k>q—1
< Cdg27( q + 2V (t) + [[ull2) ol Bg, [ Agpll L2
Thus we obtain I can be bounded by

|Ls| <

1< Cd2 s (JTT2V(0) + Dllplsg, | Aol (A13)
Inserting (A.12) and (A13) into (A1), one can obtain
d -0
S 1Baplz2 < 1Ag fllz2 + Cd27 (Vg + 2V (¢) + 1)l pll g, - (A.14)
Denoting s; 2 s—1n fo ) dr fort € [0, T] with = &( fo dT) . Choosing o = s,

and integrating (A.14)) from 0 to t with respect to time Varlable and then multiplying

by 2%,

2 A,p(t) 12 < dyllpoll g, + dy / £y, dr

+qu/ o (Sn I ves)a( /5o (r) + 1) ollsy, dr.
0

Choosing gy > 0 is the smallest integer such that

4C?|d, 3
_— 2.
flog 2 ="

(A.15)



Then for g > ¢y, we have

t . 1
C/ o(Sniveis)a, /By (1) dr < T (A.16)
0 qller

Inserting these result into (A.15) and taking ¢" norm of ¢, on can deduce

()]

t
s, < Clllag, +C [ 1) lay, dr

0 (a [T

9>q0

L
™
B, dT) )
1

+C< 3 <dq/0t2(nfﬁv(s)ds)q\/mV(T)HpHB;; dT)r)r (A17)

1<g<qo

t
<Cliplsg, +C [ 150, dr
0

t
s+ OV L[ V)l
' 0

Taking supremum of time ¢ from 0 to 7" and applying the Gronwall’s Lemma, we deduce

T
T
Byt < C(T)<H/)0”B§m +/ 1£(7)ls;, dT) oVaOF [ V() dr
’ 0

1
+5 sup ol By dT.
t€[0,T] ’

sup_||p(t)]
t€[0,T]

According to the definition of qg, finally we obtain

T
B;+AHNM

which entails the desired inequality given that s > s, > s — e for all t € [0, T].

sup (), < (1) (I

c (T
B, dT) en o V(D ar
te[0,T) ’
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