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ON THE STRIATED REGULARITY FOR THE 2D ANISOTROPIC

BOUSSINESQ SYSTEM

MARIUS PAICU1 AND NING ZHU2

Abstract. In this paper, we investigate the global existence and uniqueness of strong

solutions to 2D Boussinesq system with anisotropic thermal diffusion or anisotropic

viscosity and with striated initial data. Using the key idea of Chemin to solve 2-

D vortex patch of ideal fluid, namely the striated regularity can help to bound the

gradient of the velocity, we can prove the global well-posedness of the Boussinesq system

with anisotropic thermal diffusion with initial vorticity being discontinuous across some

smooth interface. In the case of an anisotropic horizontal viscosity, we can study the

propagation of the striated regularity for the smooth temperature patches problem.

1. introduction

The Boussinesq system is a classical model in geophysical fluid dynamics which de-

scribes the large-scale atmospheric and oceanic flows and also play an important role in

the study of Rayleigh-Bénard convection (see [46] for example). In the present paper,

we investigate the 2D anisotropic Boussinesq equations with horizontal temperature dif-

fusion or horizontal velocity dissipation. These are derivative models from the classical

Boussinesq system where the vertical dimension of the domain is very small compared

with the horizontal dimension of the domain. In this case, after rescaling the domain,

the dissipation is not isotropic and we have to deal with the anisotropic problem. More

precisely, we study the following system which is the Euler equations coupling with a

transport-diffusion temperature equation with diffusion only in horizontal direction,



∂tu+ u · ∇u = −∇p+ θe2, x ∈ R2, t > 0

∂tθ + u · ∇θ − κ∂21θ = 0,

∇ · u = 0,

u(0, x) = u0(x), θ(0, x) = θ0(x),

(1.1)

and a system where the Navier-Stokes equations with no vertical viscosity coupling with

a transport temperature equation,



∂tu+ u · ∇u− ν∂21u = −∇p+ θe2, x ∈ R2, t > 0

∂tθ + u · ∇θ = 0,

∇ · u = 0,

u(0, x) = u0(x), θ(0, x) = θ0(x).

(1.2)
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Here u = (u1(x, t), u2(x, t)) denotes the velocity field, p = p(x, t) is a scalar function

denotes the pressure. θ = θ(x, t) is a scalar representing the temperature in the content

of thermal convection and the density in the modeling of geophysical fluids. e2 = (0, 1)

is the vertical unit vector field, and the forcing term θe2 on behalf of the buoyancy force

due to the gravity field. The parameters κ and ν denote the molecular diffusion and

the viscosity respectively. These anisotropic system are important modeling dynamics

of geophysical flows (see e.g. [11, 12, 33, 44]).

The general 2D anisotropic Boussinesq equations can be read as,




∂tu+ u · ∇u− ν1∂
2
1u− ν2∂

2
2u = −∇p + θe2,

∂tθ + u · ∇θ − κ1∂
2
1θ − κ2∂

2
2θ = 0,

∇ · u = 0,

u(0, x) = u0(x), θ(0, x) = θ0(x).

(1.3)

where ν1, ν2, κ1 and κ2 are real parameters. Systems (1.1) and (1.2) are two special cases

for (1.3). When ν1 = ν2 > 0, κ1 = κ2 > 0, the global well-posedness theory for (1.3)

has been established in [7, 27]. On the contrary, when these four parameters are zero,

whether (1.3) has an unique global solution is a challenging problem and still unsolved.

This system has many similarities with the classical 3D incompressible Euler equations

such as the vortex stretching mechanism (which will be explained later). So it has both

physical motivation and mathematical significant to investigate the intermediate cases

(only partial dissipation) and some improvements has been made in the past few years.

The global regularity for the case when ν1 = ν2 > 0 and κ1 = κ2 = 0 was proven

by Chae in [8] and by Hou and Li in [32] with smooth initial data. Later, Abidi and

Hmidi studied this system in the Besov space in [4]. The global weak solution with finite

energy has been construct in [30] and has been proved to be unique later in [19]. For

the case ν1 = ν2 = 0 and κ1 = κ2 > 0, Chae in [8] also studied the global regularity for

smooth data. This result was improved by Hmidi and Keraani in [31], Danchin and the

first author in [21] for rough initial data. The global well-posedness for (1.1) and (1.2)

was considered by Danchin and the first author in [20], and they established the global

existence and uniqueness theory. Then the global well-posedness for the anisotropic

Boussinesq equations with vertical dissipation, namely (1.3) with only ν2, κ2 > 0, was

studied by Cao and Wu in [13]. Later, Adhikaria et. al. investigated other mixed

dissipation cases [1]. Other interesting recent results on the 2D anisotropic Boussinesq

equations and other related systems can be found in [2, 3, 34, 38, 40, 41, 47].

Next we would like to introduce a quantity which is widely utilized in the literature

we mention above. The quantity ω , ∂1u2 − ∂2u1 which called vorticity measures how

fast the fluid rotates. Taking curl operator to the first equation of (1.1) we obtain the

corresponding vorticity equation,

∂tω + u · ∇ω = ∂1θ. (1.4)

Similarly, the vorticity form of system (1.2),

∂tω + u · ∇ω − ∂21ω = ∂1θ. (1.5)
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The forcing term ∂1θ is the so called ”vortex-stretching” term which making this system

become more complex than the 2D Euler system.

Another part of our paper is devoted to study the vortex (temperature) patches

problem. Before we describe this problem, we need first to introduce some notations.

Let us denote by ψ(·, t) the flow associated with the vector field u, that is




d

dt
ψ(x, t) = u(ψ(t, x), t),

ψ(0, x) = x.
(1.6)

The classical vortex patch problem is associated to the 2D Euler equations. If the

initial vorticity taking the characteristic function supported in some connected bounded

domain, whether the regularity of the boundary can be preserved through the evolution

of the flow ψ? It has been proved by Chemin that the regularity of the boundary can

be persisted for all the time in some Hölder class (see [9, 10] for details). Other results

about the vortex (temperature) patch problems corresponding to the Euler equations,

homogeneous (inhomogeneous) Navier-Stokes equations and other fluid models can be

found in [6, 14–18, 22–26, 28, 29, 42, 43, 45] and the references therein.

In order to understand the striated regularity clearly, we need first to introduce some

notations and definitions which will be used to describe the boundary regularity. Let

X0 be a vector field defined on D0 (a connected bounded domain), X is the evolution of

X0 along the flow ψ defining as follows,

X(x, t) , ∂X0
ψ(ψ−1(x, t), t), (1.7)

where ∂X0
f , X0 · ∇f denoting the standard directional derivative.

Taking time derivative of (1.7), one can obtain X satisfies the following transport equa-

tion, {
∂tX + u · ∇X = ∂Xu,

X(0, x) = X0(x).
(1.8)

It is not hard to check that ∂X satisfies,

[∂X , Dt] = 0, (1.9)

where [A,B] , AB − BA represents the standard commutator, and Dt , ∂t + u · ∇
denotes the material derivative.

We need also the following two definitions, which can be found in [5, 10].

Definition 1.1. Let s > 0 and Ω be a bounded domain in Rd. We say that Ω is of class

Cs if there exists a compactly support function f ∈ Cs(R2) and a neighborhood V of ∂Ω

such that

∂Ω = f−1({0}) ∩ V and ∇f(x) 6= 0 ∀ x ∈ V.

Definition 1.2. A family (Xλ)λ∈Λ of vector fields over R2 is said to be non-degenerate

whenever

I(X) , inf
x∈Rd

sup
λ∈Λ

|Xλ(x)| > 0.
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Let r ∈ (0, 1) and (Xλ)λ∈Λ be a non-degenerate family of Cr vector fields over R2. A

bounded function f is said to be in the function space Cr
X if it satisfies

‖f‖Cr
X
, sup

λ∈Λ

(‖f‖L∞‖Xλ‖Cr + ‖∇ · (Xλf)‖Cr
X

I(X)

)
.

Next we present the main results for our paper. Since the concrete values of the

constants κ in system (1.1) and ν in (1.2) play no role in our discussion, for this reason,

we shall assume κ = ν = 1 throughout this paper.

The main result pertaining to system (1.1) can be stated as follows.

Theorem 1.1. Assume u0 ∈ L2 be a divergence-free vector field, the corresponding

vorticity ω0 , ∂1u
2
0− ∂2u

1
0 ∈ L∞. Let (ω0, θ0) ∈ Hs×H1+s with 0 < s < 1. Then system

(1.1) exists a unique global solution (u, θ) satisfies

u ∈ L∞([0, T ];H1+s), ω ∈ L∞([0, T ];L∞), θ ∈ L∞([0, T ];H1+s), ∂1θ ∈ L∞([0, T ];H1+s).

Furthermore, for any non-degenerate vector field X0 ∈ Cs such that ∂X0
ω0 ∈ Lp (2 <

p < ∞), there exists a unique global solution X ∈ L∞([0, T ];Cs) to equation (1.8) and

we have

∂Xω ∈ L∞([0, T ];Lp), ∇u ∈ L1([0, T ];L∞).

As a direct application, this theorem can be used to deal with the so called ”vortex

patch” problem as follows.

For

ω0(x) = χD0
(x) ,

{
1 x ∈ D0,

0 x /∈ D0,
(1.10)

where D0 is a connected bounded domain, χD0
is the standard characteristic function of

D0. Let ω(x, t) = ω1(x, t) + ω2(x, t) where ω1 is the solution of the system
{
∂tω

1 + u · ∇ω1 = 0,

ω1(x, 0) = ω0(x),
(1.11)

and ω2 is the solution of the system
{
∂tω

2 + u · ∇ω2 = ∂1θ,

ω2(x, 0) = 0.
(1.12)

Then the main result can be stated as follows.

Corollary 1.1. Assume ω0 defined as in (1.10) and D0 be a connected bounded domain

with its boundary ∂D0 in Hölder class C1+s (0 < s < 1). Then system (1.1) exists

a unique global solution satisfies the properties shows in Theorem 1.1. Moreover, the

solution of systems (1.11) and (1.12) satisfying

ω1 = χDt
, ω2 ∈ L∞([0, T ];Cs(X)),

with Dt , ψ(D0, t) and the boundary of the domain remains in the class C1+s.

Then we present our main result pertaining to system (1.2).
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Theorem 1.2. Assume u0 ∈ L2 be a divergence-free vector field, the corresponding

vorticity ω0 , ∂1u
2
0 − ∂2u

1
0 ∈ L2 ∩ L∞. Let (ω0, θ0) ∈ Hs × Hβ with 1

2
< s < β. Then

system (1.2) exists a unique global solution (u, θ) satisfies

u ∈ L∞([0, T ];H1+s), ∂1u ∈ L2([0, T ];H1+s), ∇u ∈ L1([0, T ];L∞), θ ∈ L∞([0, T ];Hs).

Furthermore, for any vector field X0 ∈ Hs, there exists a unique global solution X ∈
L∞([0, T ];Hs) to equation (1.8). Moreover, X ∈ L∞([0, T ];Hs′) for s′ > 1 if provided

ω0 ∈ Ẇ 1,p ∩Hs′, θ0 ∈ Ẇ 1,p ∩Hs′ with 2 < p <∞ and X0 ∈ Hs′.

Remark 1. Here we obtain the velocity u is Lipschitz, which is more regular compared

with the result of the paper of Danchin and the first author [20], where the velocity was

only Log-Lipschitz.

Remark 2. In the critical case s = 1/2, we can prove the global well-posedness and

Lipschitz information for velocity with ω0 ∈ B
1

2

2,1 and θ0 ∈ Hβ, 1/2 < β. The method is

much similar to our proof of Theorem 1.2 but the process is more complicated. In order

to make our paper easy to read, we only discuss the result in Sobolev space here.

Remark 3. We can even obtain the Lipschitz information of the velocity with initial

vorticity ω0 in anisotropic Besov space B0, 1
2 through a similar idea. Here B0, 1

2 is the

space given by the norm

‖f‖B0,1
2
=

∑

q∈Z
2

q
2‖∆v

qf‖L2 and ∆v
q = F−1(ϕ(ξ2/2

q)f̂(ξ))

is the dyadic bloc in the vertical Fourier variable and the definition of ϕ(ξ) will be given

in the next section.

The above result can be used to solve the smooth ”temperature patch” problem.

Defining

θε0(x) = χD0
∗ ηε(x) =

{
1 x ∈ D−

ε ,

0 x ∈ R2 \D+
ε ,

(1.13)

where χD0
is the characteristic function of the domain D0. ηε is the standard mollified

function. D−
ε and D+

ε are two domains defined by

D−
ε , {x ∈ D : dist(x, ∂D0) > ε},

D+
ε , {x ∈ R2 : dist(x, ∂D0) > ε}.

Along the evolution of the fluid, the distance of ψ(D−
ε , t) and ψ(D

+
ε , t) denoted by d(t)

with d(0) = 2ε. Then the following result hold true.

Corollary 1.2. Let 1
2
< s < 1, assume θ0 = θε0 defined as in (1.13) with ∂D0 ∈ H1+s,

ω0 ∈ L∞ ∩Hs. Then there exists a unique solution (u, θ) to system (1.2) satisfying the

properties listed in Theorem 1.2. Furthermore, θ(x, t) satisfies the same form as θ0 that

θ(x, t) =

{
1 x ∈ ψ(D−

ε , t),

0 x ∈ R2 \ ψ(D+
ε , t),
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and the distance d(t) satisfies,

|d(t)| ≤ 2εe
∫ t

0
‖∇u(τ)‖L∞dτ . (1.14)

Moreover, the flow ψ(·, t) ∈ H1+s and the boundary ∂D−
ε , ∂D

+
ε ∈ H1+s for all t ≥ 0.

Remark: We can propagate higher regularity of the boundary for the temperature

patch if we improve the regularity condition of the initial data.

The rest of this paper is divided into three sections and an appendix. In section 2,

we provide some definitions and lemmas which will be used in the next sections. Section

3 is devoted to the study of system (1.1) which divided into three subsections. The

first one gives some regularity estimates, the second subsection shows the estimate for

striated regularity and the last subsection gives the proof of Corollary 1.1. Section 4

deals with system (1.2) which is divided into five subsections unfolding similar as section

3. Finally, Appendix A provides the technical proof for some lemmas presented in the

second section.

2. Preparations

In this section, we will give some definitions and lemmas which will be used in the

next several sections. First we give some notations. Throughout this paper, C stands

for some real positive constant which may vary from line to line. {bq} stands for the

ℓ1 sequence which may also different in each occurrence. |D| , (−∆)
1

2 denotes the

Zygmund operator which is defined through the Fourier transform that

|̂D|f = |ξ|f̂ , (2.1)

where

f̂ , F(f) =
1

(2π)2

∫

R2

e−ix·ξf(x) dx.

Similarly, we can define

|̂D|sf = |ξ|sf̂ , |̂∂1|sf = |ξ1|sf̂ . (2.2)

Next we present the classical Littlewood-Paley theory in Rd which plays an important

role in the proof of our result. Let χ be a smooth function support on the ball B , {ξ ∈
Rd : |ξ| ≤ 4

3
} and ϕ be a smooth function support on the ring C , {ξ ∈ Rd : 3

4
≤ ξ ≤ 8

3
}

such that

χ(ξ) +
∑

q≥0

ϕ(2−qξ) = 1, for all ξ ∈ Rd,
∑

q∈Z
ϕ(2−qξ) = 1, for all ξ ∈ Rd \ {0}.

Then for every u ∈ S ′ (tempered distributions), we define the non-homogeneous Littlewood-

Paley operators as follows,

∆qu = 0 for q ≤ −2, ∆−1u = χ(D)u = F−1(χ(ξ)û(ξ)),

∆qu = ϕ(2−jD)u = F−1(ϕ(2−jξ)û(ξ)), ∀ q ≥ 0, Squ =

q−1∑

j=−1

∆ju.
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Next we state the definition of non-homogeneous Besov spaces through the dyadic de-

composition.

Definition 2.1. For s ∈ R and 1 ≤ p, r ≤ ∞, the non-homogeneous Besov space Bs
p,r

is defined by

Bs
p,r = {f ∈ S ′; ‖f‖Bs

p,r
<∞},

where

‖f‖Bs
p,r

=





∑

q≥−1

(2qs‖∆qf‖rLp)
1

r for r ≤ ∞,

sup
q≥−1

2qs‖∆qf‖Lp for r = ∞.

We point out that when p = r = 2, for all s ∈ R, we have Bs
2,2(R

d) = Hs(Rd).

Lemma 2.1. (Bernstein inequality [5, 10]) Let k ∈ N ∪ {0}, 1 ≤ a ≤ b ≤ ∞. Assume

that

suppf̂ ⊂
{
ξ ∈ Rd : |ξ| ≤ 2qC

}
,

for some integer q, then there exists a constant C1 such that

‖∇αf‖Lb ≤ C12
q

(
k+d

(
1

a
− 1

b

))
‖f‖La, k = |α|.

If f satisfies

suppf̂ ⊂
{
ξ ∈ Rn : |ξ| = 2qC

}
,

for some integer q, then

C22
qk‖f‖Lb ≤ ‖∇αf‖Lb ≤ C32

q

(
k+d

(
1

a
− 1

b

))
‖f‖La , k = |α|,

where C2 and C3 are constants depending on α, a and b only.

Noticing that if u is a divergence-free vector field in R2, then it can be recovered from

the corresponding vorticity ω by means of the following Biot-Savart law

u = ∇⊥∆−1ω. (2.3)

Combining the classical Calderón-Zygmund estimate and (2.3), it can lead to the fol-

lowing lemma [10].

Lemma 2.2. For any smooth divergence-free vector field u with its vorticity ω ∈ Lp and

p ∈ (1,∞), there exists a constant C such that

‖∇u‖Lp ≤ C
p2

p− 1
‖ω‖Lp. (2.4)

The next lemma shows the Hölder estimate for transport equation, which is useful in

the estimate of the striated regularity. The proof can be found in [10].

Lemma 2.3. Let v be a smooth divergence-free vector field, r ∈ (−1, 1). Consider two

functions f ∈ L∞
loc(R;C

r) and g ∈ L1
loc(R;C

r) satisfy the transport equation

∂tf + u · ∇f = g.
7



Then we have

‖f(t)‖Cr ≤ C‖f(0)‖CreC
∫ t

0
‖∇u(τ)‖L∞ dτ + C

∫ t

0

‖g(τ)‖CreC
∫ t

τ
‖∇u(s)‖L∞ ds dτ,

and the constant C depends only on r.

The following logarithmic inequality plays an important role in the proof of the Lip-

schitz information for velocity of system (1.1). The proof of this lemma can be found

in [5, 10].

Lemma 2.4. Let r ∈ (0, 1) and (Xλ)λ∈Λ be a non-degenerate family of Cr vector fields

over R2. Let u be a divergence-free vector field over R2 with vorticity ω ∈ Cr
X . Assume,

in addition that u ∈ Lq for some q ∈ [1,+∞] or that ∇u ∈ Lp for some finite p. Then

there exists a constant C depending on p and r such that

‖∇u‖L∞ ≤ C

(
min(‖u‖Lq , ‖ω‖Lp) + ‖ω‖L∞ log

(
e +

‖ω‖Cr
X

‖ω‖L∞

))
. (2.5)

Then we give the definition of the space
√
L and LL

1

2 .

Definition 2.2. The space
√
L stands for the space of functions f in

⋂
2≤p<∞ Lp such

that

‖f‖√L , sup
p≥2

‖f‖Lp√
p− 1

<∞.

And the space LL
1

2 denotes by

LL
1

2 ,
{
f ∈ S ′ : ‖f‖

LL
1
2
, sup

j≥0

‖Sjf‖L∞√
j + 1

<∞
}
.

Remark: It is not hard to check that
√
L →֒ LL

1

2 .

The following lemma play a significant role in the estimate of the convection term.

The proof of this lemma shall be shown in the Appendix.

Lemma 2.5. Assume u is a smooth divergence free vector field with u ∈ L2, ∇u ∈ L∞,

f ∈ Hs with s ∈ (0, 1), then we have

−
∫

R2

∆q(u · ∇f)∆qf dx ≤Cbq2−2qs‖∇u‖L∞‖f‖2Hs, (2.6)

with bq ∈ ℓ1. Moreover, if ω, ∂1ω ∈ L2, ∂1f ∈ Hs, then we have

−
∫

R2

∆q(u · ∇f)∆qf dx ≤Cbq2−2qs(‖u‖L2 + ‖ω‖L2 + ‖∂1ω‖L2)

× (‖f‖2Hs + ‖f‖
1

2

Hs‖∂1f‖
1

2

Hs + ‖f‖
3

2

Hs‖∂1f‖
1

2

Hs),

(2.7)

where ω is the corresponding vorticity of u.

Then we give a lemma which alerts the classical losing regularity estimate for the

transport equation, and result can be found in [5, 20]. For the sake of completeness, we

will give the proof in the Appendix.
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Lemma 2.6 (Losing regularity estimate for transport equation). Let ρ satisfies the

transport equation {
∂tρ+ u · ∇ρ = f,

ρ(0, x) = ρ0(x),
(2.8)

where ρ0 ∈ Bs
2,r, f ∈ L1([0, T ];Bs

2,r) with r ∈ [1,∞]. Here v ∈ L2 is a divergence free

vector field and for some V (t) ∈ L1([0, T ]), v satisfies

sup
N≥0

‖∇SNv(t)‖L∞√
1 +N

≤ V (t).

Then for all s > 0, ε ∈ (0, s) and t ∈ [0, T ], we have the following estimate,

‖ρ(t)‖Bs−ε
2,r

≤ C(T )

(
‖ρ0‖Bs

2,r
+

∫ T

0

‖f(τ)‖Bs
2,r
dτ

)
e

C
η

∫ T
0

V (τ) dτ ,

The following Lemma gives the classical Kato-Ponce type inequality, which can be

found in [35–37].

Lemma 2.7. Assume s > 0 and p ∈ (1,+∞). Let f satisfies f ∈ Lp1, ∇f ∈ Lp1,

|D|sf ∈ Lp3, g satisfies |D|s−1g ∈ Lp2, |D|sg ∈ Lp2, g ∈ Lp4, then we have

‖[|D|s, f ]g‖Lp ≤ C(‖∇f‖Lp1‖|D|s−1g‖Lp2 + ‖|D|sf‖Lp3‖g‖Lp4 ), (2.9)

‖|D|s(fg)‖Lp ≤ C(‖f‖Lp1‖|D|sg‖Lp2 + ‖|D|sf‖Lp3‖g‖Lp4 ), (2.10)

where p2, p3 ∈ (1,+∞) satisfy

1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.

3. The Case of Horizontal Diffusivity

This section is devoted to deal with the first model (1.1). At the beginning, we will

give some regularity estimates for (ω, θ) in the first subsection. Then we will exam the

Hölder estimate of X and prove Corollary 1.1.

3.1. A priori estimates for ω and θ.

Before we give the regularity estimate for (ω, θ), we need first recall the following exis-

tence and uniqueness result in [20] about system (1.1).

Theorem 3.1. Let 1 < s < 3
2
and θ0 ∈ H1 such that |∂1|sθ0 ∈ L2. Let u0 ∈ H1 be a

divergence-free vector field and the corresponding vorticity ω0 in L∞. Then system (1.1)

with initial data (θ0, u0) admits a global unique solution (θ, u) in Cw(R+;H
1) such that

θ ∈ L∞(R+;H
1), ∂1θ ∈ L2(R+;H

1 ∩ L∞), ω ∈ L∞
loc(R+;L

∞),

|∂1|sθ ∈ L∞(R+;L
2), |∂1|1+sθ ∈ L2

loc(R+;L
2).

Then we give the proposition which showing the regularity estimate of (ω, θ).
9



Proposition 3.1. Let 0 < s < 1, assume the initial data ω0 ∈ L2 ∩ L∞ ∩ Hs and

θ0 ∈ H1+s. Then the following estimate holds true,

‖ω(t)‖2Hs + ‖θ(t)‖2H1+s +

∫ t

0

‖∂1θ(τ)‖2H1+s dτ ≤ C(t)e
∫ t

0
‖∇u(τ)‖L∞ dτ . (3.1)

Proof. We first estimate ω. Applying ∆q to (1.4), we get

∂t∆qω +∆q(u · ∇ω) = ∂1∆qθ. (3.2)

Taking L2 inner product with ∆qω, one can deduce

1

2

d

dt
‖∆qω(t)‖2L2 = −

∫

R2

∆q(u · ∇ω)∆qω dx+

∫

R2

∂1∆qθ∆qω dx

, N1 +N2.

(3.3)

For N1, making use of Lemma 2.5,

N1 ≤ Cbq2
−2qs‖∇u‖L∞‖ω‖2Hs. (3.4)

Then we estimate N2, by Hölder inequality and Young’s inequality,

N2 ≤C‖∂1∆qθ‖L2‖∆qω‖L2 ≤ Cbq2
−2qs‖∂1θ‖Hs‖ω‖Hs ≤ Cbq2

−2qs(‖θ‖2H1+s + ‖ω‖2Hs).

(3.5)

Inserting the estimate (3.4) and (3.5) into (3.3), then multiplying both side by 22qs and

summing up over q ≥ −1, we obtain

1

2

d

dt
‖ω(t)‖2Hs ≤ C(1 + ‖∇u‖L∞)× (‖ω‖2Hs + ‖θ‖2H1+s). (3.6)

Then we estimate θ. Applying ∆q to the second equation of (1.1), we obtain

∂t∆qθ +∆q(u · ∇θ)− ∂21∆qθ = 0. (3.7)

Multiplying (3.7) by ∆qθ and integrating over R2 with respect to x, after integration by

part, one can deduce

1

2

d

dt
‖∆qθ(t)‖2L2 + ‖∂1∆qθ‖2L2 = −

∫

R2

∆q(u · ∇θ)∆qθ dx

= −
∑

|k−q|≤2

∫

R2

∆q(Sk−1u · ∇∆kθ)∆qθ dx

−
∑

|k−q|≤2

∫

R2

∆q(∆ku · ∇Sk−1θ)∆qθ dx

−
∑

k≥q−1

∑

|k−l|≤1

∫

R2

∆q(∆ku · ∇∆k+lθ)∆qθ dx

, Θ1 +Θ2 +Θ3.

(3.8)

For Θ1, along the same method as in the proof of Lemma 2.5 which showed in the

Appendix, we can obtain

Θ1 ≤ Cbq2
−2q(1+s)‖∇u‖L∞‖θ‖2H1+s. (3.9)

10



For Θ2, we can write it explicitly,

Θ2 = −
∑

|k−q|≤2

∫

R2

∆q(∆ku · ∇Sk−1θ)∆qθ dx

= −
∑

|k−q|≤2

∫

R2

∆q(∆ku
1∂1Sk−1θ)∆qθ dx

−
∑

|k−q|≤2

∫

R2

∆q(∆ku
2∂2Sk−1θ)∆qθ dx

, Θ21 +Θ22.

(3.10)

Making use of Hölder inequality, Θ21 can be bounded by

Θ21 ≤ C
∑

|k−q|≤2

‖∆ku
1‖L2‖∂1θ‖L∞‖∆qθ‖L2

≤ C
∑

|k−q|≤2

‖∆k∂2∆
−1ω‖L2‖∂1θ‖L∞‖∆qθ‖L2

≤ C
∑

|k−q|≤2

2−k2−sk2sk‖∆kω‖L2‖∂1θ‖L∞2−(1+s)k2(1+s)k‖∆qθ‖L2

≤ C2−2(1+s)qbq‖∂1θ‖L∞‖ω‖Hs‖θ‖H1+s ,

where we have used the Biot-Savart law (2.3).

Also making use of (2.3), combining with integration by part, we can write Θ22 as

Θ22 = −
∑

|k−q|≤2

∫

R2

∆q(∆ku
2∂2∆k+lθ)∆qθ dx

= −
∑

|k−q|≤2

∫

R2

∆q(∆k∂1∆
−1ω∂2Sk−1θ)∆qθ dx

=
∑

|k−q|≤2

∫

R2

∆q(∆k∆
−1ω∂2Sk−1θ)∂1∆qθ dx

+
∑

|k−q|≤2

∫

R2

∆q(∆k∆
−1ω∂1∂2Sk−1θ)∆qθ dx

, Θ221 +Θ222.
11



For Θ221, by Hölder inequality and Bernstein inequality in Lemma 2.1,

Θ221 ≤ C
∑

|k−q|≤2

‖∆k∆
−1ω‖L∞‖∂2Sk−1θ‖L2‖∂1∆qθ‖L2

≤ C
∑

|k−q|≤2

2−2k‖∆kω‖L∞‖θ‖H12−(1+s)q2(1+s)q‖∆qθ‖L2

≤ C
∑

|k−q|≤2

2−2k2k‖∆kω‖L2‖θ‖H12−(1+s)q2(1+s)q‖∂1∆qθ‖L2

≤ C2−2(1+s)qbq‖θ‖H1‖ω‖Hs‖∂1θ‖H1+s.

Next we bound Θ222, by Hölder inequality and Bernstein inequality,

Θ222 ≤ C
∑

|k−q|≤2

‖∆k∆
−1ω‖L2‖∂1∂2Sk−1θ‖L∞‖∆qθ‖L2

≤ C
∑

|k−q|≤2

2−2k‖∆kω‖L2

( ∑

k′≤k−2

‖∂1∂2∆k′θ‖L∞

)
‖∆qθ‖L2

≤ C
∑

|k−q|≤2

2−2k‖∆kω‖L22(1−s)q

( ∑

k′≤k−2

2(k
′−k)(1−s)2sk

′‖∂1∂2∆k′θ‖L2

)
‖∆qθ‖L2

≤ C2−2(1+s)qbq‖ω‖L2‖θ‖Hs‖∂1θ‖H1+s,

where we have used the discrete Young’s inequality in the last step.

Then inserting the estimates of Θ21, Θ221 and Θ222 into (3.10), one can obtain

Θ2 ≤ C2−2(1+s)qbq‖∂1θ‖L∞‖ω‖Hs‖θ‖H1+s

+ C2−2(1+s)qbq(‖ω‖Hs + ‖θ‖H1+s)‖∂1θ‖H1+s .
(3.11)

Finally we estimate Θ3, by Hölder inequality and Bernstein inequality,

Θ3 = −
∑

k≥q−1

∑

|k−l|≤1

∫

R2

∆q∇ · (∆ku∆lθ)∆qθ dx

≤ C
∑

k≥q−1

2q‖∆ku‖L∞‖∆kθ‖L2‖∆qθ‖L2

≤ C
∑

k≥q−1, k≥0

2q−k‖∆k∇u‖L∞‖∆kθ‖L2‖∆qθ‖L2 + C‖∆−1u‖L∞‖∆−1θ‖2L2

≤ C2−2(1+s)qbq(1 + ‖∇u‖L∞)‖θ‖2H1+s.

(3.12)

Inserting the estimates (3.9), (3.11) and (3.12) into (3.8), and making use of Young’s

inequality, we obtain

1

2

d

dt
‖∆qθ(t)‖2L2 + ‖∂1∆qθ‖2L2 ≤ C2−2(1+s)q(1 + ‖∇u‖L∞ + ‖∂1θ‖L∞)× (‖ω‖2Hs + ‖θ‖2H1+s)

+
ε

‖bq‖ℓ1
bq2

−2(1+s)q‖∂1θ‖H1+s .
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Multiplying both sides by 2(1+s)q and summing up from −1 to ∞ with respect to q,

choosing ε = 1
2
, one can deduce

d

dt
‖θ(t)‖2H1+s + ‖∂1θ‖2H1+s ≤ C(1 + ‖∇u‖L∞ + ‖∂1θ‖L∞)× (‖ω‖2Hs + ‖θ‖2H1+s). (3.13)

Combining (3.6) with (3.13) and by Grönwall’s Lemma, because ∂1θ ∈ L2
t (L

∞
x ) (see

Theorem 3.1), we obtain

‖ω(t)‖2Hs + ‖θ(t)‖2H1+s +

∫ t

0

|∂1θ(τ)‖2H1+s dτ ≤ C(t)e
∫ t
0
‖∇u(τ)‖L∞ dτ ,

which complete the proof of this proposition. �

3.2. A priori estimates for the striated regularity.

In this subsection, we will give the estimates of tangential derivatives of ω and the

regularity estimates of X . The first lemma gives Lp (p ∈ [1,∞]) estimate of X .

Lemma 3.1. Let r ∈ [1,∞], X0 ∈ Lr and (ω0, θ0) satisfies the assumption in Lemma

4.1. Then the solution X of equation (1.8) satisfies

‖X0‖Lre−
∫ t
0
‖∇u(τ)‖L∞dτ ≤ ‖X(t)‖Lr ≤ ‖X0‖Lre

∫ t
0
‖∇u(τ)‖L∞dτ . (3.14)

Proof. Multiplying both side of equation (1.8) by |X|r−2X (1 < r <∞) and integrating

over R2 with respect to x, we can obtain

1

r

d

dt
‖X(t)‖rLr ≤ C‖∇u‖L∞‖X‖rLr , (3.15)

which implies the right hand side inequality of (3.14). Using the time reversibility of

this equation and the same Lr estimate, we can obtain the first inequality of (3.14).

Then taking r → ∞, we can deduct the result for the case r = ∞, which complete the

proof of this lemma.

�

Applying ∂X to the vorticity equation, according to (1.9), we get ∂Xω satisfies the

following equation

∂t∂Xω + u · ∇∂Xω = ∂X(∂1θ) = X · ∇∂1θ. (3.16)

The next lemma deals with the Lp estimate of ∂Xω.

Lemma 3.2. Let ∂X0
ω0 ∈ Lp (2 ≤ p < ∞), and (ω, θ) satisfies the assumptions in

Proposition 3.1, then we have

‖∂Xω(t)‖Lp ≤ ‖∂X0
ω0‖Lp + C(t)e2

∫ t

0
‖∇u(τ)‖L∞ dτ .

Proof. Multiplying the equation (3.16) by |∂Xω|p−2∂Xω (2 ≤ p < ∞), and integrating

over R2 with respect to x, because u satisfies the divergence-free condition, by Hölder

inequality,
1

p

d

dt
‖∂Xω(t)‖pLp ≤ ‖X‖L∞‖∂1∇θ‖Lp‖∂Xω‖p−1

Lp .
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Because of the embedding Hs →֒ Lp with 2
p
= 1− s, we obtain

d

dt
‖∂Xω(t)‖Lp ≤ ‖X‖L∞‖∂1∇θ‖Hs .

Then integrating in time and combining with the result of Proposition 3.1,

‖∂Xω(t)‖Lp ≤ ‖∂X0
ω0‖Lp +

∫ t

0

‖X(τ)‖L∞‖∂1∇θ(τ)‖Hs dτ

≤ ‖∂X0
ω0‖Lp + ‖X‖L∞

t,x

∫ t

0

‖∂1∇θ(τ)‖Hs dτ

≤ ‖∂X0
ω0‖Lp + C(t)e2

∫ t
0
‖∇u(τ)‖L∞ dτ ,

which complete the proof of this lemma. �

Then we give the Hölder estimate for X . The next proposition obtain the Lipschitz

information of the velocity u and the Cs norm of X simultaneously.

Proposition 3.2. Let 0 < s < 1, assume X0 ∈ Cs, ∂X0
ω0 ∈ Lp and (ω0, θ0) satisfies

the assumptions in Proposition 3.1, the we have the velocity u satisfies

∇u ∈ L1([0, t];L∞). (3.17)

Moreover,

X ∈ L∞([0, t];Cs), ω ∈ L∞([0, t];Hs), ∂Xω ∈ L∞([0, t];Lp).

θ ∈ L∞([0, t];H1+s), ∂1θ ∈ L2([0, t];H1+s).
(3.18)

Proof. Firstly, we compute the Hölder estimate of X . Applying Lemma 2.3 to (1.8), we

obtain

‖X(t)‖Cs ≤ C‖X0‖CseC̃
∫ t

0
‖∇u(τ)‖L∞ dτ + C

∫ t

0

‖∂Xu(τ)‖CseC̃
∫ t

τ
‖∇u(s)‖L∞ ds dτ

≤ CeC̃
∫ t
0
‖∇u(τ)‖L∞ dτ (‖X0‖Cs +

∫ t

0

‖∂Xu(τ)‖Cse−C̃
∫ τ
0
‖∇u(s)‖L∞ ds dτ),

(3.19)

where we can choose C̃ > 2. In order to estimate Hölder norm of ∂Xu, we need the

following estimate which proof can be found in [5, 10],

‖∂Xu‖Cs ≤ C(‖∇u‖L∞‖X‖Cs + ‖∂Xω‖Cs−1). (3.20)

By Sobolev embedding Lp →֒ Cs−1 (1− s = 2
p
) and Lemma 3.2, we obtain

‖∂Xω‖Cs−1 ≤ C‖∂Xω‖Lp ≤ C‖∂Xω0‖Lp + C(t)e2
∫ t

0
‖∇u(τ)‖L∞ dτ . (3.21)

Inserting (3.20) and (3.21) into (3.19), one can deduce that

‖X(t)‖Cs ≤ CeC̃
∫ t
0
‖∇u(τ)‖L∞ dτ

(
‖X0‖Cs +

∫ t

0

(C(τ)

+ ‖∇u(τ)‖L∞‖X(τ)‖Cse−C̃
∫ τ

0
‖∇u(s)‖L∞ ds) dτ

)
.
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Denoting

F (t) , ‖X(t)‖CseC̃
∫ t
0
‖∇u(τ)‖L∞ dτ .

Then according to the above estimates, we obtain

F (t) ≤ CF (0) +

∫ t

0

C(τ)(‖∇u(τ)‖L∞ + 1)(F (τ) + 1) dτ.

By Grönwall’s Lemma,

F (t) ≤ C(F (0) + 1)e
∫ t
0
C(τ)(‖∇u(τ)‖L∞+1) dτ .

According to the definition of F (t), we obtain the Hölder estimate of X that,

‖X(t)‖Cs ≤ C(t)eC
∫ t
0
‖∇u(τ)‖L∞ dτ . (3.22)

Recalling the logarithmic inequality in Lemma 2.4 that

‖∇v‖L∞ ≤ C

(
‖ω‖L2 + ‖ω‖L∞ log

(
e+

‖ω‖Cs
X

‖ω‖L∞

))
, (3.23)

where ‖ω‖Cs
X
is defined in Definition 1.2.

Because ‖ω‖L2∩L∞ is bounded, inserting the estimates (3.21), (3.22) into (3.23), we

obtain

‖∇v‖L∞ ≤ C

(
1 + log

(
e+ C(t)eC

∫ t

0
‖∇u(τ)‖L∞

))

≤ C

(
1 +

∫ t

0

C(t)(1 + ‖∇u(τ)‖L∞) dτ

)
.

Then by Grönwall’s Lemma,

‖∇u(t)‖L∞ ≤ C(t), ∀t > 0. (3.24)

Combining the estimates (3.22) and (3.24), we can obtain the desired Hölder norm of X ,

Then inserting the estimate (3.22) into Proposition 3.1 and Lemma 3.2, we can complete

the proof of this proposition. �

3.3. The vortex patch problem. In this subsection, we devote to prove Corollary 1.1,

which solving the vortex patch problem. Because

ω0 = χD0
(x) ,

{
1 x ∈ D0,

0 x /∈ D0,

where D0 is a connected bounded domain with ∂D0 ∈ C1+s for 0 < s < 1. Then

according to Definition 1.1, there exist a real function f0 ∈ C1+s and a neighborhood

V0 such that ∂D0 = V0 ∩ f−1(0) and ∇f0 6= 0 on V0. Noticing that at time t, the

boundary ∂Dt = ψ(D0, t) is the level set of the function f(·, t) = f0(ψ
−1(·, t)) with f

being transported by the flow ψ:
{
∂tf + u · ∇f = 0,

f(x, 0) = f0(x).
(3.25)
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Setting the vector fieldX , ∇⊥f with initial dataX0 , ∇⊥f0, it is not hard to verifies

that X satisfying (1.7) and the corresponding system (1.8). Then we can parametrize

∂D0 as

γ0 : S
1 → ∂D0, via σ 7→ γ0(σ),

with {
∂σγ0 = X0(γ0(σ)), ∀ σ ∈ S1,

γ0(0) = x0 ∈ ∂D0.
(3.26)

In order to conclude the proof of Corollary 1.1, we observe that a parametrization for

∂Dt is given by γt(σ) , ψ(γ0(σ), t) and by differentiating with respect to the parameter

σ, we get {
∂σγt(σ) = X(γt(σ)), ∀ σ ∈ S1,

γt(0) = ψ(x0, t) ∈ ∂Dt.
(3.27)

According to Theorem 1.1, X ∈ L∞([0, T ];Cs), thus γt ∈ C1+s(S1) for all t ≥ 0. This

completes the proof of Corollary 1.1.

4. The Case of Horizontal Viscosity

In this section, we focus on system (1.2). Before we begin to prove the result in

Theorem 1.2, we need to review the following existence and uniqueness result for system

(1.2) which can be found in [20].

Theorem 4.1. Let s ∈ (1
2
, 1]. For all function θ0 ∈ Hs ∩L∞ and divergence-free vector

field u0 ∈ H1 with vorticity ω0 ∈
√
L. System (1.2) with data (u0, θ0) admits a unique

global solution (u, θ) such that θ ∈ Cw(R+;L
∞) ∩ C(R+;H

s−ε) for all ε > 0 and

u ∈ Cw(R+;H
1), ω ∈ L∞

loc(R+;
√
L) and ∇u ∈ L∞

loc(R+;
√
L). (4.1)

In the rest of this section, we will first show that the solution u of system (1.2) actually

can be in L1([0, t];L∞) in the first subsection. Then we estimate the straited regularity

in the second subsection. In subsections 4.3-4.4, we exam the higher regularity estimate

of (ω, θ) and the vector field X . The proof of Corollary 1.2 will be given in the last

subsection.

4.1. A priori estimates for the Lipschitz norm of the velocity field. In this

subsection, we will give the estimates for the Lipschitz norm of the velocity field and

Hs (1
2
< s < 1) norm of (ω, θ). Those estimate will be based on the following global

existence theorem [20].

Then we give the estimate for ‖∇u‖L∞, which plays and important role in the estimate

for striated regularity in the next subsections. The main results can be stated as follows.

Lemma 4.1. Assume ω0 ∈ Hs and θ0 ∈ Hβ with β > s > 1
2
, then the solution (ω, θ)

satisfies

‖ω‖2L∞

t (Hs) + ‖∂1∇ω‖2L2
t (H

s) ≤ C, ‖θ‖2L∞

t (Hs) ≤ C,
16



moreover,

‖∇u‖L2
t (L

∞) ≤ C.

Proof. Because of Theorem 4.1, we have already know ∇u ∈
√
L. Then according to

the definition of space
√
L and Lemma 2.6, we know

‖θ‖L∞([0,t];Hs) ≤ C(t). (4.2)

Then we give the estimate of ω. Applying ∆q to the vorticity equation (1.5) and taking

L2 inner product with ∆qω, one can obtain

1

2

d

dt
‖∆qω(t)‖2L2 + ‖∂1∆qω‖2L2 =

∫

R2

∂1∆qθ∆qω dx−
∫

R2

∆q(u · ∇ω)∆qω dx. (4.3)

After integration by part, according to Hölder inequality and Young’s inequality,

1

2

d

dt
‖∆qω(t)‖2L2 +

1

2
‖∂1∆qω‖2L2 ≤ C‖∆qθ‖2L2 −

∫

R2

∆q(u · ∇ω)∆qω dx. (4.4)

By Lemma 2.5 and Young’s inequality,

−
∫

R2

∆q(u · ∇ω)∆qω dx ≤Cbq2−2qs(‖u‖L2 + ‖ω‖L2 + ‖∂1ω‖L2)

× (‖ω‖2Hs + ‖ω‖
1

2

Hs‖∂1ω‖
1

2

Hs + ‖ω‖
3

2

Hs‖∂1ω‖
1

2

Hs)

≤Cbq2−2qs‖ω‖2Hs +
1

4‖bq‖ℓ1
bq2

−2qs‖∂1ω‖2Hs.

(4.5)

According to the bound (4.2),

‖∆qθ‖2L2 ≤ bq2
−2qs‖θ‖2Hs . (4.6)

Inserting (4.5), (4.6) into (4.4) and taking summation of q, after calculation we obtain

d

dt
‖ω(t)‖2Hs + ‖∂1ω‖2Hs ≤ C(1 + ‖ω(t)‖2Hs).

Then by Grönwall’s Lemma, we get

‖ω(t)‖2Hs +

∫ t

0

‖∂1ω(τ)‖2Hs dτ ≤ C.

According to trace theory, we know

‖f(x1, x2)‖
L∞

x2
(H

α−
1
2

x1
)
≤ C‖f(x1, x2)‖Hα, for α >

1

2
.
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Thus by Sobolev embedding,
∫ t

0

‖ω(τ)‖2L∞ dτ ≤
∫ t

0

‖ω(τ)‖2
L∞
x2

(H
s+1

2
x1

)
dτ

≤
∫ t

0

‖∂1ω(τ)‖2
L∞

x2
(H

s− 1
2

x1
)
dτ

≤
∫ t

0

‖∂1ω(τ)‖2Hs dτ

≤ C.

Noticing that ∂1ω = ∆u2 and ∂1u
1 + ∂2u

2 = 0, we have
∫ t

0

‖∂iuj(τ)‖2Hs+1 dτ ≤ C, for i, j = 1, 2, (i, j) 6= (2, 1).

Then by Sobolev embedding,
∫ t

0

‖∂iuj(τ)‖2L∞ dτ ≤ C, for i, j = 1, 2, (i, j) 6= (2, 1).

As for (i, j) = (2, 1), according to the definition of vorticity ω,

∂2u
1 = ∂1u

2 − ω,

so ∫ t

0

‖∂2u1(τ)‖2L∞ dτ ≤
∫ t

0

‖∂1u2(τ)‖2L∞ dτ +

∫ t

0

‖ω(τ)‖2L∞ dτ ≤ C.

Thus we obtain ‖∇u‖L2
t (L

∞) is bounded, which completes the proof of this lemma. �

4.2. A priori estimates for striated regularity.

In this section, we will give some estimates about the vector field X . Along the same

method of Lemma 3.14 and combining with Lemma 4.1, one can deduce for any r ∈
[1,∞],

‖X(t)‖Lr ≤ C‖X0‖Lre
∫ t

0
‖∇u(τ)‖L∞ dτ ≤ C(t). (4.7)

The next lemma shows the Hs (1
2
< s < 1) estimate for X .

Lemma 4.2. Let s > 1
2
, X0 ∈ Hs and (ω0, θ0) ∈ Hs×Hβ with β > s. Then the solution

X of (1.8) satisfies

X ∈ L∞([0, t];Hs),

for any t > 0.

Proof. Applying operator ∆q to (1.8),

∂t∆qX +∆q(u · ∇X) = ∆q∂Xu. (4.8)

Taking the L2 inner product of the above equality with ∆qX , we get

1

2

d

dt
‖∆qX(t)‖2L2 = −

∫

R2

∆q(u · ∇X) ·∆qX dτ +

∫

R2

∆q∂Xu ·∆qX dτ. (4.9)
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For the first term of the right hand side in (4.9). By Lemma 2.5, we have

−
∫

R2

∆q(u · ∇X)∆qX dx ≤Cbq2−2qs‖∇u‖L∞‖X‖2Hs. (4.10)

Then we estimate the last term of (4.9), by Hölder inequality,
∫

R2

∆q∂Xu ·∆qX dτ ≤‖∆q∂Xu‖L2‖∆qX‖L2 ≤ Cbq2
−2qs‖∂Xu‖Hs‖X‖Hs.

For Hs norm of ∂Xu, we can bound it by

‖∂Xu‖Hs = ‖X · ∇u‖Hs ≤ C(‖X‖L∞‖∇u‖Hs + ‖X‖Hs‖∇u‖L∞).

By Lemma 4.1 and Lemma 3.1, we have known

‖X‖L∞ ≤ C, ‖∇u‖Hs ≤ C‖ω‖Hs ≤ C.

Thus we obtain
∫ t

0

∆q∂Xu ·∆qX dτ ≤ Cbq2
−2qs(‖X‖Hs + ‖∇u‖L∞‖X‖2Hs). (4.11)

Inserting the estimates (4.10) and (4.11) into (4.9) then multiplying both sides by 22qs

and taking summation over q ≥ −1, we obtain

1

2

d

dt
‖X(t)‖2Hs ≤ C(‖X‖Hs + ‖∇u‖L∞‖X‖2Hs). (4.12)

Then by Grönwall’s Lemma and combining with Lemma 4.1, we obtain

‖X‖Hs ≤ C(t),

which completes the proof of this lemma.

�

4.3. A priori estimates for ω and θ.

In this subsection, we will give some regularity estimates for (ω, θ) based on the Lipschitz

information ‖∇u‖L1
t (L

∞
x ). The following lemma gives the H1 estimate of (ω, θ).

Lemma 4.3. Assume ω0 ∈ H1 and θ0 ∈ H1, then the solution (ω, θ) satisfies

‖∇ω‖2L∞

t (L2) + ‖∇θ‖2L∞

t (L2) + ‖∂1∇ω‖2L2
t (L

2) ≤ C. (4.13)

Proof. Applying ∂k (k = 1, 2) to the vorticity equation (1.5), we can obtain ∂kω satisfies

∂t∂kω + u · ∇∂kω + ∂ku · ∇ω − ∂21∂kω = ∂1∂kθ. (4.14)

Multiplying ∂kω to (4.14) and integrating over R2 with respect to x, we have

1

2

d

dt
‖∂kω(t)‖2L2 + ‖∂1∂kω‖2L2 =

∫

R2

∂1∂kθ∂kω dx−
∫

R2

∂ku · ∇ω∂kω dx

, N1 +N2.

(4.15)
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After integration by part and using Hölder inequality and Young’s inequality, one can

deduce

N1 ≤
1

2
‖∂1∇ω‖2L2 +

1

2
‖∇θ‖2L2 . (4.16)

For N2, by Hölder inequality,

N2 ≤ ‖∇u‖L∞‖∇ω‖2L2. (4.17)

Applying ∂k (k = 1, 2) to the temperature equation of (1.2), we can obtain ∂kθ satisfies

∂t∂kθ + u · ∇∂kθ + ∂ku · ∇θ = 0. (4.18)

Similarly, we can prove

1

2

d

dt
‖∂kθ(t)‖2L2 ≤ C‖∇u‖L∞‖∇θ‖2L2 . (4.19)

Inserting (4.16) and (4.17) into (4.15) and combining with (4.19), we can deduce

d

dt
(‖∇ω(t)‖2L2 + ‖∇θ(t)‖2L2) + ‖∂1∇ω(t)‖2L2 ≤ C‖∇u‖L∞(‖∇ω‖2L2 + ‖∇θ‖2L2).

Then by virtue of the Grönwall’s Lemma and Lemma 4.1,

‖∇ω‖2L∞

t (L2) + ‖∇θ‖2L∞

t (L2) + ‖∂1∇ω‖2L2
t (L

2) ≤ C,

which complete the proof of this lemma. �

The follow lemma shows the Lp estimate of (∇ω,∇θ).

Lemma 4.4. Assume ∇ω0 ∈ Lp and ∇θ0 ∈ Lp (2 < p < ∞), then the solution (ω, θ)

satisfies

‖∇ω‖2L∞

t (Lp) + ‖∇θ‖2L∞

t (Lp) ≤ C. (4.20)

Proof. Multiplying |∂kω|p−2∂kω to (4.14) and integrating over R2 with respect to x, by

Hölder inequality and Young’s inequality,

1

p

d

dt
‖∂kω(t)‖pLp + (p− 1)

∫

R2

|∂1∂kω|2|∂kω|p−2 dx

=

∫

R2

∂1∂kθ|∂kω|p−2∂kω dx−
∫

R2

∂ku · ∇ω|∂kω|p−2∂kω dx

= −(p− 1)

∫

R2

∂kθ|∂kω|p−2∂1∂kω dx−
∫

R2

∂ku · ∇ω|∂kω|p−2∂kω dx

≤ p− 1

2

∫

R2

|∂1∂kω|2|∂kω|p−2 dx+ C

∫

R2

|∂kθ|2|∂kω|p−2 dx

+ ‖∇u‖L∞‖∇ω‖Lp

≤ p− 1

2

∫

R2

|∂1∂kω|2|∂kω|p−2 dx+ C‖∇θ‖2Lp‖∇ω‖p−2
Lp + ‖∇u‖L∞‖∇ω‖pLp.
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Thus we obtain

d

dt
‖∂kω(t)‖2Lp ≤ C‖∇θ‖2Lp + ‖∇u‖L∞‖∇ω‖2Lp. (4.21)

Similarly, we can prove

d

dt
‖∂kθ(t)‖2Lp ≤ C‖∇u‖L∞‖∇θ‖2Lp. (4.22)

Combining (4.21) with (4.22), we can deduce

d

dt
(‖∇ω(t)‖2Lp + ‖∇θ(t)‖2Lp) ≤ C(1 + ‖∇u‖L∞)(‖∇ω‖2Lp + ‖∇θ‖2Lp).

Then by virtue of the Grönwall’s Lemma and Lemma 4.1,

‖∇ω‖2Lp + ‖∇θ‖2Lp ≤ C(t),

which completes the proof of this lemma. �

Next we discuss the higher order regularity estimate for (ω, θ). Applying |D|s (s > 0)

to the vorticity equation (1.5) and temperature equation of (1.2), we can get (|D|sω, |D|sθ)
satisfies the following system,

{
∂t|D|sω + u · ∇|D|sω − ∂21 |D|sω = ∂1|D|sθ − [|D|s, u · ∇]ω,

∂t|D|sθ + u · ∇|D|sθ = −[|D|s, u · ∇]θ.
(4.23)

The follow lemma gives the Hs (s > 1) estimate of (ω, θ).

Lemma 4.5. Assume ω0 ∈ Ẇ 1,p ∩Hs and θ0 ∈ Ẇ 1,p ∩Hs (2 < p <∞, s > 1), then the

solution (ω, θ) satisfies

‖|D|sω‖2L∞

t (L2) + ‖|D|sθ‖2L∞

t (L2) + ‖∂1|D|sω‖2L2
t (L

2) ≤ C. (4.24)

Proof. Taking L2 inner product with (|D|sω, |D|sθ) and adding them up, we have

1

2

d

dt
(‖|D|sω(t)‖2L2 + ‖|D|sθ(t)‖2L2) + ‖∂1|D|sω‖2L2

=

∫

R2

∂1|D|sθ|D|sω dx−
∫

R2

[|D|s, u · ∇]ω|D|sω dx−
∫

R2

[|D|s, u · ∇]θ|D|sθ dx

, K1 +K2 +K3.

(4.25)

For K1, after integration by part and Young’s inequality,

K1 ≤
1

2
‖|D|sθ‖L2 +

1

2
‖∂1|D|sω‖L2. (4.26)

For K2, by virtue of the Hölder inequality and (2.9) in Lemma 2.7,

K2 ≤ ‖[|D|s, u · ∇]ω‖L2‖|D|sω‖L2

≤ C(‖∇u‖L∞‖|D|s−1∇ω‖L2 + ‖|D|su‖Lp‖∇ω‖Lp′)‖|D|sω‖L2,

with 1
p
+ 1

p′
= 1

2
, p ∈ (2,∞). By interpolation

‖f‖Lp ≤ C‖f‖
2

p

L2‖∇f‖
1− 2

p

L2 ,
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then we can obtain

‖|D|su‖Lp ≤ C‖|D|su‖
2

p

L2‖∇|D|su‖1−
2

p

L2 ≤ C(‖u‖L2 + ‖|D|sω‖L2).

Thus we have

K2 ≤ C(‖∇u‖L∞ + ‖∇ω‖Lp′ )× (‖|D|sω‖2L2 + 1). (4.27)

Similarly,

K3 ≤ C(‖∇u‖L∞ + ‖∇θ‖Lp′ )× (‖|D|sω‖2L2 + ‖|D|sθ‖2L2 + 1). (4.28)

Inserting (4.26), (4.27) and (4.28) into (4.25), making use of Lemma 4.4 and Grönwall’s

Lemma, we can deduce

‖|D|sω‖2L∞

t (L2) + ‖|D|sθ‖2L∞

t (L2) + ‖∂1|D|sω‖2L2
t (L

2) ≤ C,

which complete the proof of this lemma. �

4.4. A priori estimates for the higher order striated regularity.

In this subsection, we will give the higher order estimates of the vector field X . The

first lemma asserts the H1 estimate of X .

Lemma 4.6. Let ω0 ∈ H1, θ0 ∈ H1 and X0 ∈ H1, then we have

‖∇X‖2L∞

t (L2) ≤ C. (4.29)

Proof. Applying ∂k (k = 1, 2) to the first equation of (1.8), we can obtain ∂kX satisfies

∂t∂kX + u · ∇∂kX + ∂ku · ∇X = ∂k∂Xu (4.30)

Multiplying ∂kX to (4.30) and integrating over R2 with respect to x, we have

1

2

d

dt
‖∂kX(t)‖2L2 =

∫

R2

∂k∂Xu · ∂kX dx−
∫

R2

∂ku · ∇X · ∂kX dx

=

∫

R2

∂kX · ∇u · ∂kX dx+

∫

R2

X · ∇∂ku · ∂kX dx

−
∫

R2

∂ku · ∇X · ∂kX dx

, B1 +B2 +B3.

(4.31)

By Hölder inequality, B1 can be bounded by

B1 =

∫

R2

∂kX · ∇u · ∂kX dx ≤ ‖∇u‖L∞‖∇X‖2L2. (4.32)

Similarly,

B3 = −
∫

R2

∂ku · ∇X · ∂kX dx ≤ ‖∇u‖L∞‖∇X‖2L2. (4.33)
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Then by virtue of anisotropic Hölder inequality,

B2 =

∫

R2

X · ∇∂ku · ∂kX dx

≤ C‖X‖L∞
x2

(L2
x1

)‖∂k∇u‖L2
x2

(L∞
x1

)‖∂kX‖L2(R2)

≤ C‖X‖
1

2

L2‖∂2X‖
1

2

L2‖∇ω‖
1

2

L2‖∂1∇ω‖
1

2

L2‖∂kX‖L2

≤ C(‖∇ω‖L2 + ‖∂1∇ω‖L2)× (‖X‖2L2 + ‖∇X‖2L2).

(4.34)

After substituting (4.32), (4.34) and (4.33) into (4.31), we find that

d

dt
‖∇X(t)‖2L2 ≤ C(‖∇u‖L∞ + ‖∇ω‖L2 + ‖∂1∇ω‖L2)× (‖X‖2L2 + ‖∇X‖2L2). (4.35)

Combining the estimates (3.14) and (4.35), using Gronwall’s Lemma and by Lemma 4.1

and Lemma 4.15, we can deduce

‖∂Xu‖2L∞

t (L2) + ‖∂1∂Xu‖2L2
t (L

2) + ‖∇X‖2L∞

t (L2) ≤ C,

which complete the proof of this lemma. �

The next lemma shows the Hs (s > 1) estimate for X .

Lemma 4.7. Assume ω0 ∈ Ẇ 1,p ∩ Hs, θ0 ∈ Ẇ 1,p ∩ Hs, X0 ∈ Hs (2 < p < ∞, s > 1),

then we have

‖|D|sX‖2L∞

t (L2) ≤ C. (4.36)

Proof. Applying |D|s to the first equation of (1.8), making use of the definition of com-

mutator, we can obtain |D|sX satisfies the follow equation

∂t|D|sX + u · ∇|D|sX = −[|D|s, u · ∇]X + |D|s(X · ∇u). (4.37)

Taking L2 inner product with |D|sX ,

1

2

d

dt
(‖|D|sX(t)‖2L2 = −

∫

R2

[|D|s, u · ∇]X · |D|sX dx+

∫

R2

|D|s(X · ∇u) · |D|sX dx

,M1 +M2.

(4.38)

For M1, by Hölder inequality and (2.9) in Lemma 2.7,

M1 ≤ ‖[|D|s, u · ∇]X‖L2‖|D|sX‖L2

≤ C(‖∇u‖L∞‖|D|s−1∇X‖L2 + ‖|D|su‖Lp‖∇X‖Lp′ )‖|D|sX‖L2,

with 1
p
+ 1

p′
= 1

2
, p ∈ (2,∞). Choosing p such that

‖∇X‖Lp′ ≤ C‖|D|sX‖L2,

and noticing that by interpolation

‖|D|su‖Lp ≤ C‖|D|su‖
2

p

L2‖|D|s+1u‖1−
2

p

L2 ≤ C(‖u‖L2 + ‖|D|sω‖L2),
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then we have

M1 ≤ C(‖∇u‖L∞ + ‖|D|sω‖L2 + 1)‖|D|sX‖2L2. (4.39)

Next we estimate M2, making use of the Hölder inequality and inequality (2.10) in

Lemma 2.7,

M2 ≤ ‖|D|s(X · ∇u)‖L2‖|D|sX‖L2

≤ C(‖X‖L∞‖|D|s∇u‖L2 + ‖|D|sX‖L2‖∇u‖L∞)‖|D|sX‖L2.

By Sobolev embedding,

‖X‖L∞ ≤ C‖|D|sX‖L2, for s > 1.

Thus we have

M2 ≤ C(‖|D|sω‖L2 + ‖∇u‖L∞)‖|D|sX‖2L2 . (4.40)

Inserting (4.39) and (4.40) into (4.38), using Grönwall’s Lemma, we can deduce

‖|D|sX‖2L∞

t (L2) ≤ C,

which complete the proof of this lemma. �

4.5. The temperature patch problem. This subsection is devoted to the proof of

Corollary 1.2. Because most of the proof is the same to Corollary 1.1, here we just need

to verify the inequality (1.14). Choosing arbitrary two points that x1 ∈ D−
ε , x2 ∈ D+

ε ,

consider the difference

|ψ(x1, t)− ψ(x2, t)| ≤ ‖∇ψ‖L∞|x1 − x2|, for any t > 0. (4.41)

Noticing that from (1.6), we have

‖∇ψ‖L∞ ≤ e
∫ t
0
‖∇u(τ)‖L∞ dτ . (4.42)

Then inserting the estimate (4.42) into (4.41) and taking infimum of x1, x2, we can

obtain

|d(t)| ≤ 2εe
∫ t

0
‖∇u(τ)‖L∞dτ .

which is the desired bounded (1.14).

A. Appendix

The goal of this appendix is to give the proof of Lemma 2.5 and Lemma 2.8.

Proof of Lemma 2.5. The proof of (2.6) can be found in [20] which used the standard

Bony’s decomposition (see [5,10]). Here we focus on proving (2.7) using the anisotropic

idea. Firstly, we divide the first term of (2.7) into two terms,

−
∫

R2

∆q(u · ∇f)∆qf dx = −
∫

R2

∆q(u
1∂1f)∆qf dx−

∫

R2

∆q(u
2∂2f)∆qf dx

, P +Q.
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For P , by Bony’s decomposition, we can divide it into the following three terms,

−
∫

R2

∆q(u
1∂1f)∆qf dx

=−
∑

|k−q|≤2

∫

R2

∆q(Sk−1u
1∆k∂1f)∆qf dx

−
∑

|k−q|≤2

∫

R2

∆q(∆ku
1Sk−1∂1f)∆qf dx

−
∑

k≥q−1

∑

|k−l|≤1

∫

R2

∆q(∆ku
1∆l∂1f)∆qf dx

,P1 + P2 + P3.

(A.1)

For P1, we can rewrite it as

P1 = −
∑

|q−k|≤2

∫

R2

∆q(Sk−1u
1∂1∆kf)∆qf dx

= −
∑

|q−k|≤2

∫

R2

[∆q, Sk−1u
1∂1]∆kf∆qf dx

−
∑

|q−k|≤2

∫

R2

Sk−1u
1∂1∆q∆kf∆qf dx

= −
∑

|q−k|≤2

∫

R2

[∆q, Sk−1u
1∂1]∆kf∆qf dx

−
∑

|q−k|≤2

∫

R2

(Sk−1u
1 − Squ

1)∂1∆q∆kf∆qf dx

−
∫

R2

Squ
1∂1∆qf∆qf dx

, P11 + P12 + P13,

where we have used the fact
∑

|q−k|≤2 ∂1∆q∆kf = ∆qf . For P11, by Hölder inequality,

|P11| ≤
∑

|q−k|≤2

∣∣∣∣
∫

R2

[∆q, Sk−1u
1∂1]∆kf∆kf dx

∣∣∣∣

≤ C
∑

|q−k|≤2

‖[∆q, Sk−1u
1∂1]∆kf‖L2‖∆qf‖L2.
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According to the definition of ∆q,

[∆q, Sk−1u
1∂1]∆kf =

∫

R2

φq(x− y)(Sk−1u
1(y)∂1∆kf(y)) dy

− Sk−1u
1(x)

∫

Rd

φq(x− y)∂1∆kf(y) dy

=

∫

R2

φq(x− y)(Sk−1u
1(y)− Sk−1u

1(x))∂1∆kf(y) dy

=

∫

R2

φq(x− y)

∫ 1

0

(y − x) · ∇Sk−1u
1(sy + (1− s)x) ds∂1∆kf(y) dy

=

∫

R2

∫ 1

0

φq(z)z · ∇Sk−1u
1(x− sz)∂1∆kf(x− z) dsdz,

where φj(x) , 2jdF−1(φ)(2jx). Thus we have by Hölder inequality and Bernstein in-

equality,

‖[∆q, Sk−1u
1∂1]∆kf‖L2 =

∥∥∥∥
∫

R2

∫ 1

0

φq(z)z · ∇Sk−1u
1(x− sz)∂1∆kf(x− z) dsdz

∥∥∥∥
L2

≤ C

∫

R2

∣∣φq(z)
∣∣|z| dz‖∇Sk−1u

1(x− sz)‖L∞‖∂1∆kf(x− z)‖L2

≤ C

∫

R2

∣∣φq(z)
∣∣|z| dz‖∇Sk−1u

1‖L∞‖∂1∆kf‖L2

≤ C2−q2k‖∇Sk−1u
1‖L2‖∂1∆kf‖L2

≤ C2k−q‖ω‖L2‖∂1∆kf‖L2.

Then we obtain

|P11| ≤ C
∑

|q−k|≤2

‖[∆q, Sk−1u
1∂1]∆kf‖L2‖∆qf‖L2

≤ C
∑

|q−k|≤2

2k−q‖ω‖L2‖∂1∆kf‖L2‖∆qf‖L2

≤ Cbq2
2qs‖ω‖L2‖f‖Hs‖∂1f‖Hs.

For P12, by Hölder inequality and Bernstein inequality,

|P12| =
∑

|q−k|≤2

∣∣∣∣
∫

R2

((Sk−1u
1 − Squ

1)∂1∆q∆kf)∆qf dx

∣∣∣∣

≤ C
∑

|q−k|≤2

‖(Sk−1u
1 − Squ

1)∂1∆q∆kf‖L1‖∆qf‖L∞

≤ C
∑

|q−k|≤2

‖∆ku
1‖L2‖∆q∆k∂1f‖L22q‖∆qf‖L2.

For the case k = −1, by Bernstein inequality,

|P12| ≤ C‖∆−1u
1‖L22−1‖∆q∆−1f‖L22−1‖∆qf‖L2

≤ Cbq2
2qs‖u1‖L2‖f‖2Hs.
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For the case k ≥ 0, by Bernstein inequality,

|P12| ≤ C
∑

|q−k|≤2

2−k‖∇∆ku
1‖L2‖∆q∆k∂1f‖L22q‖∆qf‖L2

≤ C
∑

|q−k|≤2

2−k‖ω‖L22q‖∆q∂1f‖L2‖∆qf‖L2

≤ Cbq2
2qs‖ω‖L2‖f‖Hs‖∂1f‖Hs.

Thus,

|P1| ≤ Cbq2
2qs(‖u‖L2 + ‖ω‖L2)(‖f‖2Hs + ‖f‖Hs‖∂1f‖Hs). (A.2)

For P2, we can bound it by Hölder inequality that

|P2| ≤ C
∑

|q−k|≤2

‖∆ku
1‖L2‖∂1Sk−1f‖L∞‖∆qf‖L2 .

Applying Bernstein inequality, similar as P12,

|P2| ≤ C
∑

|q−k|≤2

‖∆ku
1‖L2

∑

m≤k−2

2m‖∆m∂1f‖L2‖∆qf‖L2

≤ C
∑

|q−k|≤2

‖∆ku
1‖L2

∑

m≤q−2

2m‖∆mf‖L2‖∆qf‖L2

≤ C
∑

|q−k|≤2

2q‖∆ku
1‖L2

∑

m≤q−2

2m−q‖∆mf‖L2‖∆qf‖L2

≤ C2−qs
∑

|q−k|≤2

2q−k2k‖∆ku
1‖L2

∑

m≤q−2

2(m−q)(1−s)2ms‖∆mf‖L2‖∆qf‖L2

≤ Cbq2
−2qs(‖u1‖L2 + ‖ω‖L2)‖f‖Hs‖∂1f‖Hs,

(A.3)

where we have used discrete Young’s inequality in the last step.

Next we estimate P3. By Hölder inequality and Bernstein inequality,

|P3| ≤
∣∣∣∣
∑

k≥q−1

∑

|k−l|≤1

∫

R2

∆q(∆ku
1∂1∆qf)∆qf dx

∣∣∣∣

≤ C
∑

k≥q−1

∑

|k−l|≤1

‖∆q(∆ku
1∆l∂1f)‖L1‖∆qf‖L∞

≤ C2q
∑

k≥q−1

2−k2k‖∆ku
1‖L2‖∆k∂1f‖L2‖∆qf‖L2

≤ C2−qs
∑

k≥q−1

2(q−k)(1+s)2ks‖∆k∂1f‖L2(‖u1‖L2 + ‖ω‖L2)‖∆qf‖L2

≤ Cbq2
−2qs(‖u1‖L2 + ‖ω‖L2)‖f‖Hs‖∂1f‖Hs,

(A.4)

where discrete Young’s inequality have been used in the last two line.

For Q, we can also divide it into three parts,

−
∫

R2

∆q(u
2∂2f)∆qf dx = Q1 +Q2 +Q3, (A.5)
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with

Q1 = −
∑

|k−q|≤2

∫

R2

∆q(Sk−1u
2∆k∂2f)∆qf dx,

Q2 = −
∑

|k−q|≤2

∫

R2

∆q(∆ku
2Sk−1∂2f)∆qf dx

and

Q3 −
∑

k≥q−1

∑

|k−l|≤1

∫

R2

∆q(∆ku
2∆l∂2f)∆qf dx.

Similar as P1, we can rewrite Q1 as

Q1 = −
∑

|q−k|≤2

∫

R2

[∆q, Sk−1u
2∂2]∆kf∆qf dx

−
∑

|q−k|≤2

∫

R2

(Sk−2u
1 − Squ

1)∂2∆q∆kf∆qf dx

−
∫

R2

Squ
2∂2∆qf∆qf dx

, Q11 +Q12 +Q13.

Here we should notice that P13 +Q13 = 0 because of the divergence free condition of u,

so we do not need to estimate these two terms.

For Q11, by Hölder inequality,

|Q11| ≤
∑

|q−k|≤2

∣∣∣∣
∫

R2

[∆q, Sk−1u
1∂1]∆kf∆kf dx

∣∣∣∣

≤ C
∑

|q−k|≤2

‖[∆q, Sk−1u
1∂1]∆kf‖L2‖∆qf‖L2 .

According to the definition of ∆q and similar as P11,

[∆q, Sk−1u
1∂1]∆kf =

∫

R2

∫ 1

0

φq(z)z · ∇Sk−1u
2(x− sz)∂2∆kf(x− z) dsdz.

Making use of the anisotropic Hölder inequality and Bernstein inequality,

‖[∆q, Sk−1u
2∂2]∆kf‖L2

=

∥∥∥∥
∫

R2

∫ 1

0

ϕq(z)z · ∇Sk−1u
2(x− sz)∂2∆kf(x− z) dsdz

∥∥∥∥
L2

≤ C

∫

R2

∣∣ϕq(z)
∣∣|z| dz‖∇Sk−1u

2(x− sz)‖L∞

x2
(L2

x1
)‖∂2∆kf(x− z)‖L2

x2
(L∞

x1
)

≤ C2−q‖∇Sk−1u
2‖

1

2

L2‖∂2∇Sk−1u
2‖

1

2

L2‖∂2∆kf‖
1

2

L2‖∂1∂2∆kf‖
1

2

L2.
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Noticing that by Biot-Savart law u2 = ∂1∆
−1ω, and combining with the boundedness of

Riesz transform in L2,

‖[∆q, Sk−1u
2∂2]∆kf‖L2 ≤ C2k−q‖ω‖

1

2

L2‖∂2∇∂1∆−1ω‖
1

2

L2‖∆kf‖
1

2

L2‖∂1∆kf‖
1

2

L2

≤ C2k−q‖ω‖
1

2

L2‖∂1ω‖
1

2

L2‖∆kf‖
1

2

L2‖∂1∆kf‖
1

2

L2.

Then Q11 is bounded by

|Q11| ≤ C
∑

|q−k|≤2

‖[∆q, Sk−1u
2∂2]∆kf‖L2‖∆qf‖L2

≤ C
∑

|q−k|≤2

2k−q‖ω‖
1

2

L2‖∂1ω‖
1

2

L2‖∆kf‖
1

2

L2‖∂1∆kf‖
1

2

L2‖∆qf‖L2

≤ Cbq2
−2qs‖ω‖

1

2

L2‖∂1ω‖
1

2

L2‖f‖
3

2

Hs‖∂1f‖
1

2

Hs.

For Q12, by the anisotropic Hölder inequality and interpolation inequality,

|Q12| =
∑

|q−k|≤2

∣∣∣∣
∫

R2

((Sk−1u
2 − Squ

2)∂2∆q∆kf)∆qf dx

∣∣∣∣

≤ C
∑

|q−k|≤2

‖(Sk−1u
2 − Squ

2)∂2∆q∆kf‖L2‖∆qf‖L2

≤ C
∑

|q−k|≤2

‖∆ku
2‖L∞

x2
(L2

x1
)‖∆q∆k∂2f‖L2

x2
(L∞

x1
)‖∆qf‖L2

≤ C
∑

|q−k|≤2

‖∆ku
2‖

1

2

L2‖∆k∂2u
2‖

1

2

L2‖∆q∆k∂2f‖
1

2

L2‖∆q∆k∂1∂2f‖
1

2

L2‖∆qf‖L2

For the case k = −1, by Bernstein inequality,

|Q12| ≤ C‖∆−1u
2‖L2‖∆q∆−1f‖L2‖∆qf‖L2

≤ Cbq2
−2qs‖u2‖L2‖f‖2Hs.

For the case k ≥ 0, by Bernstein inequality and the relation u2 = ∂1∆
−1ω,

|Q12| ≤ C
∑

|q−k|≤2

2q−k‖∇∆ku
2‖

1

2

L2‖∇∆k∂1∆
−1ω‖

1

2

L2‖∆q∂1f‖
1

2

L2‖∆qf‖
3

2

L2

≤ C
∑

|q−k|≤2

2q−k‖ω‖
1

2

L2‖∂1ω‖
1

2

L2‖∆q∂1f‖
1

2

L2‖∆qf‖
3

2

L2

≤ Cbq2
−2qs‖ω‖

1

2

L2‖∂1ω‖
1

2

L2‖f‖Hs‖∂1f‖Hs.

Thus,

|Q1| ≤ Cbq2
−2qs(‖u‖L2 + ‖ω‖

1

2

L2‖∂1ω‖
1

2

L2)(‖f‖2Hs + ‖f‖Hs‖∂1f‖Hs). (A.6)
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Similar as Q12, applying anisotropic Hölder inequality and Bernstein inequality, Q2 can

be bounded by

|Q2| ≤ C
∑

|q−k|≤2

‖∆ku
2‖L∞

x2
(L2

x1
)‖∂2Sk−1f‖L2

x2
(L∞

x1
)‖∆qf‖L2

≤ C
∑

|q−k|≤2

‖∆ku
2‖

1

2

L2‖∆k∂2u
2‖

1

2

L2‖∂2Sk−1f‖
1

2

L2‖∂1∂2Sk−1f‖
1

2

L2‖∆qf‖L2

≤ Cbq2
−2qs‖u‖L2‖f‖2Hs + C‖ω‖

1

2

L2‖∂1ω‖
1

2

L2

( ∑

m≤q−2

2m−q‖∆mf‖L2

) 1

2

×
( ∑

n≤q−2

2n−q‖∆n∂1f‖L2

) 1

2

‖∆qf‖L2

≤ Cbq2
−2qs(‖u‖L2 + ‖ω‖

1

2

L2‖∂1ω‖
1

2

L2)(‖f‖2Hs + ‖f‖
3

2

Hs‖∂1f‖
1

2

Hs).

(A.7)

Finally we estimate Q3. By Hölder inequality and Bernstein inequality,

|Q3| ≤
∣∣∣∣
∑

k≥q−1

∑

|k−l|≤1

∫

R2

∆q(∆ku
2∂2∆qf)∆qf dx

∣∣∣∣

≤ C
∑

k≥q−1

∑

|k−l|≤1

‖∆q(∆ku
2∆l∂2f)‖L1‖∆qf‖L∞

≤ C2q
∑

k≥q−1

‖∆ku
2‖L2‖∆k∂2f‖L2‖∆qf‖L2

≤ C2q
∑

k≥q−1

(‖u‖L2 + ‖∂1ω‖L2)2−2k2k‖∆kf‖L2‖∆qf‖L2

≤ Cbq2
−2qs(‖u‖L2 + ‖∂1ω‖L2)‖f‖2Hs.

(A.8)

Taking all these estimates into account, we can obtain

−
∫

R2

∆q(u · ∇f)∆qf dx ≤Cbq2−2qs(‖u‖L2 + ‖ω‖L2 + ‖∂1ω‖L2)

× (‖f‖2Hs + ‖f‖
1

2

Hs‖∂1f‖
1

2

Hs + ‖f‖
3

2

Hs‖∂1f‖
1

2

Hs),

which complete the proof of this lemma.

�

Lemma A.1 (Losing regularity estimate for transport equation). Let ρ satisfies the

transport equation {
∂tρ+ u · ∇ρ = f,

ρ(0, x) = ρ0(x),
(A.9)

where ρ0 ∈ Bs
2,r, f ∈ L1([0, T ];Bs

2,r) with r ∈ [1,∞]. Here v ∈ L2 is a divergence free

vector field and for some V (t) ∈ L1([0, T ]), v satisfies

sup
N≥0

‖∇SNv(t)‖L∞√
1 +N

≤ V (t).
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Then for all s > 0, ε ∈ (0, s) and t ∈ [0, T ], we have the following estimate,

‖ρ(t)‖Bs−ε
2,r

≤ C(T )

(
‖ρ0‖Bs

2,r
+

∫ T

0

‖f(τ)‖Bs
2,r
dτ

)
e

C
ε

( ∫ T

0
V (τ) dτ

)2

.

Proof. The case r = ∞ has been shown in [20], here we just discuss 1 ≤ r <∞. Applying

∆q to (2.8), we obtain

∂t∆qρ+∆q(v · ∇ρ) = ∆f. (A.10)

Taking L2 inner product with ∆qρ,

1

2

d

dt
‖∆qρ‖2L2 = −

∫

R2

∆q(v · ∇ρ)∆qρ dx+

∫

R2

∆qf∆qρ dx , I + II. (A.11)

For II, by Hölder inequality,

II =

∫

R2

∆qf∆qρ ≤ ‖∆qf‖L2‖∆qρ‖L2 . (A.12)

For I, along a similar argument as Lemma 2.5, we can divide it as

I =−
∫

R2

∆q(u · ∇ρ)∆qρ dx

=−
∑

|k−q|≤2

∫

R2

∆q(Sk−1u ·∆k∇ρ)∆qρ dx

−
∑

|k−q|≤2

∫

R2

∆q(∆ku · ∇Sk−1ρ)∆qρ dx

−
∑

k≥q−1

∑

|k−l|≤1

∫

R2

∆q(∆ku · ∇∆lρ)∆qρ dx

,L1 + L2 + L3.

For L1, we can rewrite it as

L1 = −
∑

|q−k|≤2

∫

R2

[∆q, Sk−1u · ∇]∆kρ∆qρ dx

−
∑

|q−k|≤2

∫

R2

(Sk−1u− Squ) · ∇∆q∆kρ∆qρ dx

−
∫

R2

Squ · ∇∆qρ∆qf dx

, L11 + L12 + L13,

According to divergence-free condition of u, it is not difficult to find that L13 = 0. For

L11, by Hölder inequality,

|L11| ≤
∑

|q−k|≤2

∣∣∣∣
∫

R2

[∆q, Sk−1u · ∇]∆kρ∆kρ dx

∣∣∣∣

≤ C
∑

|q−k|≤2

‖[∆q, Sk−1u · ∇]∆kρ‖L2‖∆qρ‖L2 .
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According to the definition of ∆q,

[∆q, Sk−1u · ∇]∆kρ =

∫

R2

φq(x− y)(Sk−1u(y) · ∇∆kρ(y)) dy

− Sk−1u(x) ·
∫

Rd

φq(x− y)∇∆kρ(y) dy

=

∫

R2

φq(x− y)(Sk−1u(y)− Sk−1u(x)) · ∇∆kρ(y) dy

=

∫

R2

φq(x− y)

∫ 1

0

(y − x) · ∇Sk−1u(sy + (1− s)x) ds · ∇∆kρ(y) dy

=

∫

R2

∫ 1

0

φq(z)z · ∇Sk−1u(x− sz) · ∇∆kρ(x− z) dsdz.

Thus we have

‖[∆q, Sk−1u · ∇]∆kρ‖L2 =

∥∥∥∥
∫

R2

∫ 1

0

φq(z)z · ∇Sk−1u(x− sz) · ∇∆kρ(x− z) dsdz

∥∥∥∥
L2

≤ C

∫

R2

∣∣φq(z)
∣∣|z| dz‖∇Sk−1u(x− sz)‖L∞‖∇∆kρ(x− z)‖L2

≤ C2−q

∫

R2

∣∣φq(z)
∣∣|z| dz‖∇Sk−1u‖L∞‖∇∆kρ‖L2

≤ C2−q‖∇Sk−1u‖L∞2k‖∆kρ‖L2 .

Then we obtain

|L11| ≤ C
∑

|q−k|≤2

‖[∆q, Sk−1u · ∇]∆kρ‖L2‖∆qρ‖L2

≤ C
∑

|q−k|≤2

2k−q‖∇Sk−1u‖L∞‖∆qρ‖2L2

≤ C
√
qV (t)‖∆qρ‖2L2

≤ Cdq2
−σq√qV (t)‖ρ‖Bσ

2,r
‖∆qρ‖L2 ,

where dq ∈ ℓr.

For L12, by Hölder inequality,

|L12| =
∑

|q−k|≤2

∣∣∣∣
∫

R2

((Sk−1u− Squ) · ∇∆q∆kρ)∆qρ dx

∣∣∣∣

≤ C
∑

|q−k|≤2

2q−k‖∇∆ku‖L∞‖∆qρ‖2L2 + ‖u‖L2‖∆qρ‖2L2

≤ C(
√
q + 2V (t) + ‖u‖L2)‖∆qρ‖2L2

≤ Cdq2
−σq(

√
q + 2V (t) + ‖u‖L2)‖ρ‖Bσ

2,r
‖∆qρ‖L2 .

For L2, we can bound it by Hölder inequality that

|L2| ≤ C
∑

|q−k|≤2

‖∆ku‖L∞‖∇Sk−1ρ‖L2‖∆qρ‖L2 .
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According to Bernstein inequality,

|L2| ≤ C
∑

|q−k|≤2

‖∆ku‖L∞

∑

m≤q−2

2m‖∆mρ‖L2‖∆qρ‖L2

≤ C
∑

|q−k|≤2

2q‖∆ku‖L∞

∑

m≤q−2

2m−q‖∆mρ‖L2‖∆qρ‖L2

≤ C
∑

|q−k|≤2

2q‖∆ku‖L∞

∑

m≤q−2

2m−q‖∆mρ‖L2‖∆qρ‖L2

≤ C(
√
q + 2V (t) + ‖u‖L2)

∑

m≤q−2

2m−q‖∆mρ‖L2‖∆qρ‖L2

≤ Cdq2
−σq(

√
q + 2V (t) + ‖u‖L2)‖ρ‖Bσ

2,r
‖∆qρ‖L2 .

Then we bound L3. By Hölder inequality and Bernstein inequality,

|L3| ≤
∣∣∣∣
∑

k≥q−1

∑

|k−l|≤1

∫

R2

∆q(∆ku · ∇∆qρ)‖∆qρ‖L2 dx

∣∣∣∣

≤ C
∑

k≥q−1

∑

|k−l|≤1

‖∆q∇ · (∆ku∆lρ)‖L2‖∆qρ‖L2

≤ C2q
∑

k≥q−1

‖∆ku‖L∞‖∆kρ‖L2‖∆qρ‖L2

≤ C(
√
q + 2V (t) + ‖u‖L2)

∑

k≥q−1

2q−k‖∆kρ‖L2‖∆qρ‖L2

≤ Cdq2
−σq(

√
q + 2V (t) + ‖u‖L2)‖ρ‖Bσ

2,r
‖∆qρ‖L2 .

Thus we obtain I can be bounded by

I ≤ Cdq2
−σq(

√
q + 2V (t) + 1)‖ρ‖Bσ

2,r
‖∆qρ‖L2 . (A.13)

Inserting (A.12) and (A.13) into (A.11), one can obtain

d

dt
‖∆qρ(t)‖L2 ≤ ‖∆qf‖L2 + Cdq2

−σq(
√
q + 2V (t) + 1)‖ρ‖Bσ

2,r
. (A.14)

Denoting st , s−η
∫ t

0
V (τ) dτ for t ∈ [0, T ] with η = ε

( ∫ T

0
V (τ) dτ

)−1
. Choosing σ = st

and integrating (A.14) from 0 to t with respect to time variable and then multiplying

by 2stq,

2stq‖∆qρ(t)‖L2 ≤ dq‖ρ0‖Bst
2,r

+ dq

∫ t

0

‖f(τ)‖Bst
2,1
dτ

+ Cdq

∫ t

0

2

(
−η

∫ t

τ
V (s)ds

)
q(
√
q + 2V (τ) + 1)‖ρ‖Bsτ

2,r
dτ.

(A.15)

Choosing q0 > 0 is the smallest integer such that

4C2‖dq‖2ℓr
(log 2)2η2

≤ q0 + 2.
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Then for q ≥ q0, we have

C

∫ t

0

2

(
−η

∫ t
τ
V (s)ds

)
q
√
q + 2V (τ) dτ ≤ 1

2‖bq‖ℓr
. (A.16)

Inserting these result into (A.15) and taking ℓr norm of q, on can deduce

‖ρ(t)‖Bst
2,r

≤ C‖ρ0‖Bs
2,r

+ C

∫ t

0

‖f(τ)‖Bs
2,r
dτ

+ C

(∑

q≥q0

(
dq

∫ t

0

2

(
−η

∫ t

τ
V (s)ds

)
q
√
q + 2V (τ)‖ρ‖Bsτ

2,r
dτ

)r) 1

r

+ C

( ∑

1≤q<q0

(
dq

∫ t

0

2

(
−η

∫ t
τ
V (s)ds

)
q
√
q + 2V (τ)‖ρ‖Bsτ

2,r
dτ

)r) 1

r

≤ C‖ρ0‖Bs
2,r

+ C

∫ t

0

‖f(τ)‖Bs
2,r
dτ

+
1

2
sup

t∈[0,T ]

‖ρ‖Bst
2,r

+ C
√
q0 + 1

∫ t

0

V (τ)‖ρ‖Bsτ
2,r
dτ.

(A.17)

Taking supremum of time t from 0 to T and applying the Grönwall’s Lemma, we deduce

sup
t∈[0,T ]

‖ρ(t)‖Bst
2,r

≤ C(T )

(
‖ρ0‖Bs

2,r
+

∫ T

0

‖f(τ)‖Bs
2,r
dτ

)
e
√
q0+1

∫ T

0
V (τ) dτ .

According to the definition of q0, finally we obtain

sup
t∈[0,T ]

‖ρ(t)‖Bst
2,r

≤ C(T )

(
‖ρ0‖Bs

2,r
+

∫ T

0

‖f(τ)‖Bs
2,r
dτ

)
e

C
η

∫ T

0
V (τ) dτ ,

which entails the desired inequality given that s ≥ st ≥ s− ε for all t ∈ [0, T ].
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sionnels, Ann. Sci. Éc. Norm. Supér. 26 (4) (1993), 517–542.

[10] J.-Y. Chemin, Perfect incompressible fluids, Vol. 14, Oxford University Press, (1998).

[11] J. Y. Chemin, B. Desjardins, I. Gallagher, E. Grenier, Mathematical geophysics. an introduction

to rotating fluids and the navier-stokes equations, Oxford Lecture, (2006).

[12] J. Y. Chemin, B. Desjardins, I. Gallagher, E. Grenier, Fluids with anisotropic viscosity, ESAIM

Math. Model. Numer. Anal. 34 (2) (2000), 315–335.

[13] C. Cao, J. Wu, Global regularity for the two-dimensional anisotropic boussinesq equations with

vertical dissipation, Arch. Ration. Mech. Anal., 208 (3) (2013), 985–1004.
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